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by Gram-positive bacteria
He Liu1, Zhen Hu1, Mengyang Li2, Yi Yang1, Shuguang Lu1* and Xiancai Rao1* 

Abstract 

Gram-positive  (G+) bacterial infection is a great burden to both healthcare and community medical resources. As 
a result of the increasing prevalence of multidrug-resistant  G+ bacteria such as methicillin-resistant Staphylococcus 
aureus (MRSA), novel antimicrobial agents must urgently be developed for the treatment of infections caused by  G+ 
bacteria. Endolysins are bacteriophage (phage)-encoded enzymes that can specifically hydrolyze the bacterial cell 
wall and quickly kill bacteria. Bacterial resistance to endolysins is low. Therefore, endolysins are considered promising 
alternatives for solving the mounting resistance problem. In this review, endolysins derived from phages targeting 
 G+ bacteria were classified based on their structural characteristics. The active mechanisms, efficacy, and advan-
tages of endolysins as antibacterial drug candidates were summarized. Moreover, the remarkable potential of phage 
endolysins in the treatment of  G+ bacterial infections was described. In addition, the safety of endolysins, challenges, 
and possible solutions were addressed. Notwithstanding the limitations of endolysins, the trends in development 
indicate that endolysin-based drugs will be approved in the near future. Overall, this review presents crucial infor-
mation of the current progress involving endolysins as potential therapeutic agents, and it provides a guideline for 
biomaterial researchers who are devoting themselves to fighting against bacterial infections.
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Introduction
The extensive use of antibiotics promotes the crisis of 
antimicrobial resistance (AMR), which has made the 
clinical treatment of bacterial infections difficult and 
poses a challenge to global public health; the AMR prob-
lem requires immediate action, preferably one that is 

long term [1, 2]. Drug-resistant bacterial infections can 
result in at least 50,000 deaths every year in Europe and 
the United States and hundreds of thousands of vic-
tims in other regions of the world [3], leading to a loss 
of $3 trillion in gross domestic product annually [4]. In 
2017, the World Health Organization published a list of 
global priority pathogens that require the exploration and 
development of novel antimicrobials [5]. Among these 
pathogens, Gram-positive  (G+) bacteria occupy a large 
proportion in the clinical detection of drug-resistant 
bacteria, especially methicillin-resistant Staphylococcus 
aureus (MRSA), vancomycin-resistant Enterococcus fae-
cium, and β-lactamase-resistant Streptococcus pneumo-
niae, which are major healthcare problems [5]. Therefore, 
novel antimicrobial agents must be urgently developed 
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to combat the infections caused by drug-resistant  G+ 
bacteria.

Bacteriophages (phages) are the most abundant bio-
logical entities on earth. They are widespread all over 
the biosphere from the soil to marine environments, the 
atmosphere, and the human body. Phages are viruses that 
can specifically infect and rapidly kill the bacterial hosts 
in their lytic life cycles [6, 7]. After replication inside the 
bacterial cells, phages need to exit from the bacterial 
hosts to release assembled progeny virions. The phages 
evolved a lytic system to digest the bacterial cell wall, 
thereby inducing bacterial lysis [8]. Phage endolysins are 
highly efficient molecules that have been used by phages 
for billions of years for this exact purpose. Endolysins 
can access the peptidoglycan through membrane lesions 
formed by the second phage-encoded proteins (holins); 
they degrade the integrity of the cell wall from the inside 
of the bacteria (Fig.  1) [9, 10]. About half of the bacte-
ria on earth can be killed by their phages in 48 h, making 
endolysins the most effective and widespread bacteri-
cidal agents on the planet [7]. Although intact phages can 
also be an antibacterial option, endolysins have more 
advantages compared with phage particles, making them 
important candidates for use as alternatives to antibiotics 
[11, 12].

The presence of the outer membrane of Gram-nega-
tive  (G−) bacteria effectively presents a physical protec-
tive barrier against endolysins, which can directly target 
the bonds in the peptidoglycan and lyse the cell wall of 
 G+ bacteria that do not have outer membranes [13–15]. 
This discovery prompted scientists to attempt to har-
ness the bacteriolytic properties of endolysins to treat  G+ 
bacterial infections. Many recombinant endolysins have 
already been expressed, identified, and purified; they suf-
ficiently display potent bacteriolytic activity against  G+ 
bacteria [15–17]. In addition, phage endolysins can eradi-
cate staphylococcal and streptococcal biofilms in a short 
time [18–20]. For example, CF-301 removes all biofilms 
in catheters within 1 h [20], purified  CHAPK completely 
eliminates the staphylococcal biofilms within 4  h [21], 
and ClyF decreases the 25.2–93.5% biofilm mass within 
45  min [22]. Furthermore, multiple in  vitro and in  vivo 
experiments have demonstrated that endolysins, such as 
PlyC [23], PlyG [24], Cpl-1 [25],  CHAPK [18], LysGH15 
[26], and LysP108 [11], are effective against a variety of 
 G+ bacterial infections. The endolysin-based candidate 
drugs such as P128 and N-Rephasin® SAL200 are being 
tested in phases II and IIa in the treatment of S. aureus 
bacteremia, respectively [27–29]. However, CF-301 failed 
in the phase III clinic trials. Here, we present an overview 

Fig. 1 The role of endolysins and holins in the process of phage infection of a  G+ bacterium. After replication inside the bacterial cell, progeny 
phages utilize a lytic system including endolysins and holins to destroy the integrity of the cell wall from the inside of the bacterium and release the 
assembled phage virions
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of the characteristics and antimicrobial potential of 
endolysins derived from phages and evaluate whether 
they can alternate or sensitize conventional antibiotics in 
the treatment of  G+ bacterial infections.

Structure and classification of endolysins
The structures of phage endolysins are determined by 
their origin. In General, endolysins produced by phages 
infecting  G− bacteria (molecular weight, 15–20  kDa) 
have a simple globular configuration, whereas most of 
the endolysins derived from phages targeting  G+ bacte-
ria (molecular weight, 25–40 kDa) comprise two modular 
structures: an N-terminal catalytic domain (CD) joined 
by a flexible linker to a C-terminal cell wall-binding 
domain (CBD) [30–32]. Some of them feature a modular 
architecture comprising two different types of functional 
domains linked jointly to a single CBD, particularly staph-
ylococcal endolysins [33, 34]. A central CBD can separate 
the two CDs, and this structure is presented in strepto-
coccal endolysins λSA2 and PlySK1249 [35–37]. Specifi-
cally, a unique endolysin Ply187, from a S. aureus phage 
187, has two CDs but lacks a CBD [38–40]. Therefore, the 
abundant modular structures of endolysins are diverse, 
and the function of different CDs and CBDs is distinct. 
To better understand these complex endolysins derived 
from phages targeting  G+ bacteria (mainly including 
Staphylococcus, Streptococcus, Enterococcus, and Lis-
teria), we propose a systematic classification of these 
endolysins based on their domain compositions (Fig.  2) 
and update other types of staphylococcal endolysins 
given that they were classified into six types [41, 42]. The 
information from the National Center for Biotechnology 
Information database on the representatives of differ-
ent types of endolysins is shown in Fig. 2. In general, the 
N-terminal CD of endolysin is responsible for hydrolyz-
ing various specific peptidoglycan bonds of  G+ bacteria 
[14, 43, 44]. By contrast, the C-terminal CBD recognizes 
and non-covalently binds to different ligands (usually car-
bohydrate) in the cell wall for proper fixation of the CDs 
[13, 45, 46]. Although the C-terminal CBD is required to 
maintain the intact lytic activity of CDs [47, 48], trunca-
tion or deletion of the CBD can also result in equal or 
increased lytic activity of the mutants [43, 49, 50].

Sequence comparison of endolysins of the same type 
shows high homology within the N-terminal enzy-
matically active domain and low similarity within the 
C-terminal cell binding region [14, 51]. The phages 
that infect  G+ bacteria have naturally designed such 
distinct domain structures to better disseminate the 
progeny particles [8]. The similarity of the amino acid 
sequences of the endolysin CDs may be explained by 
the conserved peptidoglycan bonds of bacterial hosts, 
whereas most of the CBDs may have evolved to target 

unique components of the cell wall of the host bacte-
ria at high affinity, thereby resulting in variability, high 
selectivity, and low propensity for developing resist-
ance [15, 51, 52]. The modular structure of endolysins 
can be exploited for bioengineering, because differ-
ent domains can be genetically swapped or shuffled 
among different endolysins, thereby generating novel 
fused enzymes with high specificity and catalytic activ-
ity [52–54]. For example, the recombinant chimeric 
endolysin PRF-119, which was designed with a CD, a 
cysteine- and histidine-dependent aminopeptidase/
hydrolase (CHAP) domain from the endolysin of phage 
K, and a CBD from the lysostaphin, is highly active 
against S. aureus, including MRSA [55]. In addition, as 
a chimeric phage endolysin, Ply187AN-KSH3b exhibits 
strong antimicrobial activity against S. aureus, includ-
ing disruption of biofilms and protection of mice from 
S. aureus endophthalmitis [56]. Therefore, the modular 
arrangement of endolysins has enormous potential in 
the creative design of important enzymes with specific 
functions or features.

Mode of endolysin action
The modular structure of endolysins is closely related to 
their mode of action. With the individual binding speci-
ficity of CBD, endolysin CDs kill bacteria by enzymati-
cally degrading the peptidoglycan of the bacterial cell 
wall, which protects the cell protoplast from mechani-
cal damage and osmotic lysis and is essential to bacte-
rial viability. Compared with  G− bacteria, the cell walls 
of  G+ bacteria are thicker (15–80 nm) and consist of tens 
of layers of peptidoglycan associated with teichoic acids 
(Fig.  3A) [51]. Apart from lytic transglycosylases (e.g., 
phage λ lysozyme), endolysins are peptidoglycan hydro-
lases that use a water molecule to catalyze the cleavage of 
different bonds (Fig.  3B), such as β-1,4 glycosidic bond, 
amide bond, and peptide bond [51]. Most staphylococcal 
phage endolysins have two catalytic domains: a CHAP 
domain with D-Ala-Gly activity and an amidase domain 
with MurNAc-L-Ala activity [57]. Electron microscopy 
revealed that endolysin-mediated peptidoglycan diges-
tion leads to perforation in the cell wall, through which 
the high intracellular osmotic pressure squeezes the cyto-
plasmic membrane to cause hypotonic lysis of the bac-
teria within seconds. By contrast, antibiotics depend on 
the inhibition of a metabolic pathway and require more 
steps and time to arrest bacterial growth or kill bacterial 
cells [14, 16, 52, 58]. Moreover, endolysins can effectively 
eliminate staphylococcal biofilms and reduce bacterial 
persisters due to the active mode of action, resulting in 
the successful therapy of chronic infections after treat-
ment failure by antibiotics [59, 60].
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Fig. 2 The typical modular structures of different types of endolysins derived from phages targeting  G+ bacteria. 24 types of endolysins are 
proposed according to their molecule structures. CHAP cysteine- and histidine-dependent aminopeptidase/hydrolase, SH3 bacterial Src homology 
3 domain, responsible for cell-wall peptidoglycan recognition and binding, ChBD choline-binding domain, PSA_CBD cell wall-binding domain, 
ZoocinA_TRD a target recognition domain, Cpl-7 Cpl-7-like cell wall-binding domain, LysM a small domain involved in binding peptidoglycan
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Efficacy of endolysins
Endolysins show bactericidal activity against certain bac-
terial species that are closely related to the bacterial hosts 
of the phages from which they were produced. Despite 
their strong specificity, the host range of endolysins can 
reach approximately two-thirds of the tested strains, and 
some even reach 100% (Table  1), which is significantly 
stronger than the host range of the phage itself [36]. For 

instance, a purified pneumococcal phage endolysin (Pal) 
can kill 15 common serotypes of pneumococci, includ-
ing highly penicillin-resistant strains [16]. In many cases, 
endolysins might be identified with extended lytic activ-
ity (Table1). For instance, LysPBC2 was isolated from 
a Bacillus cereus phage and displayed very broad lytic 
activity against all Bacillus, Listeria, and Clostridium 
species tested [70]. An enterococcal phage endolysin 

Fig. 3 The function of endolysin catalytic domains encoded by phages infecting  G+ bacteria. A Schematic representation of the  G+ bacterial cell 
wall. B Diagram of the peptidoglycan bonds cleaved by different endolysins. MurNAc and GlcNAc are repeating units of the glycan strands that 
are linked to a stem peptide through an amide bond to the MurNAc. Stem peptides are then cross-linked through a pentaglycine (in the case of S. 
aureus) to adjacent stem peptides forming a tight stable net around the bacterium. Based on the cleaved chemical bonds within the peptidoglycan 
layer, endolysins have several enzyme activities, including muramidase (N-acetylmuramidase), glucosaminidase (N-acetyl-β-D-glucosaminida
ses), amidase (N-acetylmuramoyl-L-alanine amidase), and endopeptidase (L-alanoyl-D-glutamate endopeptidase or interpeptide bridge-specific 
endopeptidases). MurNAc N-acetyl muramic acid, GlcNAc N-acetyl glucosamine, L-Ala L-alanine, D-iso-Glu D-iso-glutamic acid, L-Lys L-lysine, D-Ala 
D-alanine. *β-1,4 glycosidic bond between MurNAc and GlcNAc. ▼β-1,4 glycosidic bond between GlcNAc and MurNAc. #amide bond between 
MurNAc and L-Ala. ★peptide bond between two amino acids

Tabel 1 The host range of representative endolysins

TAME tail-associated muralytic enzymes, CHAP cysteine- and histidine-dependent aminopeptidase/hydrolase, CD catalytic domain, CBD cell wall-binding domain

Endolysin and/or derivative Origin The number of 
tested strains

The number of 
lysed strains

Host range References

SAL200 Staphylococcal phage SAP-1 425 425 100% [61]

Exebacase (CF-301 or PlySs2) Prophage of Streptococcus suis 477 365 77% [62]

P128 CHAP domain (TAME phage K) + SH3b (lysostaphin) 62 62 100% [63]

Staphefekt SA.100 M23 endopeptidase (lysostaphin) + Amidase 
(Ply2638) + SH3b (Ply2638)

11 10 91% [64]

XZ.700 Staphefekt SA.100 deleted 44 amino acids region 120 107 89% [64]

LysK Staphylococcal phage K 27 18 67% [65]

CHAPK (truncated LysK) Staphylococcal phage K 31 28 90% [66]

ClyF CD domain (Ply187) + CBD domain (PlySs2) 51 45 88% [22]

LysGH15 Staphylococcal phage GH15 57 52 91% [67]

LysH5 Staphylococcal phage PhiH5 90 77 86% [68]

Pal Streptococcal phage Dp-1 25 19 76% [16]

Cpl-1 Streptococcal phage Cp-1 27 22 81% [69]

PlyG B. anthracis γ-phage 27 16 59% [24]
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PlyV12 reportedly kills not only enterococci but also 
several other  G+ pathogens, such as streptococci and 
staphylococci [71]. Furthermore, endolysins have been 
successfully exploited to kill  G+ pathogenic bacteria in 
a dose-dependent manner, including antibiotic-sensitive 
bacteria and antibiotic-resistant ones, such as B. anthra-
cis and B. cereus [24], C. difficile [71], C. perfringens [72], 
E. faecalis and E. faecium [70], L. monocytogenes [58], S. 
aureus [73], S. agalactiae [74, 75], and S. pyogenes [76]. 
An earlier study found that 2 units (U) (2 μg) of recom-
binant phage endolysin PlyG can destroy 1.0 ×  104 colony 
formation unit (CFU) of streptomycin-resistant B. cereus 
within 10  s [24]. In a separate kinetic assay, the addi-
tion of 2 U of PlyG to 1 mL of log-phase B. cereus cells 
resulted in a 17,000-fold decrease of bacterial numbers 
within 20  s and near sterilization at 2  min when com-
pared with 50 mM Tris buffer treatment [24]. Therefore, 
endolysin has strong lytic efficacy against bacterial cells.

Unlike antibiotics, which are small molecules and 
generally non-immunogenic, one of the potential con-
cerns with endolysin treatment is the adverse immune 
response induced by the generation of neutralizing anti-
bodies that may reduce in  vivo endolysin activity after 
systemic and mucosal application [8, 77]. Early studies 
have confirmed that although endolysins are immuno-
genic, antibodies against the corresponding endolysins 
specific for B. anthracis, S. aureus, S. pneumoniae, or S. 
pyogenes, obtained from rabbit hyperimmune serum do 
not remarkably diminish lytic activity in vitro [76, 78, 79]. 
For example, the bactericidal activity and binding capac-
ity of staphylococcal-specific endolysin LysGH15 were 
not blocked even after incubation with anti-LysGH15-
serum for 60  min [26]. Furthermore, experiments with 
pneumococcal-specific endolysin Cpl-1 in immunized 
rabbit serum (in vitro) and immunized mice (in vivo) 
did not affect its therapeutic efficacy [69]. These results 
were verified with endolysins MV-L and Pal [80, 81]. Col-
lectively, endolysins are hardly affected by the immune 
response. Thus, they have almost no loss of efficacy or 
adverse effect when applied to treat bacterial infections, 
which may be partially explained by the strong bind-
ing affinity of an endolysin to its cell wall substrate and 
rapid bactericidal activity, which outcompetes the hosts’ 
immune response [8, 79].

Advantages of endolysins used as antimicrobial agents
Given the resistance crisis, phage therapy was proposed 
and served as a powerful regimen for clinical infections 
[36]. However, the narrow antimicrobial spectrum, com-
plicated pre-clinical and clinical evaluation, and improper 
regulatory framework of phages hamper the wide appli-
cation of phage therapy [27, 36]. Compared with active 
phages, endolysins develop considerably faster and have 

many advantages, such as non-proliferation, fast bac-
tericidal activity, wide host spectrum, definite pharma-
cokinetics, and low possibility of resistance development 
(Table  2), making endolysins important candidates as 
the alternatives of antibiotics, especially for drug-resist-
ant bacteria. Among these advantages, low possibility of 
resistance development is most prominent for endolysins 
to overwhelm phage therapy and antibiotics [78]. Phages 
have coevolved with bacteria for billions of years. To 
avoid being trapped in the host, the CBD of endolysins 
has evolved to target the highly conserved bonds within 
the peptidoglycan of the cell wall, which is necessary for 
bacterial viability; thus, resistance to these enzymes is a 
rare event [8, 52]. This speculation was confirmed by the 
evidence that the binding epitopes for endolysin CBD 
in the cell walls of pneumococci, Group A streptococci, 
and B. anthracis are choline [91], polyrhamnose [84], 
and neutral polysaccharide [24], respectively, which are 
important molecules for bacterial growth. To our knowl-
edge, no case of resistance to endolysins has ever been 
reported; thus, corresponding mutants hardly survive. 
Even repeated exposure of staphylococci, pneumococci, 
and B. cereus to low concentrations of endolysins on agar 
plates or in broth culture does not identify spontaneously 
resistant mutants, whereas a concomitant 1,000-fold 
and 10,000-fold increase in novobiocin and strepto-
mycin resistance could be observed [16, 24]. Endolysin 
ClyS displays a decreased potential for the development 
of resistance compared with mupirocin when MRSA or 
methicillin-sensitive S. aureus (MSSA) was exposed to 
increasing concentrations (1/32 × to 4 × minimal inhibi-
tory concentration, MIC) of either agent for over 8 days 
in  vitro [78]. LysGH15 also does not induce resistance 
in MRSA or MSSA strains after repeated treatment with 
sub-MIC [26]. The expression of thick polysaccharide 
capsules by streptococci or B. anthracis or the formation 
of dense biofilms by staphylococci or streptococci does 
not block endolysin lytic activity [74, 79, 92]. Therefore, 
the intrinsic endolysin resistance is seldom, which is a 
great advantage for the use of endolysin as a promising 
therapeutic agent.

Endolysin therapy for  G+ bacterial infections
Increasing interest in endolysins comes with emerging 
bacterial resistance and increasing need for novel anti-
microbial agents. Given the natural structure of exposed 
bacterial cell wall without outer membrane barriers, 
endolysin therapy usually works best against infections 
caused by  G+ bacteria [93]. Immediate lysis occurs with-
out the need of holins or other partner enzymes when 
applied exogenously. Therefore, extensive experimental 
studies have focused on pathogenic  G+ bacteria since 
the discovery of endolysins, especially after treatment 



Page 7 of 18Liu et al. Journal of Biomedical Science           (2023) 30:29  

Ta
bl

e 
2 

Co
m

pa
ris

on
 o

f t
he

 p
ro

pe
rt

ie
s 

of
 a

nt
ib

io
tic

, p
ha

ge
, a

nd
 e

nd
ol

ys
in

 a
s 

an
tib

ac
te

ria
l t

he
ra

pe
ut

ic
 a

ge
nt

s

CP
P 

ce
ll-

pe
ne

tr
at

in
g 

pe
pt

id
e

Pr
op

er
tie

s
A

nt
ib

io
tic

Ph
ag

e
En

do
ly

si
n

Re
fe

re
nc

es

Ba
ct

er
io

ci
da

l s
pe

ci
fic

ity
Br

oa
d 

sp
ec

tr
um

 m
or

e 
co

m
m

on
 th

an
 n

ar
ro

w
 

sp
ec

tr
um

Ty
pi

ca
lly

 n
ar

ro
w

, s
pe

ci
es

 o
r s

tr
ai

n 
sp

ec
ifi

ci
ty

Re
la

tiv
el

y 
br

oa
d 

ly
tic

 a
ct

iv
ity

[8
2,

 8
3]

Pr
ol

ife
ra

tio
n

N
on

-p
ro

lif
er

at
io

n
Se

lf-
pr

ol
ife

ra
tio

n
N

on
-p

ro
lif

er
at

io
n

[1
1,

 8
4]

M
od

e 
of

 a
ct

io
n

A
pp

lie
d 

fro
m

 w
ith

ou
t, 

ta
rg

et
 s

pe
ci

fic
 s

ite
s, 

ty
pi

ca
lly

 
di

sr
up

ts
 o

ne
 b

ac
te

ria
l p

ro
ce

ss
A

pp
lie

d 
fro

m
 w

ith
ou

t, 
di

sr
up

t m
an

y 
es

se
nt

ia
l c

el
-

lu
la

r p
ro

ce
ss

es
A

pp
lie

d 
fro

m
 w

ith
ou

t, 
ta

rg
et

 b
on

ds
 in

 th
e 

pe
pt

i-
do

gl
yc

an
[8

3,
 8

5]

Ba
ct

er
io

ci
da

l s
pe

ed
Sh

or
t t

im
e 

be
tw

ee
n 

ad
m

in
is

tr
at

io
n 

an
d 

er
ad

ic
at

io
n 

of
 b

ac
te

ria
Lo

ng
 ti

m
e 

be
tw

ee
n 

ad
m

in
is

tr
at

io
n 

an
d 

er
ad

ic
at

io
n 

of
 b

ac
te

ria
Ra

pi
d 

ba
ct

er
ia

l a
ct

iv
ity

 w
ith

in
 s

ec
on

ds
 o

f c
on

ta
ct

[1
4,

 8
6]

In
tr

ac
el

lu
la

r a
ct

iv
ity

D
iff

us
io

n 
th

ro
ug

h 
m

em
br

an
es

 a
llo

w
s 

fo
r t

re
at

m
en

t 
of

 in
tr

ac
el

lu
la

r b
ac

te
ria

U
na

bl
e 

to
 p

en
et

ra
te

 e
uk

ar
yo

tic
 c

el
ls

Fe
w

 o
r m

od
ifi

ed
 o

ne
s 

(e
.g

., 
C

PP
-fu

se
d 

en
do

ly
si

ns
) 

ca
n 

en
ha

nc
e 

in
tr

ac
el

lu
la

r e
ffi

ca
cy

[7
7,

 8
6,

 8
7]

Re
si

st
an

ce
 d

ev
el

op
m

en
t

Pr
on

e 
to

 d
ev

el
op

 re
si

st
an

ce
Re

si
st

an
ce

 o
cc

ur
s 

qu
ite

 fr
eq

ue
nt

ly
N

o 
re

si
st

an
ce

 h
as

 e
ve

r b
ee

n 
re

po
rt

ed
 o

ve
r n

um
be

r 
of

 tr
ea

te
d 

ge
ne

ra
tio

ns
[8

8,
 8

9]

A
nt

ib
io

fil
m

 a
ct

iv
ity

N
ot

 v
er

y 
eff

ec
tiv

e 
ag

ai
ns

t b
io

fil
m

s
Eff

ec
tiv

e 
an

tib
io

fil
m

 a
ge

nt
s 

w
ith

 li
m

ite
d 

pe
ne

tr
a-

tio
n

Re
la

tiv
el

y 
eff

ec
tiv

e 
an

tib
io

fil
m

 a
ge

nt
s 

w
ith

 h
ig

he
r 

de
st

ru
ct

io
n 

of
 b

io
fil

m
s

[1
3,

 8
3]

Im
m

un
e 

re
sp

on
se

G
en

er
al

ly
 n

on
-im

m
un

og
en

ic
In

te
ra

ct
io

n 
w

ith
 im

m
un

e 
sy

st
em

s 
an

d 
su

sc
ep

tib
le

 
to

 c
le

ar
an

ce
 b

y 
an

tib
od

ie
s

Im
m

un
og

en
ic

, l
ow

er
 d

eg
re

e 
of

 a
nt

ib
od

y 
ne

ut
ra

liz
a-

tio
n

[2
6,

 5
1,

 9
0]

Ph
ar

m
ac

ok
in

et
ic

s
Es

ta
bl

is
h 

th
e 

re
la

tio
ns

hi
p 

be
tw

ee
n 

co
nc

en
tr

at
io

n 
an

d 
th

e 
m

ag
ni

tu
de

 o
f k

ill
in

g 
ac

tiv
ity

Li
tt

le
 c

lin
ic

al
 e

vi
de

nc
e 

th
at

 d
efi

ne
s 

op
tim

al
 d

os
ag

es
 

an
d 

ph
ar

m
ac

ok
in

et
ic

 p
ar

am
et

er
s 

of
 th

er
ap

y
D

efi
ne

d 
co

nc
en

tr
at

io
n 

at
 s

ite
 o

f i
nf

ec
tio

n 
an

d 
in

 
bl

oo
d 

ci
rc

ul
at

io
n

[2
9,

 8
8,

 8
9]



Page 8 of 18Liu et al. Journal of Biomedical Science           (2023) 30:29 

failures increased considerably in S. aureus, Streptococcus 
sp., Enterococcus sp., and B. anthracis infections treated 
with antibiotic alone [17, 94, 95]. Most in vivo studies still 
concentrate on evaluating the efficacy of newly identified 
endolysins in the treatment of systemic infections, pneu-
monia, and nasal and skin infections caused by  G+ bacte-
ria; the majority of these studies involved mouse models 
and targeted MRSA and streptococcal species. Thus, 
this section mainly focused on the endolysins (includ-
ing chimeolysins) in pre-clinical and clinical trial phases. 
Table 3 summarizes the different endolysins targeting  G+ 
bacteria, and it will be discussed further.

Endolysin therapy against staphylococcal infections
S. aureus is a representative of  G+ bacteria that can 
cause skin and soft tissue infections, fetal pneumonia, 
pericarditis, brain abscess, bacteremia, and toxic shock 
syndrome [2, 133, 134]. Statistically, more than 10% of 
bloodstream S. aureus infections are caused by MRSA in 
15 European countries, and the resistance rates are closer 
to 50% in some of these countries [3]. MRSA is a super-
bug that can cause various infections on the human body 
and is often acquired in the hospital. These nosocomial 
infections have been acquired by infected individuals, 
and they are often difficult to treat.

In the case of antibiotic treatment failure, endolysin is 
an effective option to control MRSA infections [93]. For 
example, the recombinant endolysin MV-L can rapidly 
and completely lyse MRSA within 15  min in  vitro and 
efficiently protect mice from intranasal and intraperi-
toneal challenge with MRSA [81]. Similarly, a chimeric 
endolysin ClyS efficiently lysed MRSA, vancomycin-
intermediate S. aureus, and MSSA strains by > 2-log10 
in vitro and protected against death caused by MRSA in 
mouse nasal decolonization and bacteremia models [73]. 
Eight endolysins (80α, phi11, LysK, P68, 2638A, Twort, 
phiSH2, and LysWMY) display varied lytic activities 
against numerous staphylococcal strains in vitro, includ-
ing cell surface mutants, drug-resistant strains, and their 
static biofilms. In a mouse model of systemic MRSA 
infection, these endolysins provide therapeutic potential 
and show no clinical symptoms at the end of treatment 
[61]. The above research results indicated that endoly-
sin is highly effective in combating refractory infections 
caused by drug-resistant S. aureus.

Furthermore, several endolysins for the treatment 
of S. aureus infections are close to clinical application. 
P128 is an engineered endolysin (chimer) developed 
by the Indian company Gangagen, and it is currently in 
the clinical development stage. P128 is active against 
globally prevalent drug-resistant clinical S. aureus and 
S. epidermidis isolates. It exerts potent activity against 
sinus-derived S. aureus biofilms and is developed for 

clearing S. aureus nasal colonization and MRSA infec-
tion in mice and dogs [97, 98, 135, 136]. Staphefekt 
SA.100 and XDR.300 are commercially available recom-
binant endolysins that have been applied to patients with 
chronic skin infections caused by S. aureus [137]. Exe-
bacase (also termed CF-301 or PlySs2) is considered an 
attractive agent that has rapid bacteriolytic activity, bio-
film elimination capacity, and anti-staphylococcal poten-
tials ranging from bacteremia to osteomyelitis when 
combined with other antibiotics. In addition to the above 
properties, exebacase has a minimal propensity for resist-
ance development, no cross-resistance with antibiotics, 
and delayed post-antibiotic effect in  vitro and in  vivo 
[138]. Another endolysin,  CHAPK, has the potential to 
reduce S. aureus colonization in the skin; thus, it may be 
used as a disinfecting agent in the healthcare environ-
ment [13]. Overall, endolysin treatment is a promising 
approach for staphylococcal infections.

Endolysin therapy against streptococcal infections
S. pneumoniae is another clinically important  G+ bac-
terium that can cause different diseases ranging from a 
streptococcal pharyngitis to life-threatening pneumo-
nia [77]. Endolysins have been successfully determined 
in a mouse model with streptococci. Cpl-1 and Pal 
alone or in combination have been used in the treat-
ment of pneumococcal infections [80, 139]. A single 
dose of aerosolized Cpl-1 can rescue mice from fatal 
pneumococcal pneumonia [140]. Cpl-1 can reduce 
intranasal S. pneumoniae and ultimately prevent the 
development of acute otitis media following infection 
with influenza virus [141]. A single intracisternal injec-
tion of Cpl-1 (20  mg/kg) and intraperitoneal adminis-
tration of Cpl-1 (200  mg/kg) decreased pneumococci 
in cerebrospinal fluid by 3-log10 and 2-log10, respec-
tively, representing a promising alternative treatment 
option for pneumococcal meningitis [113]. Cpl-1 also 
shows therapeutic effects on S. pneumoniae rat endo-
carditis [112] and murine pneumococcal bacteremia 
[69]. In a mouse model of nasopharyngeal colonization, 
Pal was found to reduce S. pneumoniae to undetect-
able titers  (log10 0 CFU/10 mL nasal wash) 5 h after a 
single dose treatment and did not induce Pal-resistant 
pneumococci after extensive exposure to the enzyme 
[16]. Therefore, Cpl-1 and Pal are potent antimicrobial 
agents for the prevention and treatment of mucosal and 
systemic pneumococcal infections. Moreover, PlySs2 
derived from a S. suis phage has broad lytic activity 
against group A Streptococcus, group B Streptococcus, 
group G Streptococcus, group E Streptococcus, and S. 
pneumoniae. PlySs2 (128  μg/mL) led to a 3-log reduc-
tion in the growth of S. pyogenes within 1 h, and 2 mg of 
PlySs2 protected 92% (22/24) of mice from bacteremia 
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Table 3 Endolysins and related derivatives active against  G+ bacteria

Endolysin and/
or derivative

Phage Antimicrobial 
spectrum

Enzymatic 
activity

Type of 
infection 
treated in vivo

Clinical trial 
phase

Clinical trials 
identifier/
accession No

References

SAL200 SAP-1 S. aureus Amidase and 
endopeptidase

Bacteremia IIa NCT03089697 [61]

Exebacase (CF-
301 or PlySs2)

Prophage of S. 
suis

S. aureus, Strepto-
coccus

Peptidase Bacteremia III NCT04160468 [28, 62]

P128 CHAP domain 
(TAME phage 
K) + SH3b (lys-
ostaphin)

S. aureus CHAP Bacteremia II NCT01746654 [96–98]

Staphefekt 
SA.100

M23 endopepti-
dase (lys-
ostaphin) + Ami-
dase 
(Ply2638) + SH3b 
(Ply2638)

S. aureus Amidase and 
endopeptidase

Atopic dermatitis I/II NCT02840955 [64, 99]

Medolysin® – S. aureus – Bacterial wound 
infections

– – [100]

XZ.700 Staphefekt 
SA.100 deleted 
44 amino acids 
region deleted

S. aureus Amidase and 
endopeptidase

Skin infection Pre-clinical – [64]

MV-L MR11 S. aureus, S. 
simulans

Amidase and 
endopeptidase

Nares infection, 
sepsis

Pre-clinical BAF33253 [81]

LysP108 P108 S. aureus Amidase Subcutaneous 
abscess

Pre-clinical YP_009099525 [17]

80α phi80α S. aureus Amidase and 
endopeptidase

Systemic infec-
tion

Pre-clinical ABF71642 [101]

phi11 phi11 S. aureus Amidase and 
endopeptidase

Systemic infec-
tion

Pre-clinical YP_500516 [101]

LysK K S. aureus Amidase and 
endopeptidase

Systemic infec-
tion

Pre-clinical YP_024461 [101]

Ply2638 2638A S. aureus Amidase and 
endopeptidase

Systemic infec-
tion

Pre-clinical AAX90995 [101]

Twort Twort S. aureus Amidase and 
endopeptidase

Systemic infec-
tion

Pre-clinical AAX92311 [101]

phiSH2 phiSH2 prophage S. aureus Amidase and 
endopeptidase

Systemic infec-
tion

Pre-clinical BAE05642 [101]

LysWMY phiWMY S. aureus Amidase and 
endopeptidase

Systemic infec-
tion

Pre-clinical BAD83402 [101]

CHAPK K S. aureus Endopeptidase Nasal infection Pre-clinical 4CT3_D [18, 102]

ClyF CD domain 
(Ply187) + CBD 
domain (PlySs2)

S. aureus CHAP Bacteremia and 
burn wound 
infection

Pre-clinical - [22]

LysSS SS3e S. aureus, Salmo-
nella, Escherichia 
coli

– Systemic infec-
tion

Pre-clinical AAW51228 [103]

Ply6A3 PD-6A3 Acinetobacter 
baumannii, E. coli, 
S. aureus

– Sepsis Pre-clinical ALM01856 [104]

gp144 ΦKZ Pseudomonas 
aeruginosa, S. 
aureus, E. coli, B. 
cereus

Transglycosylase – – AAL83045 [105]

LysGH15 GH15 Staphylococcus Amidase and 
CHAP

Bacteremia Pre-clinical ADG26756 [26, 67, 106, 107]

PlyGRCS GRCS S. aureus, S. 
epidermidis

Endopeptidase – – AHJ10590 [19]
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Table 3 (continued)

Endolysin and/
or derivative

Phage Antimicrobial 
spectrum

Enzymatic 
activity

Type of 
infection 
treated in vivo

Clinical trial 
phase

Clinical trials 
identifier/
accession No

References

ClyH CD domain 
(Ply187) + non-
SH3b (phiNM3)

S. aureus Amidase Intraperitoneal 
infection

Pre-clinical – [108]

MR-10 MR-10 S. aureus – Subcutaneous Pre-clinical – [109, 110]

LysH5 PhiH5 S. aureus, S. 
epidermidis

Amidase and 
endopeptidase

– – ACE77796 [59, 68]

ClyS CD domain 
(Twort) + 
CBD domain 
(phiNM3)

S. aureus Endopeptidase Intraperitoneal, 
nasal and skin 
infection

Pre-clinical – [73, 78]

ClyC CD domain 
(Ply187) + CBD 
domain 
(LysSA97)

S. aureus – Bacteremia Pre-clinical – [38]

Lys16 P68 S. aureus CHAP – – AAO83890 [101, 111]

LysSAP33 SAP33 S. aureus CHAP – – QDH45454 [42]

Pal Dp-1 S. pneumoniae Amidase Nasopharyngeal 
infection

Pre-clinical O03979 [16]

Cpl-1 Cp1 S. pneumoniae Muramidase Endocarditis, 
bacteremia, 
pneumonia, 
meningitis

Pre-clinical NP_044837 [69, 112–114]

Cpl-7 CP-7 S. pneumoniae, 
S. pyogenes, E. 
faecalis

Muramidase Embryo infection Pre-clinical P19385 [115, 116]

Cpl-711 CD domain (Cpl-
7) + CBD domain 
(Cpl-1)

S. pneumoniae Muramidase Bacteraemia Pre-clinical – [117]

PL3 CD domain (Cpl-
7) + CBD domain 
(LytA)

S. pneumoniae Amidase Embryo infection Pre-clinical – [118]

ClyJ CD domain 
(PlyC) + 
CBD domain 
(SPSL1)

S. pneumoniae CHAP Bacteraemia Pre-clinical – [119]

ClyJ-3 ClyJ variant S. pneumoniae CHAP Bacteraemia Pre-clinical – [120]

ClyJ-3 m ClyJ-3 variant S. pneumoniae CHAP Bacteraemia Pre-clinical – [121]

23TH_48 23TH S. pneumoniae Amidase – – QOI69927 [122]

MSlys MS1 S. pneumoniae Amidase – – AQY55407 [123]

PlyC C1 S. pyogenes Amidase Mucosal epithe-
lium infection

Pre-clinical AAP42310 [76]

PlyPy MGAS5005 
prophage

S. pyogenes Endopeptidase Bacteremia Pre-clinical AAM79913 [124]

PlyGBS NCTC11261 Group B 
streptococci, S. 
agalactiae

Endopeptidase 
and muramidase

Vaginal and 
oropharynx 
infection

Pre-clinical AAR99416 [74, 125]

PlySK1249 SK1249 prophage S. agalactiae, 
Streptococcus 
dysgalactiae

Amidase and 
endopeptidase

Bacteremia Pre-clinical EGL49245 [126]

PlyG γ-phage B. anthracis, B. 
cereus

Amidase Intraperitoneal 
infection

Pre-clinical PFW40491 [24]

PlyPH B. anthracis 
BA2805
genome

B. anthracis, B. 
cereus

– Intraperitoneal 
infection

Pre-clinical WP_098639153 [127]

LysPBC2 PBC2 B. cereus Amidase – – AKQ08512 [128]
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caused by mixed MRSA and S. pyogenes infections [82]. 
Similar results were observed with endolysin PlyC and 
PlyGBS [23, 76, 125]. These promising results have led 
to great research interest in the treatment of strepto-
coccal infections with endolysins.

Endolysin therapy for infections caused by other G+ bacteria
Among  G+ bacteria, Staphylococcus and Streptococ-
cus are the most common in clinical settings. There-
fore, many studies on endolysin-related treatment 
have been conducted, whereas research on endolysin 
therapy of other  G+ bacteria is relatively lacking. How-
ever, an increasing number of studies on endolysin 
treatment of other  G+ bacteria have been performed 
in recent years. For example, PlyV12 from an E. faeca-
lis phage and LysEFm5 from an E. faecium phage have 
been described to be useful in the treatment of mucosal 
infections [70, 129]. B. cereus and B. anthracis are 
pathogenic bacilli that can cause serious harm to their 
hosts via food poisoning and anthrax toxicity, respec-
tively [142]. Two recombinant endolysins PlyG and 
PlyPH are effective therapeutic agents for the control of 
B. cereus and B. anthracis both in vitro and in vivo [24, 
127]. Moreover, endolysins have been recommended as 
impressive agents against drug-resistant pathogen C. 
perfringens, which can cause the infection of over 95% 
of chickens [13]. The endolysins Ply3626 and Psm are 
expected to be applied to poultry with broad lytic activ-
ity against C. perfringens [13, 131]. Interestingly, LysZ5 
shows excellent activity against L. monocytogenes in 
soya milk and is greatly needed in food safety and food 
processing systems [13]. Therefore, these studies dem-
onstrated that endolysins may be used to either elimi-
nate or reduce  G+ bacterial colonization from mucosal 
epithelium of either carriers or infected individuals and 
systemic infections, paving the way for endolysins to be 

applied as alternatives to the treatment of associated 
diseases in humans and animals.

Synergistic effects of endolysins to combat G+ bacteria
In the treatment of  G+ bacterial infections, the antimi-
crobial spectrum and antibacterial capacity of endolysins 
can be improved through the synergistic effect between 
the endolysins and antibiotics or other enzymes with 
diverse enzymatic specificities [17, 62, 143, 144]. Staph-
ylococcal lysostaphin and LysK were found to exhibit 
strong synergistic activity on the MRSA strain USA300 
and the mastitis-causing strain S. aureus 305 through 
checkerboard assay [145]. Two anti-pneumococcal 
endolysins Cpl-1 and Pal with muraminidase and ami-
dase activities, respectively, were synergized in vitro and 
exhibited increased activity compared with either indi-
vidual endolysin in a mouse pneumococcal infection 
model [80, 139, 146].

The synergistic effect between different endolysins 
or other cell wall hydrolases (i.e., lysostaphin) can be 
explained by the enhanced destructive effect generated 
when two different bonds were simultaneously cleaved 
within the 3D peptidoglycan meshwork. Alternatively, 
the cleavage of the first bond by one enzyme can result in 
better accessibility to the second target site by the other 
endolysin, causing a faster degradation of the substrate. A 
novel chimeric endolysin ClyS exhibited a typical pattern 
of synergistic action with both vancomycin and oxacil-
lin in vitro. More importantly, ClyS and oxacillin at low 
doses that were no protective individually were found to 
present synergistic effects against MRSA septic death in a 
mouse model [73]. The combination of a staphylococcal 
endolysin Lys11 and an antimicrobial peptide R8K can 
enhance the bacteriolytic action against S. aureus, includ-
ing MRSA clinical strains [147]. Animal experiments sug-
gested that the synergistic antibacterial effects of LysP108 

Table 3 (continued)

Endolysin and/
or derivative

Phage Antimicrobial 
spectrum

Enzymatic 
activity

Type of 
infection 
treated in vivo

Clinical trial 
phase

Clinical trials 
identifier/
accession No

References

PlyV12 Φ1 E. faecalis, E. 
faecium

Amidase – – YP_009814814 [70]

LysEFm5 IME-EFm5 E. faecium Amidase – – YP_009200901 [129]

LysIME-EF1 IME-EF1 E. faecalis Endopeptidase Intraperitoneal 
infection

Pre-clinical YP_009042672 [126]

LysEF-P10 EF-P10 E. faecalis Endopeptidase Balance of the 
gut microbiota

Pre-clinical AQT27695 [130]

Ply3626 phi3626 C. perfringens Amidase – – NP_612849 [131]

Psa St13 C. perfringens Amidase – – WP_011010276 [132]

–, unknown or data not available
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and vancomycin greatly reduce the area of subcutaneous 
abscess of mice infected with MRSA [11]. Concurrently, 
combinations of endolysins with antibiotics not only 
increase bactericidal efficacy but also resensitize drug-
resistant bacteria, such as Cpl-1 and penicillin, MV-L 
and vancomycin, and SAL200 and standard-of-care anti-
biotics, such as nafcillin and vancomycin [81, 148, 149]. 
Therefore, the optimal combination of endolysin and 
other antimicrobial agents can help control the develop-
ment of bacterial resistance and reduce the required anti-
biotic dosage [13, 150, 151].

Safety of endolysins
As for applications, endolysin safety is an inescapable 
issue. Numerous experimental studies have shown that 
endolysins are innocuous after both topical and sys-
temic administration in mice [51, 69, 76]. Treatment 
with endolysin specific to Group A streptococci does 
not bring about any histopathologic abnormalities in 
the mucosa and skin tissues of mice when administered 
daily for 7 days [51]. SAL200 is an endolysin-based can-
didate against S. aureus; it shows no toxicity and adverse 
effects in mice, dogs, and monkeys under pre-clinical 
safety evaluation [29, 152, 153]. Furthermore, SAL200 
was found to be well tolerated among healthy male vol-
unteers in a human single dose-escalating (0.1–10  mg/
kg) study. More than three participants had some adverse 
effects, such as fatigue, stiffness, headache, and myalgia; 
most adverse effects were transient, mild, and self-limit-
ing [29]. A high-dose intravenous injection of LysGH15 
(10  mg) did not induce remarkable side effects (after 
10  days) or pathological changes in the tissues of mice 
infected with S. aureus [26]. No severe allergic reactions 
as adverse events were found in pre-clinical studies, such 
as SAL200 and CF-301 [77, 152, 154]. Eukaryotic cells did 
not have peptidoglycan; thus, endolysins are expected to 
be safe in humans [52]. However, the main concern with 
respect to the safety of endolysins is the release of pro-
inflammatory factors and bacterial components (e.g., 
lipopolysaccharide) during bacteriolysis, which may be 
directly toxic for eukaryotic cells [155]. To date, the side 
effects of endolysins have not been reported, thereby 
strongly supporting the safety of endolysin-based drug 
treatments.

Future challenges and possible solutions
Given the global prevalence of multidrug-resistant bac-
terial infections, endolysins are considered as an attrac-
tive therapeutic option in clinical settings. Although 
endolysins show many advantages in the treatment 
of drug-resistant bacteria (Table  2), some challenges 
remain, and further research must be performed to 

consider their large-scale production, engineering, and 
drug delivery toward widespread utilization.

The large-scale production of phage endolysins has 
attracted great attention. However, the two main chal-
lenges that need to be solved are manufacturing cost and 
safety. Escherichia coli is the most common organism for 
the production of recombinant proteins, as this expres-
sion platform is well-established, and the cellular and 
molecular tools needed in the process of protein expres-
sion from gene cloning to protein purification are widely 
accessible [156, 157]. In general, S. aureus recombinant 
endolysins are expressed in E. coli [157]. However, some 
functional recombinant proteins are unavailable due to 
protein toxicity to the host or aggregation in inclusion 
bodies, even if numerous studies have attempted to opti-
mize the E. coli expression system in the aspects of host 
engineering, expression vector design, and culture opti-
mization [156]. Alternatively, the Pichia pastoris expres-
sion system has high recombinant protein yields; even 
some filamentous fungi or other systems can be consid-
ered for the production of recombinant endolysins [157, 
158]. For example, the endolysins Cpl-1 and Pal, which 
are specific against S. pneumoniae, can be successfully 
expressed in chloroplasts of Chlamydomonas reinhardtii; 
this host has many advantages, such as the lack of endo-
toxins, no infectious potential, and low production costs 
[159]. Moreover, a platform for expressing an endolysin 
against Cutibacterium acnes in cyanobacteria can reduce 
production costs and avoid toxicity issues caused by toxic 
bacterial components such as endotoxin [157].

Furthermore, new strategies are needed to develop 
novel and suitable endolysins that possess enhanced bac-
tericidal activity; expanded lytic spectrum; and increased 
solubility, stability, and circulating half-life. The modifica-
tions of native endolysins by molecular engineering and 
specific designing can completely create new enzymes 
with several improved features. Several approaches have 
been applied to modify endolysin enzymes, including 
domain deletion, addition, shuffling, and site-directed 
modifications. Virion-associated lysins (VALs) are 
another class of phage-encoded enzymes with antimicro-
bial activities that have been engineered to act on certain 
bacteria by fusing them into a chimeric lysin. EC300 and 
P128 are good examples of the VAL-derived chimeolysins 
that efficiently target E. faecalis and S. aureus, respec-
tively [97, 160]. This breakthrough facilitates the genera-
tion of novel customized proteins that use not only VAL 
domains but also other agents, such as antimicrobial pep-
tides, bacteriocins, and bacteriolysins [32]. A chimeric 
protein K-L, composed of the CHAP endopeptidase and 
amidase domains of LysK, as well as the glycyl-glycine 
endopeptidase domain of lysostaphin, displays increased 
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Fig. 4 The delivery strategies for endolysins. Endolysins can be encapsulated in pH-sensitive liposomes (A), thermally triggered PNIPAM 
nanoparticles (B), chitosan nanoparticles (C), alginate hydrogel (D), and alginate-chitosan hydrogel (E). These nanoparticles and hydrogels 
can release endolysins at infection sites triggered by different circumstances and displayed lytic activity both in vitro and in vivo. PNIPAM poly 
N-isopropylacrylamide, TPP sodium tripolyphosphate
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stability in the presence of block copolymers of poly-
L-glutamic acid and polyethylene glycol. The chimeric 
design of K-L reduces the immunogenicity of the enzyme 
[161]. A study demonstrated that the addition of cysteine 
to the C-terminal (CTC modification strategy) of antimi-
crobial peptide or lysin can increase the efficacy against 
both  G+ and  G− pathogens by at least twofold [161]. Per-
haps the suitable formulation of therapeutic compounds 
containing various endolysins, such as phage cocktail 
therapy, can enhance the lytic activity against specific 
bacteria, extend lytic spectrum, and decrease the chance 
of bacterial resistance.

Finally, a considerable hurdle to the application of endoly-
sin therapy is drug delivery. Many endolysins are used for 
topical treatment, such as skin bacterial infections, whereas 
the systemic application of endolysins remains challenging. 
In oral administration, endolysins can easily be degraded by 
stomach acids and proteases, which lead to poor bioavaila-
bility and irreversible damage to the integrity of the protein 
structure [93]. The encapsulation technique has offered 
a novel way of protecting endolysins until they reach 
their desired targets; this approach may enable unsuitable 
endolysins to become effective therapeutic agents. The 
release of the endolysin-encapsulated nanoparticles can 
be triggered by different environmental conditions (e.g., 
temperature or pH) or certain host- or pathogen-produced 
stimuli (e.g., cytokine, enzymes, secreted toxins, or signal-
ing molecules) [137, 162]. Some successful results regard-
ing the encapsulation of endolysins have been reported. 
The encapsulation of LysRODI endolysin in pH-sensitive 
liposomes can reduce planktonic S. aureus and its biofilm 
at pH 5 (Fig.  4A) [163]. The endolysin CHAPk and lys-
ostaphin encapsulated in the thermally triggered poly(N-
isopropylacrylamide) (PNIPAM) nanoparticles can be 
released in the S. aureus infection sites at 37  °C (Fig. 4B) 
[164]. Cpl-1-loaded chitosan nanoparticles are promising 
biocompatible candidates with increased bioavailability 
and in-vivo half-life for the treatment of S. pneumoniae 
infections (Fig. 4C) [25]. Moreover, chimeric ClyC-loaded 
alginate hydrogel (ClyC-AH) can retain the stability and 
activity of ClyC, decrease cytotoxicity, and reduce bacterial 
burden in a mouse S. aureus osteomyelitis model (Fig. 4D) 
[165]. In addition, the alginate-chitosan hydrogel deliv-
ery system can efficiently transfer the anti-staphylococcal 
endolysin LysMR-5 in  vivo (Fig.  4E). Compared with the 
blank alginate-chitosan hydrogel, LysMR-5-loaded hydro-
gel shows enhanced bactericidal activity and good biocom-
patibility [166]. Apart from the examples described above, 
there are several studies about endolysin delivery, such 
as nanoparticles of chitosan derivatized with diethylami-
noethyl (DEAE) groups encapsulating the Cpl-711 pneu-
mococcal chimeric lysin [167], liposomes loaded with the 

endolysin MSlys [168], and pH-responsive nanoparticles 
of self-assembling peptide fusion with the endolysin P128 
[169]. With further exploration of endolysins, these chal-
lenges can be overcome in the near future, facilitating the 
clinical application of phage endolysins.

Conclusion
The unique mode of action, the rapid killing activity 
against bacteria (including persisters), and the low prob-
ability of resistance development are appealing features of 
endolysins for their application as alternatives of antibac-
terial agents. Many studies have shown that endolysins 
are effective antimicrobial agents that have synergistic 
effects with diverse antibiotics and antimicrobial peptides. 
With the high priority for the development of novel agents 
against multidrug-resistant bacteria, phage endolysins are 
promising candidates that serve as therapeutic options for 
controlling  G+ bacterial infections. In the face of challenges 
such as activity, stability, cost, and ready-to-use drug avail-
ability in endolysin therapy, engineering modification (e.g., 
chimeric endolysins), production process optimization, 
and drug delivery development can be used to enhance 
the potential of endolysins, making endolysins a clinically 
proven drug to combat the crisis of drug-resistant bacteria 
in the future.
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