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Abstract
Increasing evidence suggests that immune responses are involved in the control of cancer and that
the immune system can be manipulated in different ways to recognize and attack tumors. Progress
in immune-based strategies has opened new therapeutic avenues using a number of techniques
destined to eliminate malignant cells. In the present review, we overview current knowledge on the
importance, successes and difficulties of immunotherapy in liver tumors, including preclinical data
available in animal models and information from clinical trials carried out during the lasts years. This
review shows that new options for the treatment of advanced liver tumors are urgently needed
and that there is a ground for future advances in the field.

Background
Hepatocellular carcinoma (HCC) is the fifth most com-
mon cancer and the third leading cause of cancer-related
death worldwide [1]. Unfortunately, the incidence and
mortality associated with HCC is increasing steadily [2] as
a consequence of epidemics of hepatitis C virus (HCV)
and hepatitis B virus (HBV). HCV and HBV infections are
causally associated with the majority of HCC in the world
[3].

Current therapeutic options are extremely disappointing
since less than 30% of the patients evaluated in referral

medical institutions can receive a curative therapy, con-
sisting in either resection or transplantation [4]. Thus, in
the majority of advanced HCC cases surgery is not possi-
ble and the prognosis is dismal due to underlying cirrho-
sis as well as to poor tumor response to chemotherapeutic
agents [4-6].

Unfortunately, advanced colorectal carcinoma (CRC)
depict similar scenario [7]. Colorectal carcinoma is one of
the most common malignancies and a leading cause of
cancer-related death [1]. Hepatic metastases are present in
15–25% of patients at the time of CRC diagnosis [8]. Sur-

gical resection, which is accepted as first-line
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CRC treatment, cannot be performed in the majority of
patients [9]. Following diagnosis, the median survival of
untreated patients with liver metastases is 6–12 months
[10]. The application of new chemotherapeutic cocktails,
including irinotecan or oxaliplatin, result in higher rates
of objective responses and survival [11-15] and the recent
incorporation of monoclonal antibodies against vascular
endothelial growth factor and epidermal growth factor
receptors provides additional, although limited, improve-
ment in patients survival [15,16].

Thus, new strategies are needed for treatment of patients
with advanced liver tumors and immunotherapy
approaches might play a significant role among them.
Cancer immunotherapy can be defined as a set of tech-
niques aimed to eliminate malignant tumors through
mechanisms involving immune system responses [17,18].
The goal of cancer immunotherapy is to understand how
to direct against tumors similar kind of extremely potent
immune responses such as those naturally occurring
against microbial antigens, and subsequently how to

apply these results to human cancer diseases. It has been
observed in patients with HCC that the presence of a lym-
phocyte infiltrate is associated with a better prognosis
after resection and transplantation [19]. Similarly, pres-
ence of lymphocyte infiltration in tumors was correlated
with patient survival in CRC: survival rate of patients with
large numbers of CD3+-T cells was 5-years higher [20,21].

There is a limited clinical experience regarding the appli-
cation of immunotherapy in liver tumors contrary to
more immunogenic tumors such as melanoma, lym-
phoma or renal cell carcinoma. Increasing evidence sug-
gests that immune responses are involved in the control of
cancer and that the immune system can be manipulated
in different ways to recognize and attack tumors (Fig. 1).
Unfortunately, the presence of chronic HCV or HBV infec-
tion complicates the success of immunotherapy in
patients with HCC because these viruses were found to be
able to modulate the immune response against tumors
and to counteract the immune system of the host [22-24].

Immunotherapeutic strategies for liver tumors: administration of recombinant cytokines, adoptive transfer of tumor-reactive T cells generated in vitro, gene therapy with cytokines and costimulatory molecules, immunotherapy with dendritic cells, stimula-tion with immunogenic vaccines or antibodiesFigure 1
Immunotherapeutic strategies for liver tumors: administration of recombinant cytokines, adoptive transfer of 
tumor-reactive T cells generated in vitro, gene therapy with cytokines and costimulatory molecules, immuno-
therapy with dendritic cells, stimulation with immunogenic vaccines or antibodies.
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The immune system and the induction of 
antitumor immunity – basic concepts
The immune system is clearly capable of recognizing and
eliminating tumor cells, although cancer cells are consid-
ered as poorly immunogenic [25]. Compelling evidence
suggests that immune cells can eventually play a crucial role
in the control of cancer. First, both occasional spontaneous
tumor regressions have been described in immunocompe-
tent hosts while increased cancer incidence has been
reported in immunocompromised individuals [26]. Sec-
ond, tumor immunity was demonstrated experimentally in
several animal models [27]. Third, the immune system
often recognizes the presence of tumors, as reflected by an
accumulation of immune cells at tumor sites [28].

Despite the ability of the immune system to react against
cancer cells, the presence of a tumor indicates that the devel-
oping cancer can avoid detection or to escape the immune
response [29]. Mechanisms used to elude recognition
include tumor-induced impairment of antigen presentation,
activation of negative co-stimulatory signals, and production
of immunosuppressive factors [30]. In addition, cancer cells
may promote the expansion and/or recruitment of regula-
tory cells that may contribute to the immunosuppressive net-
work; these populations include regulatory T cells (Treg),
myeloid suppressor cells, and distinct subsets of immature
and mature regulatory dendritic cells [31].

All of the previously mentioned mechanisms were shown
to be induced in the liver by hepatitis viruses [32,33] and
a concomitant chronic HCV/HBV infection in HCC
patients would probably make the scenario for immuno-
therapeutic approaches more complicated.

The immunosurveillance and the immunoediting 
hypothesis
In the last 30 years we have witnessed a dramatic change
in basic concepts related to tumor immunology, from the
strict theory of tumor immunosurveillance postulated by
Burnet and Thomas [34,35] to the very recent immunoed-
iting concept developed by Schreiber and colleagues [36].
Using a broader look at tumor immunology, these
authors have elegantly described tumor progression as a
process following three phases: elimination; equilibrium
and, finally, escape, in which tumor cells develop several
strategies to avoid their immune-mediated elimination.
The variety of processes by which tumors evade the
immune response is surprisingly large. Even though can-
cer cells express new or inappropriate antigens, tumors of
diverse origin develop common and/or unique mecha-
nisms that enable them to escape from the immune sys-
tem.

The liver: an immunological privileged organ
Mechanisms of tolerance and their implications in cancer
are of central interest in immunology. The liver is an espe-

cial organ for its immunological privileged status which is
a consequence of several unique immunological proper-
ties causing antigen tolerance rather than immunity
[37,38] and relative resistance against liver allograft rejec-
tion [39], allowing that 20% of allotransplanted patients
could be withdrawn from long-term immunosuppression
[40]. Aggressive autoimmune hepatitis is a somewhat
uncommon clinical manifestation of systemic autoim-
mune disease [41]. Moreover, it has been observed in ani-
mal models that naïve liver reactive T cells ignore antigens
derived from or expressed in the liver [42], generating tol-
erance to them [37]. It is important to note that effector T-
cells alone may not be sufficient for disease induction
without additional inflammatory and costimulatory sig-
nals. A potential role for TLR3 has been reported as one of
the critical mechanisms of hepatic immune privilege [43].

As it was excellently reviewed by Abe and Thomson [38],
liver immunoprivilege properties are likely due to its
unique repertoire of antigen-presenting cell (APC) popu-
lations, consisting of Kupffer cells (KCs), liver sinusoidal
endothelial cells (LSECs) and dendritic cells (DCs). KCs
represent 80–90% of liver resident macrophages and are
very efficient in clearing LPS from gut-derived blood circu-
lation but less efficient in activating CD4+ cells. LSECs
were shown to efficiently separate leukocytes from hepa-
tocytes [44], are able to express factors involved in T cell
death, induce differentiation of CD4+ towards the Th2
anti-inflammatory phenotype and were found to co-stim-
ulate Tregs and inhibit allogeneic T cells. DCs are located
in portal areas or circulate through liver sinusoids towards
lymph draining vessels, and upon maturation increase
their expression levels of IL-12 and CCR7, two molecules
involved in CD4+ T cell differentiation towards the Th1
pro-inflammatory phenotype and in DC trafficking
towards secondary lymphoid organs, respectively. From
all liver APCs, DCs are the most potent to elicit immune
responses. Due to the fact that KCs and LSECs constitu-
tively express IL-10 and TGF-beta anti-inflammatory
cytokines, T cell differentiation is affected and APC matu-
ration inhibited in the liver [45,46]. As a consequence, the
DCs are less immunostimulatory than in spleen [47,48].

In addition, hepatic stellate cells (also known as Ito cells)
were shown to be involved in liver immunological proc-
esses only in case of chronic liver injury. They are induced
to transdifferentiate into myofibroblasts and to secrete a
number of cytokines and chemokines, such as transform-
ing growth factor beta (TGF-beta) [49,50]. In fact, acti-
vated hepatic stellate cells have been shown to closely
interact with lymphocytes [51] and to have potent anti-
gen-presenting properties [52]. Furthermore, stellate cells
from hepatitis patients have been shown to get further
activated by lymphocyte proximity, especially by CD8+
cells, and to phagocyte CD45+ cells [53]. Those facts sug-
gest that stellate cells are likely implicated in the down-
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regulation of the immune response in HCV/HBV-derived
cirrhosis and might also be involved in HCC. These find-
ings open new therapeutic opportunities aimed to specif-
ically targeting hepatic stellate cells in advanced cirrhosis
and HCC.

Finally, when HCC coexists with HBV/HCV derived cir-
rhosis, these viruses as shown in chronic hepatitis, would
likely exert direct and indirect effects on further downreg-
ulation of the immune response through complex and not
fully understood mechanisms. They might influence the
activity of hepatic stellate cells as well as that of resident
and recruited immune cells, such us DCs, through direct
viral protein interaction [54-57]. As reviewed by Liu et al.
[33] in chronic B/C-viral hepatitis a reduction in the mye-
loid and plasmacytoid DC liver populations, down-regu-
lation in IL-12 and IFN-gamma levels, an up-regulation of
IL-10 and an impairment in DCs capacity to prime naïve
T cells may account for the insufficient immune response
observed. Similarly, a reduction in circulating DC num-
bers was found in the peripheral blood of patients with
either chronic-B-hepatitis [58] or chronic-C-hepatitis
[59,60]. HBV/HCV viruses would likely contribute to the
DC impaired allostimulatory and IL-12 production capac-
ities observed in HCC patients [61], although this remains
to be elucidated.

Hepatic tumors escape from the immune response
Hepatic tumors use two main strategies to escape from the
immune response – attack and defense – the first is
designed to attack the immune cells, hence avoiding their
antitumor action and the other to defend tumor cells by
enabling them to pass unnoticed by the immune response
(Table 1).

Attack strategies
Fas ligand (FasL), a type II transmembrane protein
reported to induce apoptosis of Fas-bearing cells [62] was
shown to confer immunological privilege to certain tis-

sues and organs such as eye, placenta and central nervous
system [63-65]. More recently, the interaction of FasL or
its secreted isoform (sFASL) produced by tumor cells, with
their specific Fas receptor, expressed on T lymphocytes,
was implicated in tumor cell evasion from immune sur-
veillance [66]. The -fetoprotein (AFP), an oncofetal pro-
tein overexpressed in some HCC, was shown to induce
Fas-L and tumor necrosis factor [TNF]-related apoptosis
expression in HCC Bel7402 cells, as well as TRAIL receptor
and Fas in lymphocytes [67,68]. Another pathway devel-
oped to attack immune cells involves the interaction of
PD-1 (programmed death-1) with its ligands PD-L1 and
PD-L2. Immunotherapy with an expression plasmid
encoding the extracellular domain of PD-1 (sPD-1) in
H22 HCC cells was shown to improve the immune
response against tumors [69]. One further mechanism
might implicate Galectin-1 (Gal-1) – a -galactoside bind-
ing protein with immunoregulatory properties, which is
known to play a role in cytotoxic immune cells elimina-
tion. It is likely that Gal-1 contributes to tumor immune
escape by killing activated T cells [70,71]. In fact, the
expression of Gal-1 was shown to be induced in primary
HLF, HuH7 and HepG2 cells [72].

Defense strategies
The pressure that the immune system exerts on the growth
of tumor cells seems to have led them to develop several
protection mechanisms against any immune attack. It has
been shown that human HCC-related factors not only
induce and expand the regulatory CD4+CD25+ T cell
population (Tregs), but also enhance their suppressor
ability [73]. A high prevalence of Tregs infiltrating HCC
seems to be an unfavorable prognostic indicator [74].
Another mechanism frequently used by tumors is the
down-regulation of MHC-I [75], B7-1/B7-2 co-stimula-
tory molecules [76] or transporter associated with antigen
processing (TAP)1/2 molecules in human HCC [77]. In
addition, HCC cells might escape from CTL-induced
apoptosis by increasing Bcl-2 and decreasing Bcl-xs

Table 1: Mechanisms of hepatic tumor-immune escape.

Attack Defense

System Mechanism Ref. System Mechanism Ref.

Fas/FasL T-cell apoptosis 66 Tregs Immunosuppression 73

PD-1/PD-1L T-cell apoptosis 69 MHC-I Antigen presentation 75

Galectin-1 T-cell apoptosis 72 B7-1/B7-2 Antigen presentation 76

IDO Immunosuppression 82

Two main strategies to escape from the immune response attack and defense have been demonstrated for HCC in experimental and/or clinical 
setting. Fas: CD95; FasL: CD95L; PD-1: programmed death-1; PD-1L: programmed death-1 ligand; Tregs: Regulatory T cells; IDO: Indoleamine 2,3 
dioxygenase.
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expression [78] and/or raising the Survivin level, an
important member of the inhibitor of apoptosis (IAP)
family [79,80].

Indoleamine 2,3 dioxygenase (IDO) catalyses the degra-
dation of the essential amino acid tryptophan and synthe-
sizes immunosuppressive metabolites [81]. Larrea and
colleagues [82] reported that IDO constitutes an impor-
tant mediator of peripheral immune tolerance in chronic
hepatitis C virus (HCV) infection. Induction of IDO
expression may reduce T-cell reactivity to viral antigens in
chronic HCV infection and may also influence the
immune response against HCC in patients chronically
infected with HCV. Understanding of the immune-escape
mechanisms should help us to design immunotherapy
protocols to increase the efficacy of therapeutic success.

Systemic use of immunostimulatory cytokines
There is a broad experience regarding the use of cytokines
to induce immune and inflammatory responses against
cancer [83,84]. Cytokines have been shown to act through
different mechanisms: i) stimulation of antitumor
immune responses; ii) induction of tumor cell apoptosis
(e.g. through induction of TRAIL) [85]; iii) interference in
uncontrolled proliferation of cancer cells, and iv) anti-
angiogenesis.

One of the most explored cytokines is interferon alpha
(IFN- ) [86,87]. The IFN-  antitumor mechanism of
action includes direct effect on tumor cells, induction of
lymphocyte and macrophage cytotoxic activities and anti-
angiogenesis [88,89]. Two controlled trials comparing
IFN-  with symptomatic treatment in patients with HCC
were reported. In one of them the use of high doses of
IFN-  (50 MU/m2, tiw) resulted in a response rate of 36%
[90]. In the other trial, in which lower doses of IFN-  (3
MU/m2, tiw) were administered, the response rate was
poor (7%) [91]. Even though it is clear that the different
responses are related to the administered doses, the toxic-
ity associated with the higher IFN-  dose is not accepta-
ble, especially for patients with end-stage liver disease.
Nevertheless, systemic administration of IFN-  [92] or
IFN-  [93] should be considered as a supportive treatment
after hepatectomy or tumor ablation, which may prevent
or delay tumor relapses in patients with HCC [94]. A com-
bination of IFN-  and chemotherapy was applied to
patients for treatment of advanced HCC [95,96] and met-
astatic CRC to the liver [97]; however, randomized con-
trolled studies failed to demonstrate that combination
protocol results in improved outcome when compared to
chemotherapy treatment alone [98,99].

Interleukin-2, an immunostimulatory cytokine, has been
administered alone or in combination with other treat-
ments against liver tumors. The non-controlled nature of

most studies precludes from any definitive conclusion.
Systemic IL-2 was able to produce objective responses
against HCC when given alone [100] or in combination
with melatonin [101] or lymphokine activated killer
(LAK) cells [102]. On the other hand, hepatic artery infu-
sion of interleukin 2, with or without chemotherapy,
induced objective remissions in 5% to 15% of liver metas-
tases from CRC [95,103,104]. In a phase II clinical trial,
Correale and colleagues showed that the combination of
polychemotherapy with granulocyte macrophage colony-
stimulating (GM-CSF) factor and low-dose IL-2 in color-
ectal carcinoma patients, results in high number of objec-
tive responses and low toxicity [105].

There is one report on combination of hepatic trans-arte-
rial chemotherapy with IFN  plus IL-2 in patients with
advanced HCC [106]. The achieved objective responses
highlight some biological effect of this treatment combi-
nation. In another study, when IL-2 was administered
together with IFN  and GM-CSF to advanced HCC
patients, clinical results were poor [107]. However, in
spite of some stimulating results, the clinical development
of IL-2 has been proved unsuitable because in parallel to
their efficacy the results involved severe toxicity, including
systemic vascular leak syndrome.

No trials were reported on the application of other
cytokines such as IL-12, TNF , or TRAIL, known to have a
potential effect against primary or metastatic liver cancer
in humans. Nevertheless, concerns were raised following
reports on the development of severe toxicity after sys-
temic treatment with IL-12 or TNF  [108,109] in other
type of tumors.

Although being able to obtain some positive outcomes in
the treatment of liver tumors, systemic application of
cytokines is accompanied by toxic effects which can be
overcome by local delivery. A possible role of some of the
immunostimulatory cytokines, e.g. IL-12, could be rea-
sonable in the context of vaccination as an adjuvant
administered at low doses.

Immunostimulating monoclonal antibodies
In the field of cancer therapy mAbs can act directly against
tumor cells or indirectly by interfering with several proc-
esses such as survival, cellular proliferation or angiogen-
esis. The immunostimulating monoclonal antibodies
which are those corresponding to the latter group, are
defined as a new family of drugs aimed to augment
immune responses. They consist in either agonistic or
antagonistic mAbs which are aimed to bind key immune
system receptors, thereby enhancing antigen presentation,
providing co-stimulation or counteracting immune-regu-
lation [110].
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Regulation of T-cell responses
T-cells express several co-signalling molecules, typically
cell-surface glycoproteins classified as co-stimulators or
co-inhibitors [111,112]. The outcome of T-cell responses
depend on the balance between co-stimulatory and co-
inhibitory molecules. Thus, antigenic signalling in the
absence of co-stimulatory molecules results in suboptimal
immune activation and may lead to T-cell deletion or
unresponsiveness. Monoclonal antibodies targeting co-
stimulatory molecules expressed on T-cells may act ago-
nistically, working as surrogate ligands and augmenting T-
cell proliferation and survival. Alternatively, mAbs may
act antagonistically, counteracting the inhibitory effects of
co-inhibitor molecules or Treg-cells.

Costimulation with agonistic mAbs
Diverse costimulatory molecules appear to regulate T-cell
response, working specifically at different time points
[113,114]. Antibodies against CD28 are known to poten-
tiate antitumor immunity in combination with bi-specific
antibodies that bind to both the tumor antigen and the
TCR-CD3 complex [112]. Some anti-CD28 antibodies,
termed superagonist antibodies, can activate T-cells with-
out concomitant TCR engagement. Unfortunately, con-
cerns were raised following reports of severe toxicity in a
Phase I dose-escalation trial with an anti-CD28 mAb
(TGN1412) [115].

Another costimulatory molecule, CD137 (also known as 4-
1BB), is a member of the TNF-receptor superfamily,
expressed in antigen-activated T-cells (CD4+, CD8+, Treg
and NK cells), DCs, cytokine-activated NK cells, eosi-
nophils, mast cells and, intriguingly, endothelial cells of
some metastatic tumors [116-118]. The natural ligand for
CD137 (CD137 ligand) is constitutively produced by acti-
vated APCs. Agonistic anti-CD137 Abs strongly promote
survival of T-cells and prevent activation-induced cell death
[119,120]. Antitumor effects of anti-CD137 mAbs were
first recognized by Melero et al. [121] in established Ag104
sarcoma and P815 mastocytoma. These effects are thought
to be involved in the activation of naive T-cells which are
specific for tumor antigens cross-presented by DCs.
Repeated systemic injections of agonistic anti-CD137, in
two mouse models of CRC, induced tumor eradication in 3
out of 5 mice [122]. Unfortunately, this therapeutic modal-
ity may have serious drawbacks. Niu and colleagues found
that a single injection of anti-CD137 given to BALB/c or
C57BL/6 control mice led to the development of a series of
anomalies such as splenomegaly, lymphadenopathy,
hepatomegaly, multifocal hepatitis, anemia, altered traf-
ficking of B cells and CD8+ T-cells, loss of NK cells, and a
10-fold increase in bone marrow cells bearing the pheno-
type of hematopoietic stem cells [123].

OX40 (also known as CD134 and TNR4) is another mem-
ber of the TNF receptor family, specifically expressed in

activated CD4+ and CD8+ T lymphocyte, B-cells, DCs and
eosinophils [124]. OX40 ligand (OX40L) is expressed in
activated APCs and can also be found in activated T-cells
and in endothelial cells [125]. OX40 seems to be particu-
larly important to ensure T-cell long-term survival, proba-
bly through up-regulation of the anti-apoptotic proteins
Bcl-xL and Bcl-2 [126]. Weinberg [127] showed that sys-
temic OX40 ligation increases tumor immunity, with a
role for CD4+ cells in the B16 melanoma model. Phase I
clinical trials, using a murine anti-human OX40 mAb,
have been initiated in patients with advanced cancer of
multiple tissue origins; however, it can not be adminis-
tered in several repeated doses because of its xenogeneic
nature, which is likely to trigger immune responses
against murine sequences [128].

Thus, agonistic mAbs have been found to produce some
benefits in treatment of liver tumors although their sys-
temic application causes serious undesired secondary
effects. Intratumoral application of low doses of them
might overcome some of the systemic delivery problems.

Counteracting immunoregulation with antagonistic mAbs
The cytotoxic T-lymphocyte-associated protein 4 (CTLA-4,
also known as CD152) is an inhibitory receptor with a
structural homology to the co-stimulatory receptor CD28
[111,129]. Under antigenic stimulation, ligand binding to
CTLA-4 generates inhibitory signals mediating reduction
in T-cell proliferation and in IL-2 secretion. Administra-
tion of antagonistic anti-CTLA-4 mAbs demonstrated
antitumor effects in different murine tumor models
including colon, prostate and renal carcinomas, as well as
fibrosarcoma and lymphoma [130,131].

As mentioned earlier, PD-1 and its ligands B7-H1 (also
known as PD-L1) and B7-DC (also known as PD-L2)
[111,132] deliver inhibitory signals to T cells. Administra-
tion of mAbs anti-PD-1 and B7-H1 produced CTL-medi-
ated antitumor effects in mice [133].

The finding that HCC-associated antigen HAb18G/
CD147, a member of the CD147 family, enhances tumor
invasion and metastasis through induction of matrix met-
alloproteinases [134] led to the development of an anti-
CD147 therapy. By using an orthotopic model of HCC in
nude mice, Ku and colleagues [135] showed that the
application of two different anti-CD147 mAbs (HAb18
and LICARTIN) resulted in consistent inhibition of both
tumor and metastasis growth.

In animal models, immunostimulatory mAbs antitumor
effects were demonstrated when used either alone or in
combination with radiotherapy or chemotherapy
[136,137]. Clinical experience with mAbs is scarce; how-
ever, several immunostimulatory mAbs have now been
introduced in clinical trials and early results suggest that



Journal of Biomedical Science 2009, 16:30 http://www.jbiomedsci.com/content/16/1/30

Page 7 of 18
(page number not for citation purposes)

they might enhance antitumor responses with accepted
toxicity. Therapy with immunostimulatory antibodies
alone or in combination with other strategies should be
carefully designed in order to avoid induction of autoim-
mune toxicity as a consequence of uncontrolled stimula-
tion of the immune system effector arm.

Gene transfer of cytokines and costimulatory 
molecules. Genetic vaccination
Gene therapy is a promising novel therapeutic strategy for
treatment of several heritable and non-heritable human
diseases [138,139]. Since about 20 years ago, when the
first clinical trial was initiated, and after more than 1300
clinical trials performed all around the world http://
www.wiley.co.uk/genmed/clinical/, we learned that the
core concept of gene therapy may be applicable: genes
introduced into patients can be safely expressed [140].
However, we have also learned that vector efficiency in
clinical applications is not as good as expected [141,142].
Cancer represents almost 70% of the clinical trials con-
ducted in patients and 25% of these studies consisted in
the application of cytokine genes.

Gene transfer of immunostimulatory cytokines (e.g. IL-2,
IL-4, IL-6, IL-7; IL-12, INF- , TNF- , GM-CSF) was shown
to overcome the immune tolerance against tumors, facili-
tating their eradication in some cases [143-145] (Table 2).
Two main approaches have been used [144]: i) direct
injection of vectors expressing cytokines/chemokines/cos-
timulatory molecules into tumor lesions, or ii) use of

tumor cells/DCs transduced ex vivo with vectors express-
ing cytokines/costimulatory molecules.

Interleukin 12 (IL-12) is a potent cytokine that showed
antitumor activity in a number of tumor models
[146,147]. Multiple action mechanisms mediating its
activity are known, including the activation of NK cells,
cytotoxic T lymphocytes and the induction of a TH1 type
of response [146]. It also inhibits tumor angiogenesis and
enhances the expression of adhesion molecules on
endothelial cells, thus facilitating the homing of activated
lymphocytes to the tumor [148,149]. However, IL-12 was
shown to eventually induce severe toxicity when adminis-
tered systemically as a recombinant protein [150]. Thus,
unspecific toxic effects of systemic IL-12 administration
might be solved by the use of gene therapy strategies,
allowing local production of IL-12 at the tumor milieu
and resulting in high local levels with low systemic con-
centrations [151]. Consistently, the potential usefulness
of IL-12 gene transfer for liver tumors treatment in animal
models was demonstrated by different groups including
ours [152-154]. We also reported that intratumor injec-
tion of an adenovirus encoding IL-12 genes (AdIL-12)
into rats with orthotopic HCC induced the complete
tumor elimination in the majority of animals [155].
Potent effects of this vector have also been shown in a very
aggressive multifocal HCC model developed in rats, by
treatment with DENA [155,156] as well as in mice bearing
hepatic metastases of colorectal carcinoma [157,158] and
in woodchucks chronically infected with woodchuck hep-
atitis virus (WHV) [159]. The toxicity observed under high

Table 2: Gene transfer immunostimulatory molecules.

Cytokine Mechanism Ref.

IL-2 + IL-12 CTLs 149

IL-10 CD8+ 152

IL-12 NK, CD4+, CD8+ 187

IL-12 + IL-10 NK, CD4+, CD8+, Macrophages, Neutrophils 165

IL-2 CTLs 166

HLA-B7 CTLs 167

IL-12 + IP-10 CD8+, CD4+, NK 161

IL-12 + MIP3 CD8+, CD4+, NK 162

CD40-L CD8+ 168,169

GM-CSF + HSV CD4+, CD8+ 171

CTLs: Cytotoxic T lymphocytes; NK: Natural killer cells.
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IL-12 levels is partly due to induction of IFN-  overpro-
duction [160]. An encouraging result is that IL-12 gene
transfer in combination with another vector expressing
the chemokine IP-10 (AdIP-10) allowed the reduction in
the AdIL-12 dose with a similar outcome efficacy [161].
The underlying mechanism is the following: lymphocytes
get attracted to tumors due to a local IP-10 expression and
subsequently they are activated by IL-12. In addition, a
combination of IL-12 with MIP3  demonstrated similar
synergistic antitumor effects [162].

The effects of IL-12 gene transfer were assessed in patients
with advanced gastrointestinal carcinomas in a phase I
clinical trial consisting mainly in liver tumors. Patients
were administered with up to 3 intratumor injections of
AdhIL-12[163]. Treatment feasibility and safety were
studied. Even though maximal tolerated dose has not
been reached, some evidence of biological and antitumor
activities were observed. One partial response, two minor
regressions and six stabilizations were achieved. In four
out of 10 patients, a significant lymphocyte infiltrate was
observed in injected tumors.

It has been stated that abnormal elevated levels of Th2
cytokines such as IL-10 are able to skew an immune
response that favors tumor growth [164]. In contrast,
Lopez et al. [165] have recently shown that tumor cell vac-
cines producing a combination of IL-10 and IL-12 act syn-
ergistically in eradicating established CRC, with the
underlying mechanisms being not fully addressed.

Systemic injection of recombinant IL-2 used extensively in
clinical oncology for patients with metastatic renal carci-
noma and melanoma has shown low efficacy and high
toxicity. A phase I-II clinical trial consisting in the admin-
istration of a recombinant adenovirus encoding for IL-2
gene was carried out in patients with advanced digestive
carcinomas [166]. Only one of the treated patients
showed a positive tumor response with necrosis of the
tumor mass.

Molecules such as HLA-B7 are essential to promote specific
T-cell responses. A reduced expression of MHC-I was
observed in CRC. In an attempt to make CRC more visible to
the immune system, Rubin et al [167] carried out a phase I
clinical trial consisting in an indirect intralesional gene trans-
fer of both HLA-B7 and 2-microglobulin into CRC hepatic
metastases. Treatment with a single plasmid construction
encoding for both genes in a lipid formulation (Allovectin-
7) was feasible and safe in 15 patients, however, details
regarding antitumor effect have not been reported. Such an
approach could produce significant therapeutic improve-
ments if aimed to deliver functionally relevant genes.

The interaction between CD40 ligand (CD40L, CD154)
and its receptor CD40, expressed in DCs, is essential for

the initiation of cellular and humoral immune responses.
Gene transfer of CD40-L led to regression of established
CRC [168] and HCC [169] in a CD8+ T cell dependent
manner.

Replication-selective viral agents (oncolytic virotherapy)
hold promise as a novel cancer treatment platform. Onc-
olytic virotherapy is based on the ability of these vectors
to selectively replicate in cancer cells as a result of different
mechanisms of action [170]. This novel class of targeting
viral vectors exerts direct antitumor effects, but can also be
engineered to produce immunostimulatory genes, such as
GM-CSF, augmenting its efficacy. A potent in vivo antitu-
mor effect of an oncolytic vector carrying HSV and GM-
CSF genes has been demonstrated against murine CRC
CT26 and murine HCC Hepa 1.6 [171].

The mutant adenovirus dl1520, also called ONYX-015,
was the first described oncolytic adenovirus [172]. It con-
tains a deletion in the E1B 55 K gene that achieves prefer-
ential replication in cancer cells by different mechanisms.
In the case of liver tumors, this virus showed a partial anti-
tumor effect on murine models but no evident antitumor
effect was found when applied to HCC patients. Two sep-
arate clinical trials showed that ONYX-015 has limited
therapeutic effect as monotherapy in patients with liver
tumors, especially if systemic routes are used [173,174].
Other oncolytic adenoviruses have been developed, and
show promising results in animal models of HCC. How-
ever, their performances in clinical trials have not been
tested so far [175].

In conclusion, gene transfer of cytokines and the use of
oncolytic viruses are two developing immunotherapy
strategies which hold promise in treatment of liver
tumors. The former strategy is being widely applied and
after further improvements might assure sufficient tumor
levels of inflammatory cytokines circumventing toxic sys-
temic effects. The latter strategy is in early stages of devel-
opment and it largely needs to be applied into the clinics.

Immunotherapy with dendritic cells
The armamentarium for immunotherapy protocols has
been boosted by the identification of DCs as protagonists
of antigen presentation [176]. The final outcome of DC
cross-presentation could be either T-cell activation or T-
cell tolerance, depending on its activation/maturation sta-
tus [177]. Thus, while mature DCs are able to induce anti-
tumor immunity, antigen presentation by immature DCs
results in the induction of tolerance [177]. In addition, IL-
4 which is overexpressed in the liver under recurrent hep-
atitis C [178] was shown to influence DCs to induce CD4+
T cell differentiation into the Th2 lineage and to suppress
DC response to IFN-gamma [179]. Up to now, several
clinical studies consisting in the application of DCs were
performed and, as a general outcome, no significant side
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effects were observed in the majority of these trials with
important biological effects showing the augmentation of
cellular immune responses against tumor antigens [180].

Direct injection of DCs into tumor tissue has been
exploited experimentally and clinically with diverse
results [181-183]. Chi KH and colleagues [184] conducted
a phase I trial in patients with advanced HCC after confor-
mal radiotherapy. Intratumoral injections of autologous
immature naïve DCs prior and after radiotherapy resulted
in 2 partial and 4 minor responses. Induction of specific
immune responses against AFPs and enhancement in NK
activity were observed.

DCs ex vivo-engineered to produce IL-12 were shown to
induce antitumor immunity in mice [182,183]. Similar
results were reported after application of DCs genetically
modified to express IL-7 [185] or IL-15 [186]. A phase I
clinical trial consisting in the intratumoral injection of
autologous DCs, transfected with Ad-IL-12, in patients
with metastatic gastrointestinal carcinomas was carried
out [187]. This strategy was feasible and very well toler-
ated in doses up to 50 × 106 DCs. One partial response
and 2 stabilizations were observed. In 3 out of 10 treated
patients, a marked increased in CD8+ T lymphocyte infil-
trates was found, and in 5 of them NK activity was signif-
icantly induced. One of the possible reasons behind the
limited antitumor activity might be that DCs would likely
be retained within the malignant tissue due to increased
intratumoral levels of IL-8 expression as well as other
chemotaxis signals, preventing their mobilization to the
secondary lymphoid organs for further amplification of
immune responses. Consistently, scintigraphic tracking of
injected 111In-labelled DCs showed retention of DCs
inside tumors [188].

As previously discussed, CD40-L is a costimulatory mole-
cule expressed mainly on activated CD4+ T cells, which is
essential for the initiation of antigen-specific T-cell
responses [189]. Crystal and colleagues [190,191] showed
elimination of CRC nodules after intratumoral adminis-
tration of CD40-L exogenously expressing DCs. Although
this approach has not yet been applied in clinical trials, it
seems promising.

Another technique employed to load antigens to DCs
consists in the cellular transfection with mRNA mole-
cules. Chu et al. transfected total mRNA from CT26 CRC
cells to DCs and showed strong specific CTL activity as
well as protective immunity in vivo [192]. Immunization
of CEA-transgenic mice, using mature DCs loaded with an
anti-idiotype antibody that mimics CEA, resulted in a
potent antitumor response against CEA-expressing CRCs,
while immunization with DCs loaded with CEA showed
less potent response [193]. Morse et al. reported a phase I
clinical trial consisting in the administration of autolo-

gous DCs loaded with CEA RNA (peptide CAP-1) into 21
patients with resected CRC liver metastases [194]. The
procedure was well tolerated, one patient had a minor
response, and one had stable disease. More recently, the
same group carried out another phase I study in 14
patients (12 CRC and 2 non-small lung cancer) on the
effects of immunotherapy combined with DCs transduced
with a fowlpox vector encoding CEA and costimulatory
molecules. Immunization of these patients was safe and it
was able to activate potent CEA-specific immune
responses. In a phase I clinical trial with the aim of
increasing the amount of circulating DCs, Fong et al. incu-
bated DCs with the hematopoietic growth factor Flt3 lig-
and before injecting DCs loaded with CEA-derived
peptide into 12 patients with colon or non-small cell lung
cancer [195]. Two patients showed objective responses
and two had stable disease.

Stift and colleagues reported that vaccinations with autolo-
gous DCs pulsed with tumor lysates in a cohort of advanced
cancer patients (including two with HCC) was safe and fea-
sible [196]. Delayed-type hypersensitivity (DTH) skin test
was positive in the majority of vaccination-treated patients
and induction of IFN-  producing T cells was achieved in 4
other patients (not HCC). Another similar DC-based strategy
was applied by Iwashita and colleagues [197]. They carried
out a phase I clinical trial in patients with advanced HCC.
DC-based strategy consisted in the subcutaneous injection of
DC pulsed with tumor extract in 10 patients. One patient
showed a partial response and in 2 of them AFP levels were
decreased. Seven out of 10 showed positive DTH tests for
KLH. Tamir and colleagues [198] evaluated the effectiveness
of tumor-lysate loaded DC vaccines in the treatment of
advanced CEA-positive CRCs.

Itoh et al. combined both DCs pulsed with a CEA peptide
(restricted to HLA-A24) and adjuvant cytokines (IFN-  and
TNF- ) in the treatment of patients with CEA-expressing
metastatic tumors [199]. Ten HLA-A24 patients with
advanced digestive tract or lung cancer were treated. No sig-
nificant adverse effects were observed and the disease in 2
positive DTH test was stabilized [200]. A few years later,
Ueda and colleagues conducted a phase I clinical study in
which DCs previously pulsed with a CEA-derived peptide
were administered to HLA-A24-restricted patients. Eighteen
compatible patients were enrolled. No severe toxicity was
observed. In some patients, stabilization of the disease and
decrease in CEA levels were reported. Accordingly, patients
with clinical responses were positive in skin tests and devel-
oped specific CTLs [201]. Finally, Babatz and colleagues
demonstrated that immunotherapy with DCs pulsed with
a CEA-derived peptide is able to induce specific IFN-
gamma producing CD8+ T cells [202].

We and others have observed that DCs and NK cell inter-
action plays an important role in tumor immunity
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[187,203,204]. In this regard, Osada and colleagues
found in patients with metastatic CRC that immunization
with DCs transduced with a fowlpox vector encoding CEA
was able to increase NK activity in 4 of 9 patients [205].
Importantly, increased NK activity was correlated with
clinical response. In order to in vivo-activate DCs and
thereby avoiding ex vivo manipulation, Furumoto et al.
injected MIP3  chemokine together with CpGs inside
CRC tumors [206]. They observed an increase in DC
number within tumors which were finally eradicated
through the development of specific CTLs.

The use of cytokines as a vaccine adjuvant has been shown
to be a promising option for cancer therapy, due to its
potential effectiveness against disseminated disease with-
out causing systemic toxicity [207-211]. However, the
weakness of these strategies lies in: 1) the need of cultur-
ing autologous cancer cells from each patient, 2) the prob-
lems in the selection of positively modified cancer cells, 3)
the lack of an efficient APC activity in tumor cells and, 4)
the limited amount of tumor cells that precludes repeated
immunizations. Investigators have looked into other
strategies to carry cytokines genes or tumor antigens (such
as the use of allogeneic tumor cell lines) but, unfortu-
nately, allogeneic tumor cells may lack sole TAA present
within the patient's own tumor, thus reducing its efficacy.

In conclusion, different strategies involving DCs have been
developed during the lasts years. Although for some of
them no clinical trials have been conducted yet, for other
strategies a proportion of patients responded to treatment
with minor tumor regression or stabilization, with variable
induction of the immune response. Further studies are
required for improving the benefits of manipulating the
main kind of APCs involved in immune reactions.

Contribution of adoptive T-cell therapy 
strategies
In several animal models, solid tumors were shown to be
susceptible to elimination after infusion of large amounts
of tumor-specific T-lymphocytes [212]. However, the
translation of these enthusiastic successes into patients are
not yet feasible, partly due to difficulties in generating
tumor antigen-specific T-cells ex vivo [213].

Adoptive therapy involves the transfer of ex vivo expanded
and stimulated immune effector cells to tumor-bearing
hosts, aiming at augmenting the antitumor immune
response [212,214]. In general, adoptive therapy is accom-
plished by harvesting cells from the peripheral blood, tumor
sites (tumor infiltrating lymphocytes), or draining lymph
nodes from which, the effector cells could eventually be
expanded ex vivo, in either a specific or non-specific fashion.

One of the major aims of the adoptive T-cell therapy is the
identification of tumor-associated antigens (TAAs) that

are ectopically expressed or overexpressed in tumor cells
relative to normal tissues or, tumor-specific antigens
(TSAs) that are expressed exclusively in tumor cells.
Despite aberrant expression of TAAs in tumor cells, many
of these proteins are also expressed at some level in non-
malignant adult tissues and, as a consequence, the
immune system may recognize TAAs as self-antigens and
limit the T-cell immune response. In addition, as previ-
ously discussed the liver immune system usually generates
tolerance to proteins expressed by its own cells and HCC
induces immune response suppression [215]. Moreover,
it was demonstrated that many malignant tumors find the
way of down-regulating, modifying or losing its own anti-
gens, in order to avoid immune recognition [29].

No TSA with high prevalence have been identified for liver
tumors, so far. PLAC-1, which in normal tissues is only
expressed in placenta, was recently found to be expressed
in 1/3rd to 1/4th of the analyzed human HCC samples and
3,8% of patients were shown to present humoral
responses against this antigen [216]. Among TAAs
described in HCC the most important one is AFP. Several
AFP-based immunotherapeutic approaches have been
applied against HCC [217,218]. Additional TAAs recently
found to be expressed in HCC are several members of the
tumor-specific "cancer-testis" antigens (the MAGE, GAGE
and BAGE genes, NY-ESO, CTA, TSPY and FATE/BJ-HCC-
2, among others) [219-221];, Aurora-A [222], SCCA
[223], and Glypican-3. In between them, Glypican-3, a
specific immunomarker for HCC that can be used to dis-
tinguish it from benign hepatocellular mass lesions, is
highly immunogenic in mice and can induce effective
antitumor immunity with no evidence of autoimmunity
[224]. Several TAA antigens are also known for CRC liver
tumors, including CEA and CP1 [225]. Clinical studies
must be conducted in order to evaluate the potential use
of these antigens in immunotherapy for liver tumors.

The lack of TSAs for HCC may be the most important limit
to immunotherapy applications aimed to specifically tar-
get liver tumor cells. Several technological strategies such
as serologic recombinant expression cloning (SEREX),
gene expression profiling and proteomics, are being
applied to discover any of those specific markers [226]
but, until now, the results are limited [227].

Another important negative factor limiting the success of
this type of immunotherapy is the low survival of adop-
tively transferred T-lymphocytes in cancer patients is. Cur-
rently, some strategies are being evaluated to increase the
proliferation rate of transferred T-cells, including pre-
treatment with cyclophosphamide [228].

T cells are the cellular model predominantly chosen for
adoptive cellular therapy, although a role for NK cells and
other cytokine-induced lymphocytes have also been
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investigated. Pilot clinical trials of adoptive T cell immu-
notherapy were initiated in cancer soon after the discovery
of IL-2 (in the late 1970s), which enabled large-scale cul-
ture of T cells [229]. Although certain clinical success has
been observed in melanoma, renal cancer, and lymphoma
[230,231], phase II studies in HCC patients have shown
objective response rates of only about 20% [232,233].

To date, no randomized clinical trials, but one, had dem-
onstrated efficacy of adoptive T cell transfer approaches.
Takayama et al. [234] reported benefits of adoptive trans-
fer with an adjuvant setting for HCC after surgical resec-
tion of the primary tumor. In this study, autologous
peripheral blood T cells were pre-cultured in medium sup-
plemented with CD3-specific antibody and IL-2, and cell
infusion was shown to reduce the risk of cancer recurrence
by 41% when compared to a control group receiving only
surgery. However, this trial remains unconfirmed, and the
mechanism involved in the antitumoral effect remains
unknown.

In order to enhance the effector capacity of tumor-specific
T cells, different cytokines such as IL-18 and IL-12, were
tested as potential biological response modifiers in the
setting of adoptive immunotherapy. Nakamori et al. [235]
demonstrated that adoptive transfer of IL-18-transduced
cytotoxic T-lymphocytes in combination with IL-12
showed marked inhibitory effects on primary tumors and
metastasis in a mouse model of orthotopic CRC.

Synergistic effect of combined therapy
Combinatorial strategies against cancer could either con-
sist in a simultaneous application of different immuno-
therapeutic approaches or in a combination of classic
chemo- or radio-therapeutic protocols with immunologic
tools. Some chemotherapeutical agents were shown to
induce upregulation of tumor-associated antigen expres-
sion (such as CEA) or to reduce tumor cell resistance to
specific cytotoxic T lymphocytes. Some of these combina-
tions have been found to produce synergistic rather than
additive effects.

The immune-inhibitory mechanisms developed by tumor
cells, such as overproduction of immunosuppressive
cytokines (TGF-  and IL-10) or induction of Treg cells, are
important obstacles that a successful cancer immuno-
therapy strategy has to face. Inhibition of one or more of
these mechanisms appear to be a good strategy to induce
antitumor immunity [236]. Elimination or inhibition of
Treg activity by low-dose cyclophosphamide [237] or
antibodies against CD25 or CTLA-4 may modify tumor
immunosuppressive microenvironment, thereby increas-
ing the efficacy of immunotherapy.

It has been shown, both in mice and humans, that pre-
treatment with cyclophosphamide, known to induce lym-

phodepletion, results in a sustained function of adop-
tively transferred T-cells. Adoptive transfer efficacy can
also be enhanced by alternative immunotherapies such as
cytokine administration [238] and in some cases by
standard cytotoxic chemotherapy and radiotherapy
[239,240].

Preclinical models support the rationale for combining
cancer vaccines with conventional therapies, such as radi-
ation, chemotherapy, surgery, hormone therapy, as well
as other immunotherapies. One of the most promising
results was obtained from clinical trials combining anti-
bodies against CTLA-4 with other immunotherapies such
as application of GM-CSF-transduced tumor-cell vaccines.
This treatment resulted in the alteration of the intratumor
balance of Tregs-T effector cells and in tumor rejection
[241]. Further research is required to optimize the combi-
nation of different immunotherapies to obtain maximal
clinical benefits.

What have we learned from the clinic? 
Conclusion
Conducting immunotherapy clinical trials in patients
with liver tumors is challenging and several strategies have
been opened for clinical applications. However, the high
efficacy of different immunotherapy strategies at eliminat-
ing liver tumors in animal models is in contrast with the
very limited results achieved in patients. There are many
explanations to why immunotherapy strategies fail or
have little impact on patient survival. In general, for all
solid tumors, the common scenario chosen to test immu-
notherapeutic protocols almost always involves patients
with advanced diseases that precludes, or at least
decreases, the possibility of success. Then, due to the
advanced status of the cancer disease, the immune system
of the majority of treated patients is deteriorated and una-
ble to recognize tumor antigens. For the specific case of
HCC and partially to CRC liver tumors, apart from the
immunological privilege status of the liver, there are some
particular aspects that add further difficulties when aim-
ing for a clinical response such as the immunosuppressant
effect of chronic HBV/HCV infection on cells of the
immune system (e.g. DCs) or complications derived from
developed cirrhosis which usually undermine efforts to
stimulate the immune response. There is a general agree-
ment in that different forms of immunotherapy should be
tested for overall clinical benefits along with conventional
treatment regimens evidencing improvements in survival.
It would be desirable to evaluate the possibility of immu-
notherapy strategies as neoadjuvancy in patients at early
stages of the disease such as after surgical removal of HCC
and hepatic metastases of CRC, two diseases with
increased likelihood of recurrence. Finally, new ways of
long-term local delivery of signals inducing CD4+ T cell
differentiation towards the Th1 lineage or vaccination
against liver tumor antigens would eventually overcome
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the drawbacks of the pro-tolerogenic liver influence and
the impairment or reduced immune response capacity
caused by HBV/HCV viruses.
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