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Abstract 

Extensive studies of the tumor microenvironment (TME) in the last decade have reformed the view of cancer as a 
tumor cell-centric disease. The tumor microenvironment, especially termed the "seed and soil" theory, has emerged 
as the key determinant in cancer development and therapeutic resistance. The TME mainly consists of tumor cells, 
stromal cells such as fibroblasts, immune cells, and other noncellular components. Within the TME, intimate commu-
nications among these components largely determine the fate of the tumor. The pivotal roles of the stroma, especially 
cancer-associated fibroblasts (CAFs), the most common component within the TME, have been revealed in tumori-
genesis, tumor progression, therapeutic response, and tumor immunity. A better understanding of the function of 
the TME sheds light on tumor therapy. In this review, we summarize the emerging understanding of stromal factors, 
especially CAFs, in cancer progression, drug resistance, and tumor immunity with an emphasis on their functions in 
epigenetic regulation. Moreover, the importance of epigenetic regulation in reshaping the TME and the basic biologi-
cal principles underpinning the synergy between epigenetic therapy and immunotherapy will be further discussed.
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Background
Cancer is one of the main life-threatening diseases world-
wide. Although substantial improvements have been 
achieved in early detection and treatment paradigms, 
tumor recurrence, metastasis, and therapeutic resistance 
remain the major challenges in almost all kinds of can-
cers. A better understanding of the underlying mecha-
nism of tumor development and progression may provide 
opportunities for cancer treatment.

Genomic instability and mutation in cancer cells have 
been considered the fundamental driving characteristics 
during cancer progression; therefore, substantial studies 
have largely been restricted to the epithelial component 

of tumors. However, a tumor is not an island originat-
ing from cancer cells but rather a complex cellular eco-
system. The “seed and soil” theory was first proposed 
by Stephen Paget in 1889 to interpret the preferences of 
cancer cells when metastasizing to organs [1, 2]. For the 
first time, this theory emphasizes the importance of the 
host environment to the appearance of tumor metasta-
sis in addition to the intrinsic properties of cancer cells. 
It also has important reference significance for under-
standing tumorigenesis, tumor progression, and drug 
resistance in cancer. The maintenance and progression 
of tumors are highly supported by the tumor microen-
vironment (TME), also termed the tumor stroma, which 
mainly includes fibroblasts, immune cells, the basement 
membrane, the extracellular matrix, and the vasculature 
[3]. As the most abundant cell type in the TME, cancer-
associated fibroblasts, which transdifferentiate from their 
main precursors, normal fibroblasts, play pivotal roles in 
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tumor progression. The interplay between cancer cells 
and CAFs, which affects tumorigenesis and tumor devel-
opment from almost every aspect, has become increas-
ingly unveiled in recent years.

Epigenetic regulations, including DNA methylation, 
histone modification, chromatin remodeling, and non-
coding RNA regulation, change gene expression with-
out affecting germline DNA sequences. In addition to 
genetic mutations, epigenetic dysfunction is recognized 
as an important hallmark of cancer. It has been widely 
recognized that epigenetic alterations can drive onco-
genesis and promote cancer progression by extensively 
regulating the aberrant expression of cancer-associated 
and immune-related genes. In cancer cells, the transcrip-
tion of proto-oncogenes is commonly boosted as a result 
of promoter hyperacetylation, while tumor suppressor 
genes are repressed by promoter hypoacetylation and 
DNA hypermethylation. Many cancers show a global 
loss of DNA methylation across the genome, with gains 
of DNA methylation primarily at CpG islands, suppress-
ing genes that control cancer progression [4]. As one of 
the most important mechanisms, epigenetic dysfunction 
fundamentally reshapes the tumor microenvironment by 
altering the phenotypes of cancer cells, tumor-associated 
stromal cells, and immune cells. The reversibility of epi-
genetic modifications has enabled pharmacological inter-
ventions with potential therapeutic strategies as either 
monotherapy or in combination with other therapies. 
In particular, epigenetic agents have shown great poten-
tial for synergizing with cancer immunotherapy, such as 
immune checkpoint blockade (ICB), due to their potent 
ability to convert the TME into a more immunopermis-
sive type.

In this review, we summarize the latest understanding 
of stromal factors, especially CAFs, in cancer progres-
sion, therapeutic resistance, and tumor immunity with 
a particular emphasis on their functions in epigenetic 
regulation. In addition, the importance of epigenetic 
regulation in reshaping the TME and the basic biological 
principles underpinning the synergy between epigenetic 
therapy and immunotherapy will be further discussed.

CAF‑tumor cell interaction regulates tumor 
progression and therapeutic response
As a principal constituent of the tumor stroma, CAFs 
play a central role in cross-communication between cells 
in tumors. In this section, we will mainly focus on colo-
rectal cancer representing solid tumors, in which the 
transcriptional signatures of CAFs rather than tumor 
cells were robustly associated with poor disease prog-
nosis and relapse across the various classifications [5, 6]. 
In the consensus molecular subtype (CMS) classifica-
tion, which described a thoroughly studied and robust 

stratification strategy for CRC in large patient cohorts, 
CAFs were closely associated with CRC development [7, 
8]. Subtype 4 (CMS4), the mesenchymal subtype, with 
overrepresentation of the stromal signature, predicted 
more aggressive tumor stages and worse prognosis.

Secreted effectors and oncogenic signaling
The protumorigenic function of CAFs in CRC can be 
mainly exerted via secreted effectors such as growth fac-
tors, cytokines, chemokines, or exosomes, including the 
transforming growth factor β (TGF-β) family, interleukin 
(IL)-6, IL-8, IL-11, Wnt, hepatocyte growth factor (HGF), 
IL-17A, Netrin-1, leukemia inhibitory factor (LIF), 
secreted glycoprotein stanniocalcin-1 (STC1), fibro-
blast growth factor 1 (FGF1), stromal cell-derived fac-
tor-1 (SDF-1), and bone morphogenetic proteins (BMPs) 
[9–15].

In a noncontact coculture system, conditioned medium 
from CAFs rather than normal fibroblasts was found to 
promote the proliferation [16], migration, and invasion 
[17, 18] of CRC cells. TGF-β is one of the most impor-
tant cytokines secreted mainly by CAFs and is highly 
expressed at tumor invasive margins. Interestingly, prom-
inent TGF-β activation was also found in CRC subtype 
CMS4 [7]. The activation of TGF-β/Smad2 signaling in 
CAFs stimulated by CRC cells enhances the expression of 
α-SMA and differentiation of CAFs into a myofibroblastic 
phenotype, resulting in the expression of invasion-related 
proteins such as matrix metalloproteinases (MMPs) 
[19]. By developing patient-derived models to dissect 
the microenvironmental interaction between CAFs and 
tumor cells, we also described CAF-secreted TGF-β2, a 
member of the TGF-β family, inducing the expression of 
GLI Family Zinc Finger 2 (GLI2), an important effector 
of Hedgehog signaling, as a predominant pathway to pro-
mote CRC stemness and chemoresistance [20] (Fig.  1). 
Endoglin, a transmembrane accessory receptor of TGF-β 
that is expressed in CAFs in CRC and its metastatic 
specimens, is implicated in CAF-mediated invasion and 
metastasis via TGF-β signaling activation [21]. Addition-
ally, integrin β6 expressed by CRCs was able to increase 
CAF activation through active TGF-β, and activated 
CAFs were found to promote CRC cell invasion [11].

Interleukin-6/signal transducer and activator of tran-
scription 3 (IL-6/STAT3) signaling is a crucial and well-
known pathway mediating malignant progression in 
CRC [22, 23]. CAFs in the tumor microenvironment 
play an active role in maintaining STAT3 activation in 
CRC. Heichler et  al. found that the level of p-STAT3 
activated by CAF-secreted IL-6/IL-11 was closely corre-
lated with CRC patient survival [24]. TGF-β-stimulated 
CAFs activate STAT3 signaling in cancer cells, medi-
ating tumor metastasis through the secretion of IL-11 
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[25]. Furthermore, STAT3 activation in fibroblasts pro-
motes the expression of periostin, a multifunctional 
extracellular matrix protein, which ultimately facilitates 
CRC development by Integrin-FAK-Src pathway-medi-
ated YAP/TAZ activation [26]. More recently, our work 
demonstrated that IL-6 could promote epithelial-mes-
enchymal transition (EMT), migration, and invasion 
of CRC cells through upregulation of leucine-rich α-2 
glycoprotein 1 (LRG-1), which was found to be a direct 
transcriptional target of STAT3 [18]. Blocking the IL-6/
LRG-1 axis remarkably attenuates metastasis in the xeno-
graft CRC mouse model. IL-6-activated STAT3 in CAFs 
also regulates transcriptional patterns associated with 
angiogenesis. In a genetically engineered mouse model, 
the constitutive activation of STAT3 in fibroblasts pro-
motes CRC growth, which is blocked by the inhibition 
of proangiogenic signaling [24]. It was also reported that 
the secretion of IL-6 from CAFs promotes angiogen-
esis by enhancing the production of the key angiogenic 

factor, vascular endothelial growth factor A (VEGFA) 
from endothelial cells [27]. IL-6 was also reported to pro-
mote colorectal cancer stem-like properties via induc-
tion of fos-related antigen 1 (FRA1) deacetylation [28]. 
Thus, targeting the microenvironment through STAT3 
and its related signaling may provide a promising thera-
peutic opportunity for CRC treatment. Sanchez-Lopez 
et al. reported that targeting insulin-like growth factor-1 
receptor (IGF-1R) and STAT3 decreased CRC prolifera-
tion and increased apoptosis by inhibiting CAF activa-
tion and inflammation [29].

The Wnt/beta-catenin signaling, one of the most acti-
vated pathways in CRC, was observed preferentially 
in tumor cells located close to stromal myofibroblasts. 
Myofibroblast-secreted factors, specifically hepatocyte 
growth factor (HGF), activate beta-catenin-dependent 
transcription and subsequently restore the cancer stem 
cell phenotype in more differentiated tumor cells both 
in  vitro and in  vivo [30]. In addition, Straussman et  al. 

Fig. 1 CAFs regulate tumor progression and therapeutic response. Our recent work demonstrated that CAFs promote tumor progression 
and therapeutic resistance through diverse mechanisms. CAFs secrete IL6 and IL8, which activate the JAK2-STAT3 pathway. JAK2-dependent 
phosphorylated BRD4 interacts with STAT3 to modulate chromatin remodeling (enhancer/super-enhancer reprogramming) and promote 
oncogene expression, leading to BETi resistance and tumor progression. IL6 also induces LRG1 expression through STAT3-dependent 
transactivation, which promotes EMT and metastasis. CAF-secreted TGF-β2 induced the expression of GLI2, which synergizes with hypoxia-induced 
HIF1α to promote CRC stemness and chemoresistance
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found that CAF-secreted HGF activates the MAPK and 
PI3K-AKT signaling pathways, resulting in resistance 
to RAF inhibitors in BRAF-mutant cancer cells [31]. In 
addition, CAF-derived Wnt2 can increase tumor angio-
genesis [32] through the upregulation of some proangio-
genic proteins and promote cell invasion and migration 
in CRC [33].

Epigenetic regulation
Accompanying extensive regulation of signaling trans-
duction and the tumor cell transcriptome, rewiring of 
the epigenetic landscape in tumor cells or CAFs can also 
modulate the extent and quality of the antitumor treat-
ment response and overall disease outcome. Agrawal 
et al. discovered that fibroblasts promote cell proliferation 
and variably affect the expression of DNA methylation-
regulating enzymes, hence improving decitabine-induced 
demethylation in CRC cells and increasing their stemness 
[34]. Bromodomain-containing protein 4 (BRD4), an epi-
genetic reader of histone acetylation, is highly expressed 
in different types of tumor cells, and it can protect these 
tumor cells against targeted therapy [35–38] and immu-
nogenic cell death [39–41]. Our recent work demon-
strated a tumor microenvironment mechanism by which 
CAF-associated inflammatory paracrine IL6/IL8-JAK2 
signaling induces BRD4 activation by phosphorylation 
in CRC, leading to chromatin reprogramming through 
increased enhancer and super-enhancer activity. Inter-
estingly, the chromatin remodeling induced by CAF-
derived IL6/IL8 was established through the convergence 
of p-BRD4 and STAT3 co-occupancy on a set of crucial 
oncogenes associated with tumor growth and metastasis, 
such as MYC, C-X-C motif chemokine ligand (CXCL)1, 
and CXCL2. Additionally, noncoding RNAs are also 
involved in CAF-mediated tumor progression and ther-
apeutic resistance. Several studies have reported that 
CAFs exert their roles by directly transferring exosomes 
to CRC cells, leading to a significant increase in noncod-
ing RNA levels in CRC cells [42–44]. It was found that 
all CAF-derived lncRNA CCAL (colorectal cancer-asso-
ciated lncRNA) [44], lncRNA H19 [43], and miR-92a-3p 
[42] transferred via exosomes can activate the Wnt/β-
catenin pathway in CRC, then suppress cell apopto-
sis, promote cell stemness, and/or confer resistance to 
chemotherapy.

In addition to cancer cells, CAFs are also extensively 
regulated by epigenetic mechanisms in the TME. Leuke-
mia inhibitory factor (LIF) is a cytokine highly expressed 
in CRC cells that can inhibit cell apoptosis and promote 
chemoresistance via the activation of STAT3 signaling 
[45]. Interestingly, LIF was also reported to activate qui-
escent CAFs by an epigenetic switch. Mechanistically, 
DNA methyltransferase 3 beta (DNMT3B), a de novo 

DNA methyltransferase that is activated in a LIF/STAT3-
dependent manner, can methylate CpG sites and silence 
the expression of SHP-1 phosphatase, leading to the acti-
vation of CAFs [46]. Adenosine-to-inosine (A-to-I) RNA 
editing is a newly described epigenetic modification that 
is thought to represent a crucial carcinogenic mecha-
nism in human malignancies. A study with a large cohort 
of 627 colorectal cancer (CRC) specimens by Takeda 
et al. revealed that adenosine deaminase acting on RNA 
(ADAR), the key enzyme involved in A-to-I RNA editing, 
was upregulated in both cancer cells and cancer-associ-
ated fibroblasts, which increased the RNA edition level 
of antizyme inhibitor 1 (AZIN1). Interestingly, condi-
tioned medium from cancer cells led to both induction of 
ADAR1 expression and activation of AZIN1 RNA editing 
in CAFs, resulting in the increased invasive potential of 
CAFs within the TME in the colon [47].

These studies clearly showed that the tumor microenvi-
ronment is a comprehensive ecosystem in which intimate 
communication between cancer cells and CAFs funda-
mentally regulates tumor development and progression. 
These studies also strengthened that the therapeutic 
strategies mainly targeting tumor cells might be insuffi-
cient to achieve a curative outcome in cancer, which has 
been repeatedly observed in clinical practice. The tumor 
stroma supports cancer cell survival and drug resistance 
after exposure to these tumor-targeting therapies, lead-
ing to fatal progression. Interestingly, Lotti et  al. dis-
covered a considerable increase in the number of CAFs 
in CRC patients when chemotherapy was given. These 
CAFs maintain cancer-initiating cell self-renewal and 
lead to increased resistance to chemotherapy [48]. Thus, 
targeting CAFs must be considered to eliminate can-
cer. Notably, multiple strategies have been developed in 
preclinical and clinical models to target CAFs and their 
related pathways [49, 50]. Nevertheless, targeting CAFs 
alone is unlikely to be efficient in eliminating the whole 
tumor. Combination strategies that co-target tumor cells 
and CAFs may elicit tumor eradication. This relies on 
both mechanistic studies dissecting the complex inter-
play among cells in the tumor and the discovery of reli-
able biomarkers to stratify patients who may benefit from 
the treatment.

It is worth noting that the abovementioned stromal 
mechanism to regulate tumor progression and thera-
peutic response also deeply modulates tumor immu-
nity within the TME, which will be discussed below. For 
instance, in addition to our finding that CAF-secreted 
TGF-β signaling and hypoxic environment-induced 
HIF-1α synergistically induce GLI2 expression to regu-
late tumor stemness and chemoresistance, it is well 
known that TGF-β signaling plays a vital role in tumor 
immunity in the TME by repressing the antitumor 
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functions of various immune cell populations, including 
T cells and natural killer cells [51]. Interestingly, GLI2 
and HIF-1α have also been found to regulate T cell and 
NK cell infiltration and activity in tumors [52–59]. Again, 
intriguingly, in addition to directly regulating angiogen-
esis and metastasis [18, 60], LRG1 has been shown to 
promote the extravasation and activation of neutrophils 
as well as to regulate NETosis [61], which is implicated in 
tumor immune suppression and neutrophil extracellular 
traps (NETs)-dependent metastasis [62, 63]. Thus, a more 
comprehensive understanding of the communications 
within the tumor microenvironment is needed for cancer 
therapies.

Stromal mechanisms reshaping the TME and tumor 
immune response
Immunotherapy, specifically immune checkpoint block-
ade (ICB), has been the most promising paradigm in 
cancer therapies in the past decade. According to the 
abundance of tumor-infiltrating lymphocytes, tumors 
were arbitrarily classified as "hot tumors" or "cold 
tumors" with high infiltrated or low infiltrated lympho-
cytes, respectively [64]. While ICB has shown effective-
ness in multiple cancers, such as melanoma and lung 
cancer, most patients cannot benefit from the treatment, 
especially those with cold tumors, such as CRC and 
breast cancer. In these “cold tumors”, due to the lack or 
paucity of tumor T cell infiltration, ICB treatment rarely 
triggers a strong immune response, leading to ICB failure 
[65]. Based on the underlying mechanism of ICB action, 
several potential features are proposed to be related to 
immunotherapy response, including programmed death-
ligand 1 (PD-L1) expression level, immune composi-
tion within the TME (immune score), neoantigens and 
tumor mutation burden [66]. These features of tumors 
are determined not only by the genetic status of tumor 
cells (such as genetic mutations related to tumor anti-
gens and mutation burden) but also by the stromal 
mechanisms by which CAFs reshape the TME through 
interplay with immune cells. Meanwhile, the epigenetic 
mechanism in the TME controlling these events has also 
been extensively documented, implying that certain epi-
genetic alterations could be used as potential targets for 
immunotherapy.

The interplay between CAFs and immune cells to modulate 
tumor immunity
Recent studies have suggested that CAFs in the TME are 
linked to immunotherapy response by diverse mecha-
nisms. For instance, CAFs and secreted ECM serve as 
a physical barrier to prevent drug delivery and infiltra-
tion of immune cells, thus restraining the effectiveness 
of immunotherapy [67, 68]. Moreover, the induction of 

immune checkpoint molecules such as PD-L1, PD-L2, 
and B7-H3 by CAF-secreted factors, exosomes in can-
cer cells or CAFs themselves substantially induce T cell 
exhaustion and deactivation, leading to intrinsic resist-
ance to immunotherapy [69]. Additionally, cytokines 
such as IL-1β, IL-6, and TGF-β that can be produced by 
activated immune cells have been broadly implicated in 
CAF activation [19, 70, 71]. By interacting with immune 
cells such as T lymphocytes, myeloid-derived suppressor 
cells, dendritic cells, and others within the TME, CAFs 
can establish the so-called immunosuppressive microen-
vironment (Fig. 2).

CAFs and T lymphocytes
T lymphocytes function as essential modulators mediat-
ing the immune response, which comprises distinct sub-
types such as cytotoxic CD8+ T lymphocytes (CTLs), 
Fox3p + regulatory T cells (Tregs), and CD4+ T helper 
(Th) cells. CTLs, the most critical immune cells of anti-
tumor immunity, are substantially modulated by CAFs to 
reduce their infiltration, growth, and antitumor activity. 
CAF-secreted TGF-β inhibits the expression of cytolytic 
genes in CTLs, which are responsible for CTL-medi-
ated tumor cytotoxicity [72]. Surprisingly, Lakins et  al. 
found that CAFs isolated from murine melanoma and 
lung tumors can directly participate in antigen presenta-
tion, leading to antigen-mediated activation-induced cell 
death (AICD) of tumor-reactive CD8+ T lymphocytes 
via engagement of PD-L2 and Fas ligand to promote 
cancer immune evasion [73]. Furthermore, CAFs were 
reported to markedly stimulate Treg cell migration and 
increase their infiltration into tumor sites in CRC [74]. 
CAF-derived secreted factors such as TGF-β or CCL5 
are also responsible for the recruitment of Tregs and dif-
ferentiation of naïve T cells to Tregs, ultimately inducing 
immune suppression [75–77].

Several studies have indicated the significant influence 
of CAFs on Th cell polarization. For example, lactate 
release from CAFs reduced the percentage of antitu-
moral Th1 cells and concomitantly increased Tregs, thus 
driving immunosuppression in prostate cancer [78]. As 
one of the most frequently secreted cytokines by CAFs, 
TGF-β can suppress type 2 immunity by repressing Th2 
cell responses in cancer [79].

CAFs and MDSCs
Myeloid-derived suppressor cells (MDSCs) are well 
documented for their immunosuppressive role in the 
TME. C–C motif chemokine ligand 2 (CCL2) released 
from CAFs in liver tumors was reported to promote the 
recruitment of MDSCs through the activation of STAT3 
[80]. Similarly, CAF-produced IL-6 and IL-33 were able 
to educate MDSCs in the TME via hyperactivation of 
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5-lipoxygenase (5-LO), thus potentiating the capability 
of MDSCs to enhance cancer stemness [81]. Whereas, 
Yang et  al. found that nonalcoholic fatty liver disease 
(NAFLD)-associated hepatocellular carcinoma (HCC) 
expressed low levels of CCL2 as well as other cytokines, 
such as CCL4, CXCL2, and CXCL6, compared with non-
tumor tissues [82]. Although somehow contradictory 
to the immunosuppressive function of CCL2, this study 
demonstrated that CCL4, a crucial chemokine for T cell 
migration, is more responsible under this circumstance. 
Interestingly, pharmacological inhibition of histone dea-
cetylase 8 (HDAC8), a histone H3 lysine 27 (H3K27)-
specific isozyme overexpressed in a variety of human 
cancers, increased global and enhancer acetylation of 
H3K27 to reactivate the production of CCL4 by HCC 
cells, thus dampening HCC tumorigenicity in a T cell-
dependent manner.

CAFs and other immune cells
Many reports have also uncovered the importance of 
CAFs in mediating tumor immune evasion by regulating 

innate immune cells, such as dendritic cells (DCs), 
tumor-associated macrophages (TAMs), neutrophils, 
natural killer (NK) cells, and myeloid cells. In CRC, 
CAF-secreted Wnt2 led to evasion of immune surveil-
lance by suppressing the DC-mediated antitumor T cell 
response through the SOCS3/p-JAK2/p-STAT3 signaling 
cascades [83]. Moreover, a comprehensive map to elabo-
rate the interaction between diverse types of cells in the 
TME of CRC has been depicted recently by taking advan-
tage of scRNA-seq using clinical samples [84]. Of note, 
SPP1+ TAMs displayed direct interaction with CAFs, 
which might be due to the binding of MMP2 produced 
from CAFs and SDC2 that was preferentially expressed 
in SPP1+ TAMs [84]. In line with this, another work by 
Zhang et  al. also confirmed that CAFs promoted TAM 
infiltration and subsequent M2 polarization in CRC via 
IL-8 [85]. Furthermore, TAMs could synergize with CAFs 
to suppress NK cell killing ability, therefore promoting 
CRC progression. Neutrophils release histone-bound 
nuclear DNA and cytotoxic granules as extracellular traps 
(NETs). A novel finding demonstrated that CAF-secreted 

Fig. 2 CAFs modulate the immunosuppressive microenvironment. CAFs promote immune suppression and abolish immune surveillance in the 
TME. CAFs secrete TGFβ and CCL5 to differentiate naïve T cells into Tregs and to recruit Tregs. CCL2, IL6, and IL33 secreted by CAFs help to recruit 
MDSCs and strengthen their immunosuppressive function. CAFs promote NETosis and M2 polarization of TMAs in the TME by releasing amyloid β 
or IL8. However, TGF-β secreted by CAFs suppresses Th cell function and reduces CTL infiltration. The expression of PD-L2 and FasL induces AICD in 
CTLs. CAFs can suppress the DC-mediated antitumor T cell response and inactivate NK cell-mediated tumor killing by PGE2 and IDO secretion. TME: 
tumor microenvironment; Th: T helper cell; Treg: regulatory T cell; MDSC: myeloid-derived suppressor cell; TAM: tumor-associated macrophage; NK 
cell: natural killer cell; AICD: activation-induced cell death
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amyloid β drives the formation of tumor-associated NETs 
(t-NETs), thus supporting tumor progression [86]. More 
interestingly, it was also observed that t-NETs could 
reciprocally activate CAFs by promoting their expansion, 
contractility, and deposition of matrix components [86]. 
CAFs inhibit NK cells through a variety of mechanisms. 
CAFs, for example, reduce the expression of NK cell-
activating receptors, including NKp30 and NKp44, and 
transition NK cells into an inactivated state by secreting 
prostaglandin E2 (PGE2) and indoleamine 2,3-dioxyge-
nase (IDO) [87, 88]. Surprisingly, NK cells can enhance 
this suppressive loop by boosting the release of PGE2 by 
CAFs [87]. It has also been reported that CAFs indirectly 
decrease NKG2D-dependent cytotoxic activity and inter-
feron (IFN) secretion of NK cells by reducing the ligands 
of NK-activating receptors on melanoma cells [89]. 
Previous research has shown that various myeloid cell 
subsets expand in CRC cancers. However, these tumor-
infiltrating myeloid cells have both pro- and anti-tumor 
roles in CRC progression. Salman et  al. discovered that 
CD33+ myeloid cells from patients with advanced stages 
expressed more pro-angiogenic and hypoxia-related 
genes but fewer immune and inflammatory response 
genes compared to those with early-stage diseases [90]. 
This study implies that immune cell recruitment and 
activation could be compromised under the TME, which 
dynamically evolves along with tumor progression.

These works highlighted that CAFs and immune cells 
formed an intimate connection within the TME, imply-
ing a promising potential strategy to reshape the immune 
microenvironment by perturbing crosstalk between the 
two cell populations.

Epigenetic mechanisms in the TME modulate 
immunotherapy efficacy
The complex interplay between stroma, immune, and 
cancer cells alters the epigenome of each other, which 
is important for antitumor immunity. The idea of con-
verting noninflamed cold tumors into hot tumors using 
epigenetic intervention may help to achieve a better 
response to immunotherapy [91]. Early testing of the 
therapeutic potential of combining epigenetic agents 
and immunotherapies showed elevated immune-related 
gene expression and a durable response to anti-CTLA4 
or anti-PD1 treatment [92–94]. Epigenetic modifica-
tions of immune-related genes may strengthen immune 
surveillance and increase the efficacy of immunotherapy 
by three key mechanisms (Fig. 3): (1) activating immune 
pathways or reprogramming the tumor microenviron-
ment to counteract immunosuppression. (2) Increasing 
the tumor antigenicity by enhancing the processing and 
presentation of tumor antigens (3) reversing the exhaus-
tion of infiltrated cytotoxic immune cells in the tumor.

Modulation of key immune signaling pathways in the TME
As evidenced by the existence of an IFN-responsive gene 
profile in some tumors, an inflamed "hot" TME is com-
patible with effective IFN-mediated antitumor immune 
responses. IFN signaling, including type I IFN (IFNα and 
IFNβ) and type II IFN (IFN-γ), is a well-controlled molec-
ular network that plays pivotal roles in tumor immunity.

Type I interferons control the development of innate 
and adaptive immune responses by activating intracel-
lular viral defense pathways. Viral double-stranded DNA 
(dsDNA) or dsRNA can activate the production of type 
I interferons when captured by their sensors. It is worth 
noting that the cytosolic dsDNA sensing pathway, espe-
cially the cyclic GMP-AMP synthase and stimulator 
of interferon genes (cGAS-STING) pathway, is usually 
epigenetically silenced in human cancers through DNA 
hypermethylation at their promoter regions [95–98]. The 
reactivation of ancient endogenous retroviruses (ERVs) 
and retrotransposons in our genome that are typically 
silenced (so-called viral mimicry) has been emerging 
as a robust strategy to boost the immune response in 
cancer [99, 100] by inducing type I IFN activation after 
being recognized by sensors of dsRNA, such as RIG-I 
and MDA5. Recent studies have shown that ERVs can 
be reinvigorated by drugs targeting epigenetic modula-
tors, including DNMTs, HDACs, or HMTs. In many can-
cers, including CRC, DNA methyltransferase inhibitors 
(DNMTis) can induce dsRNA expression mainly derived 
from ERVs and subsequently trigger cytosolic sensing of 
dsRNA, causing a type I interferon response and apopto-
sis [93, 101]. Interestingly, similar to DNMT1 inhibition, 
ablating the histone demethylase LSD1, which is elevated 
in diverse cancers, improves tumor immunogenicity 
by simultaneously activating the dsRNA-IFN pathway 
by stimulating ERV expression and downregulating the 
RNA-induced silencing complex (RISC) [102]. These 
findings may provide an opportunity to reactivate the 
pathway and promote the immune response by targeting 
specific epigenetic regulators.

Moreover, Morel et  al. demonstrated that EZH2 
represses the production of dsRNA and genes implicated 
in the IFN response, antigen presentation, and T-cell 
attraction through its catalytic function in prostate can-
cer [103]. As a histone methyltransferase, SETDB1 was 
first found to keep silencing the transposable elements 
(TEs) that lead to the production of dsRNAs in acute 
myeloid leukemia (AML) [104]. SETDB1 is located at a 
frequently amplified chromosome area in many other 
solid tumors, chromosome 1q21.3, which was also impli-
cated in worse tumor prognosis in breast cancer [105]. 
The amplification of SETDB1 (1q21.3) in tumors is asso-
ciated with immune exclusion and resistance to immune 
checkpoint blockade [106]. SETDB1 loss derepresses 
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latent TE-derived regulatory elements, immunostimu-
latory genes, and TE-encoded retroviral antigens in 
these regions and triggers TE-specific cytotoxic T cell 
responses in vivo. Using melanoma and colon cancer as 
models, Zhang et al. uncovered that KDM5B—an H3K4 
demethylase—recruits the H3K9 methyltransferase 
SETDB1 to repress endogenous retroelements in a dem-
ethylase-independent manner [107]. Although it remains 
to be further determined whether these epigenetic regu-
lations commonly occur in colon cancer, the viral mim-
icry induced by epigenetic intervention provides an 
apparent strategy to trigger a robust IFN response and 
antitumor immunity within the TME. Strikingly, ERV 
regulation also determines T helper cell lineage integrity. 
In immune T helper cells, SETDB1 controls the deposi-
tion of the restrictive H3K9me3 mark at a restricted and 
cell-type-specific set of endogenous retroviruses posi-
tioned in the vicinity of genes implicated in immunologi-
cal processes [108]. These retrotransposons operate as 
Th1 gene enhancers or influence Th1 gene cis-regulatory 
elements. By suppressing a range of ERVs to shape and 

govern the Th1 gene network, H3K9me3 deposition by 
SETDB1 ensures Th cell lineage fidelity.

IFN-γ binds to interferon gamma receptors (IFNGRs) 
and activates the Janus kinase (JAK)-signal transducer 
and activator of transcription (STAT) signaling pathway, 
which modulates the immune response by activating an 
IFN-stimulated gene (ISG) transcriptional program. The 
presence of an IFN-γ-responsive gene signature predicts 
a better response to immunotherapy compared with 
tumors lacking the IFN-γ signature [109].

Epigenetic histone modifications and DNA methylation 
are closely involved in the regulation of the IFN-γ sign-
aling pathway in colorectal cancer. Tumor production of 
CXCL9 and CXCL10, which are Th1-type chemokines, 
can be repressed by either enhancer of zeste homolog 2 
(EZH2, a core of the PRC2 complex)-mediated histone 
H3 lysine 27 trimethylation or DNA methyltransferase 
1 (DNMT1)-induced DNA methylation, subsequently 
resulting in less recruitment of IFN-γ-producing immune 
cells [110]. Conversely, ARID1A, a core member of the 
SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, 

Fig. 3 Epigenetic regulation of the immune response in the tumor microenvironment. DNA methylation and histone modification regulate the 
tumor immune response in the TME. The epigenetic mechanisms of DNA methylation induced by DNMT, transcriptional suppression by EZH2, and 
HDAC play crucial roles in immune-related signal inactivation, immune cell recruitment, antigen processing and presentation, and immune cell 
exhaustion by suppressing the expression of ERVs, MHC I genes, antigen processing machinery, and cancer testis antigens in the TME. TME: tumor 
microenvironment; IFNs: interferons
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promotes tumor expression of CXCL9 and CXCL10 
[111]. Genetic deficiency in ARID1A has been reported 
to result in a reduction in chromatin accessibility at these 
chemokine loci in colorectal cancer cells. ARID1A inter-
acts with EZH2 through its carboxyl terminus, prevent-
ing EZH2 from inhibiting IFN signaling-mediated gene 
expression. Moreover, our previous work discovered 
that EZH2 can suppress the IFN-γ signaling pathway by 
directly silencing the expression of interferon-γ recep-
tor 1 (IFNGR1) [112] and ISG activation [113], which led 
to cancer cells being insensitive to IFN-γ treatment or 
resistant to trastuzumab treatment, respectively.

Improvements to tumor antigenicity
Aberrant epigenetic mechanisms driving the dysregula-
tion of genes involved in the processing or presentation 
of tumor antigens, essential for T cell activation, are a 
recurring characteristic of cancer cells escaping from 
immune surveillance. In addition to activating IFN sign-
aling, DNMTis such as 5-azacytidine, decitabine, and 
guadecitabine, which induce global hypomethylation, 
significantly boost the expression of MHC class I genes 
and PD-L1 [114, 115]. Additionally, DNMTi can also 
increase the expression of cancer-testis antigens (CTAs), 
promising immunotherapy targets such as MAGE-11 
and NY-ESO-1 that are expressed in early embryonic 
cells but suppressed in mature somatic cells due to pro-
moter CpG island DNA methylation [116, 117]. In cancer 
cells, deacetylation of histone lysine residues is frequently 
linked to hypermethylated and repressed genes. Histone 
deacetylase inhibitors (HDACis), such as trichostatin A 
(TSA), restore gene expression by targeting these regions. 
HDACis have been shown to boost the expression of 
various antigen processing machinery components, such 
as TAP-1, TAP-2, LMP-2, and tapasin. Treatment of 
metastatic cancer cells with TSA increases MHC class I 
expression on the cell surface, which functionally trans-
lates to increased vulnerability to killing by antigen-spe-
cific CTLs [118]. PRC2 was also reported to silence the 
MHC-I antigen processing and presentation pathway and 
evade immune surveillance. Pharmacological inhibition 
of EED or EZH2 and EZH1 reverses the silencing of these 
pathways, leading to the reestablishment of effective T 
cell-mediated antitumor immunity.

Reversed immune exhaustion
Tumor-infiltrating lymphocytes, particularly cyto-
toxic CD8+ T cells (CTLs), often display dysfunction 
and exhaustion due to the persistent existence of anti-
gen stimulation and other factors in the TME, such as 
hypoxia and metabolic stress [119]. They frequently lose 
the capacity to produce cytokines such as tumor necro-
sis factor-α, IFN-γ, and interleukin (IL)-2 but retain the 

expression of inhibitory receptors such as programmed 
cell death protein (PD)-1, lymphocyte-activation gene 
(LAG)-3, or T cell immunoglobulin and mucin-domain 
containing (TIM)-3 [120, 121]. Specific chromatin-acces-
sible areas linked with an altered transcriptional profile 
are found in CD8+ T cell exhaustion, including enrich-
ment for genes in interferon signaling, PD-1 signaling 
and the cytokine IL-10 response [122]. Immune check-
point blockade, such as anti-PD-1 antibody treatment, 
has been shown to partially reverse CD8+ T cell exhaus-
tion; however, extensive epigenetic reprogramming dur-
ing T cell exhaustion, which differs substantially from 
that of effector and memory T cells, limits the durable 
success of immunotherapies [123]. By characterizing 
the critical epigenetic reprogramming mechanisms of 
T cell exhaustion, the exhaustion status may be revers-
ible [124–127]. Ghoneim et al. demonstrated that epige-
netic changes introduced by the DNA methyltransferase 
DNMT3A are needed to acquire an exhausted pheno-
type[126]. DNMT3A methylates thousands of genes de 
novo, many of which are critical for effector CD8+ T cell 
function. A study of exhausted CD8+ T cells in humans 
and a chronic viral infection mouse model by Sen et al. 
revealed that a state-specific epigenetic landscape organ-
ized into functional modules of enhancers is required for 
exhaustion [124]. Using an in  vitro system that models 
human T cell exhaustion, our data recently reported that 
hypoxia in the TME induces transcriptional suppression 
of the immune effectors IFN-γ, tumor necrosis factor α 
(TNFα), and granzyme B, resulting in immune effec-
tor cell dysfunction and resistance to immunotherapy 
[128]. Furthermore, the chromatin remodeling enforced 
by HIF1α interaction with HDAC1 and subsequent 
dependence on PRC is identified as a crucial epigenetic 
mechanism conferring immune effector suppression. In 
addition, under continuous stimulation with tumor anti-
gen, hypoxia further induces TIM-3 and ITGIT to poten-
tiate T cell exhaustion in a HIF-1α-independent manner. 
In addition, microenvironmental stressors coordinated 
with T cell receptor stimulation, and PD-1 signaling can 
promote terminal exhaustion of T cells through epige-
netic reprogramming as a result of mitochondrial dys-
function [129].

Implications of epigenetic modulators in cancer 
intervention
Many studies have focused on evaluating combinations 
of immunotherapies with various therapies, including 
chemotherapy, radiation therapy, and targeted therapy, 
to increase the infiltration of CTLs [130]. With the idea 
of converting "cold tumors" to "hot tumors", epigenetic 
therapy offers a unique opportunity to remodel the TME 
from immunosuppressive to immunopermissive by 
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regulating stromal and immune cells via multiple mech-
anisms [91]. Multiple preclinical studies have discov-
ered that epigenetic agents can reinvigorate the immune 
response in various tumor types. As discussed in the 
previous sections, DNA hypomethylating agents such as 
DNMTi (5-AZA), EZH2 inhibitors, or HDACi (TSA) can 
improve the efficacy of ICB by reducing immune sup-
pression through the initiation of the type I IFN response 
via dsRNA production. 5-AZA increased the infiltration 
of both CD8+ T and natural killer (NK) cells and reduced 
the percentages of macrophages and MDSCs in the 
TME. Interestingly, Zhou et al. recently revealed that p53 
activation by MDM2 inhibitors induced the type I IFN 
response, abolishing tumor immune evasion and pro-
moting antitumor immunity in an LSD1- and DNMT1-
dependent manner [131]. The importance of p53 during 
cancer progression is unequivocal since more than half 
of all sporadic cancers show p53 dysfunction. Further-
more, the MDM2 inhibitor ALRN-6924 induced a viral 
mimicry response and tumor inflammation signature 
genes in melanoma patients, which provided a ration-
ale for the synergistic strategy of MDM2 inhibitors and 
immunotherapy. Additionally, in mouse mammary tumor 
models (MMTV-rtTA/tetO-HER2, MMTV-PyMT) 
and patients with breast and colon carcinoma, treat-
ment with CDK4/6 inhibitors reduced DNMT1 expres-
sion, resulting in hypomethylation of immune-related 
genes, enhancing antitumor immunity by both promot-
ing antigen presentation and reducing Treg cell expan-
sion [132]. These events ultimately promoted clearance of 
tumor cells by cytotoxic T cells, which could be further 
improved by the addition of immune checkpoint block-
ade (anti-PD-L1), thus opening a new avenue to treat 
cancer by combination regimens comprising CDK4/6 
inhibitors and immunotherapies.

Interestingly, many epigenetic modulation agents 
play roles in different aspects of immune modula-
tions. For example, DNMTi can initiate the type I IFN 
response and has functions in regulating tumor anti-
gen presentation. HDACis could restore tumor anti-
gen expression and reverse T cell exhaustion. Although 
these functions may be played under different contexts, 
it is interesting to determine how to leverage them to 
augment antitumor immunity. In some circumstances, 
the combination of different epigenetic agents plus 
ICB may confer the best antitumor effect. For exam-
ple, a triple combination of DNMTi/HDACi plus the 
immune checkpoint inhibitor α-PD-1 provides the 
most prolonged overall survival in an ovarian cancer 
model [133]. Similarly, histone deacetylase 6 (HDAC6) 

inhibitors with enhanced antitumor immunity of anti-
PL-L1 immunotherapy were recently developed for 
melanoma treatment [134]. A concern is that many 
epigenetic inhibitors have been shown to limit T cell 
growth, which could compromise the long-term effec-
tiveness of immunotherapy that relies on a persistent 
T cell population. Inhibition of EZH2, for example, 
has been shown to impair T cell function [135]. EZH2 
is required to generate and maintain memory T cells, 
which are responsible for effector T cell production 
and antitumor activity. In conclusion, more research is 
needed to determine whether the benefit of combining 
epigenetic therapy and immunotherapy is dependent 
on the type of cancer or other circumstances. Recently, 
many strategies combining epigenetic therapy and 
immunotherapy are being evaluated in numerous clini-
cal trials (summarized in Table 1), which may improve 
clinical practice in the future.

Concluding remarks
In summary, this review broadly discusses recent stud-
ies exploring the complex interaction networks across 
key cell components within the TME, which consist 
of CAFs, tumor cells, and immune cells. Reciprocal 
crosstalk between different cell populations ultimately 
determines tumor progression via diverse "intermedi-
ate massagers". Epigenetic dysfunction has emerged as a 
novel hallmark of cancer. Although in-depth research has 
indicated the critical influence of epigenetic regulation 
on cancer cells, rising evidence has pointed to the other 
appealing property of epigenetic modulators in reshap-
ing the TME, especially from the perspective of creating 
a tumor-favor immunosuppressive condition. As com-
prehensively stated above, various epigenetic modulators 
contribute to immune evasion, and hence, targeting them 
with small molecules could boost the immune response. 
Thus, these findings present a promising strategy to com-
bine epi-drugs with other therapies, such as immune 
checkpoint blockade (ICB) therapy, which requires an 
immune-permissive TME as the prerequisite for success-
ful treatment. Moreover, while ICB therapy undoubtedly 
became one of the most powerful tools to treat multiple 
cancers with a durable response and acceptable toxicity, 
up to approximately 85% of patients displayed intrinsic 
or acquired resistance to ICB, which profoundly limits its 
utility in the clinic. Therefore, the identification of epige-
netic markers that can predict patients benefiting from 
ICB treatment merits further investigation in the future.
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