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Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) represent an interesting amalgamation
of the three basic kinds of cellular macromolecules viz. proteins, carbohydrates and lipids. An
unusually hybrid moiety, the GPI-anchor is expressed in a diverse range of organisms from parasites
to mammalian cells and serves to anchor a large number of functionally diverse proteins and has
been the center of attention in scientific debate for some time now. Membrane organization of GPI-
APs into laterally-organized cholesterol-sphingolipid ordered membrane domains or "rafts" and
endocytosis of GPI-APs has been intensely debated. Inclusion into or exclusion from these
membrane domains seems to be the critical factor in determining the endocytic mechanisms and
intracellular destinations of GPI-APs. The intracellular signaling as well as endocytic trafficking of
GPI-APs is critically dependent upon the cell surface organization of GPI-APs, and the associations
with these lipid rafts play a vital role during these processes. The mechanism of endocytosis for
GPI-APs may differ from other cellular endocytic pathways, such as those mediated by clathrin-
coated pits (caveolae), and is necessary for unique biological functions. Numerous intracellular
factors are involved in and regulate the endocytosis of GPI-APs, and these may be variably
dependent on cell-type. The central focus of this article is to describe the significance of the
endocytosis of GPI-APs on a multitude of biological processes, ranging from nutrient-uptake to
more complex immune responses. Ultimately, a thorough elucidation of GPI-AP mediated signaling
pathways and their regulatory elements will enhance our understanding of essential biological
processes and benefit as components of disease intervention strategies.

Background
Numerous mammalian proteins have a special posttrans-
lational modification at their carboxy-terminal known as
the glycosylphosphatidylinositol (GPI) anchor, which
serves to attach the proteins to the extracellular leaflet of
the cell membrane. The GPI-anchor consists of a phos-
phatidylinositol (PI) group attached to a carbohydrate
moiety (trimannosyl-non-acetylated glucosamine), which
in turn is linked through a phosphodiester bond to the
carboxy-terminal amino acid of the mature protein.

GPI-anchoring of proteins is well conserved among
diverse life forms, significantly involved in human dis-
eases as malfunctions of GPI-anchored proteins (GPI-
APs). Notably, defects in the enzymes of the GPI biosyn-
thetic pathway such as phosphatidylinositol glycan class A
(PIGA) and phosphatidylinositol glycan class M (PIGM)
cause paroxysmal nocturnal hemoglobinuria (PNH) [1]
and autosomal recessive GPI-anchor deficiency [2],
respectively. PNH is characterized by deficient cell surface
expression of several GPI-APs, among which are the
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decay-accelerating factor (DAF) and CD59. These proteins
interfere with the complement system, and in their
absence, patients display complement-mediated hemoly-
sis. Similarly, in autosomal recessive GPI-anchor defi-
ciency decreased surface expressions of CD59, CD24
among other GPI-APs on hematopoietic cells, leads to
venous thrombosis and seizures. Furthermore, various
GPI-APs have been implicated in human diseases such as
the prion protein in several types of neurodegenerative
disorders [3], fibrillin-1 in Marfan's syndrome [4], alka-
line phosphatase in hypophosphatasia [5], lipoprotein
lipase in chylomicronemia [6], and glypican-3 in Simp-
son-Golabi-Behmel syndrome [7]. Thus a clear knowledge
of the functional properties of GPI-anchors is crucial for
understanding protein functions.

The presence of a GPI-anchor serves the following four
functional roles: (1) the apical targeting of proteins in
polarized cells [8], (2) GPI-anchors mediate the cell sur-
face organization of attached proteins through association
with specialized cholesterol and sphingolipid-rich micro-
domains, commonly known as "lipid rafts", (3) endocy-
tosis of GPI-APs leading to downstream signaling and, (4)
cleavage of GPI-anchors by phospholipases to release sol-
uble protein for signaling (for example, Cripto-1, [9]). In
this article we describe in detail the significance of endo-
cytosis of GPI-APs and highlight the important role of
lipid rafts in the process. Existing controversies in the field
and possible avenues for further research are discussed.

Physiological Functions of GPI-APs
GPI-APs are involved in a diverse range of functions from
nutrient-uptake (folate receptor (FR) [10]), complement
reactions (DAF, CD59), parasite entry (CD14 in phagocy-
tosis), cell migration and wound healing (uPAR [11]),
virus receptors (folate receptor for Ebola and Marburg
viruses [12]), toxin receptors (Aerolysin [13,14]), Clostrid-
ium septicum alpha toxin [14]) and others as elucidated
below.

Nutrient Uptake
The human membrane folate receptor (MRF) exists in
three isoforms of which the GPI-anchored α- and β-iso-
forms are expressed in placental tissue [10]. MFR-α is also
expressed in the buccal carcinoma cell line, KB cells.
Folate uptake is essential for the survival of all dividing
cells. Folate is a co-factor for DNA replication enzymes as
well as a substrate in thymidine synthesis. Developmental
abnormalities are seen in experimental models when FR
functions are obstructed with the use of antibodies or
anti-sense RNA as well as in populations wherein genetic
mutations in MFR-α are present [15,16]. Folate uptake
mediated via GPI-anchored receptors enables cell survival
in media containing low amounts of folate [17]. Chimeric
FRs bearing a transmembrane protein anchor are ineffi-

cient in folate uptake and are also not subjected to the
same regulatory mechanisms as the GPI-anchored form,
which indicates that the GPI-anchorage directs an optimal
endocytic pathway for folate absorption to be used by FR
[18].

Neurodegenerative Prion Disease Phenotype
GPI-anchored prion proteins are the causative agents of
neurodegenerative spongiform encephalopathies wherein
the cellular form of the prion protein, PrPC, is converted
to the scrapie isoforms, PrPSc, resulting in the deposition
of amyloid plaques on neurons [19-21]. The conversion
of PrPC to PrPSc occurs presumably in endocytic compart-
ments [22,23]. Consistent with this observation, lyso-
somotropic agents like chloroquine as well as cysteine
protease inhibitors are able to supress the conversion of
PrPC to PrPSc [24]. Similar to the FR, replacement of the
GPI-anchor with transmembrane anchoring sequences
results in reduced scrapie formation [25]. Recent hypoth-
eses also suggest a role for prion proteins as modulators of
innate as well as acquired immunity by functioning as
receptors for complexes of viral RNA, viral capsid proteins
and uric acid [26].

Toxin Receptors
Aerolysin produced by Aeromonas hydrophila has been
shown to bind to Thy-1 [27,28], specifically to the GPI-
anchor [13]. Erythrocytes from PNH patients, a disease
condition where the synthesis of GPI-anchors is impaired,
are resistant to intoxication by aerolysin [29]. Aerolysin is
a pore-forming toxin with pore formation enhanced by
the co-operative binding of about seven toxin molecules
to cell membranes [30]. Oligomerization of the toxin to
the heptameric form is a greatly accelerated process when
the toxin is bound to the cell surface as compared to the
association of the toxin molecules in vitro [31]. It is likely
that the presence of GPI-APs in clusters at the plasma
membrane is responsible for the binding and insertion of
the toxin subunits in the plasma membrane [31]. Gordon
et al. have demonstrated a role for FR-GPI as a receptor for
the Clostridium septicum alpha toxin [14]. PIPLC sensitive
binding of the Helicobacter pylori to putative GPI-anchored
receptors has also been postulated [32].

Virus Receptors
A significant role for GPI-APs as virus receptors has
emerged from several studies. FR has been identified as a
receptor for filoviruses like the Ebola virus (EBV) and Mar-
burg virus (MBV). Expression of recombinant FR in virus
insensitive cell lines renders them susceptible to infection
by EBV and MBV [12]. Similarly, GPI-anchored DAF has
been shown to act as a co-receptor for coxsackieviruses B3
and A21 [33,34]. DAF has also been identified as the
receptor for Enterovirus 70 (EV70) in leukocytes [35] and
in HeLa cells [36] as well as echovirus 7 [37]. Stable trans-
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fection of NIH3T3 cells with DAF leads to binding and
replication of EV70, suggesting a role for DAF in the endo-
cytosis of EV70 [36]. Anti-DAF antibodies were effective in
preventing EV70 binding to cells. In a similar manner,
pretreatment of HeLa cells with PIPLC resulted in inhibi-
tion of echovirus 7 attachment to cells. Transfection of
CHO cells with DAF lead to binding and infection by mul-
tiple echovirus serotypes demonstrating a role of DAF as a
virus receptor [37].

Phagocytosis
GPI-APs are also thought to be co-receptors with CR3 in
mediating non-opsonic phagocytosis of Mycobacterium
kansasii. Antibodies against GPI-APs inhibit the non-
opsonic phagocytosis of M. kansasii specifically. CR3
mediated phagocytosis of opsonized zymosan particles as
well as opsonized M. kansasii is not inhibited under these
conditions [38]. GPI-anchored CD55 (DAF) and CD66e
(Carcinoembryonic antigen; CEA) are recruited by dif-
fusely adhering Escherichia coli (Afa/Dr DAEC) strains dur-
ing infection of CaCo-2 cells. The native diffuse
distribution of CD55 and CD66e on the apical membrane
is altered to a clustered distribution surrounding the
adherent bacteria. The adhesion of bacteria can be inhib-
ited if the interactions with these GPI-APs are prevented
by pre-treatment with anti-CD55 and anti-CD66e anti-
bodies [39]. The GPI-anchor and a short consensus region
3 (SCR3 domains) of DAF are critical for the internaliza-
tion of E. coli expressing the Dr-adhesins [40]. GPI-
anchored CD66e (also referred to as carcinoembryonic
antigen, CEA) also functions as a cell surface receptor for
Neisseria gonorrhoeae expressing the Opa52 adhesin [41].

Lymphocyte Signaling
Signal transduction via GPI-APs is also thought to be syn-
ergistic with the activation of the T-cell receptor complex.
(reviewed in [42]). Recently, stimulation of T-cells and
natural killer (NK) cells by IL-18 was shown to be medi-
ated by GPI-anchored CD48 [43]. IL-18 receptor, a com-
plex of IL-18Rα and IL-18Rβ, binds to the protein as well
as glycan anchor of GPI-anchored CD48 and thereby
results in tryosine kinase activation and eventually pro-
duction of interferon-gamma (IFN-gamma). These effects
are prevented when cells are pretreated with phospholi-
pase C (PIPLC) [43].

Other Signaling Events
Cellular prion proteins also participate in signaling events
leading to the acquisition of the metastatic phenotype. In
gastric cancer cell lines, PrPc was found to transactivate the
transcription factor MMP11 by signaling via the MEK/ERK
pathway leading to enhanced metastasis in vivo [44].

In COS-1 cells, GPI-anchored Cripto has been shown to
control the intra-endosomal sorting and trafficking of the

TGF-b family member, Nodal [45]. GPI-anchored Cripto
facilitates localization of Nodal (endocytosed for 40 min)
to the limiting membrane of GFP-Rab4 positive endo-
somes. Signaling via Nodal is also facilitated by the inter-
action of Cripto and Nodal mediated by the EGF domain
of Nodal.

These studies demonstrate that GPI-APs can participate in
signaling events at the plasma membrane as well as in
endosomal membranes.

GPI-APs are thus involved in various physiological proc-
esses, with the endocytosis of GPI-APs being an important
regulatory mechanism in several of these processes.
Clearly, in the case of the FR as well as the prion protein,
access to certain endocytic compartments is mediated by
the GPI-anchored isoforms of these proteins. The mecha-
nism of intracellular trafficking might be responsible for
efficient folate-uptake. It is likely that pathogens are able
to exploit the normal endocytic pathways of GPI-APs to
access intracellular compartments that may be distinct
from the degradative lysosomal compartments. Likewise,
endocytic compartments accessed by the cellular prion
protein may be the sites of formation of pathogenic prion
particles. In this review, we have chosen the FR, prion pro-
teins and the urokinase type plasminogen activator recep-
tor (uPAR) to examine the various endocytic processes
that serve to internalize GPI-APs.

Endocytosis of GPI-APs
Early studies involving endocytosis of GPI-APs [46-49]
showed that endocytosis of GPI-APs could possibly occur
by mechanisms distinct from those utilized by transmem-
brane-anchored proteins. However, these studies also
involved usage of primary and secondary antibodies as
ligands against GPI-APs, which was later demonstrated to
be a technical error [50]. Another technique of isolation of
low density membrane fractions following cold Triton-X-
100 extraction has been used to "identify" membrane
domains (rafts) which include GPI-APs [51]. However,
the addition of cold Triton-X-100 was shown to cause the
artifactual redistribution of GPI-APs in the plasma mem-
brane of cells [52]. The endocytosis of GPI-APs should
therefore be examined under conditions where these tech-
nical errors have been eliminated. GPI-anchored FR, prion
proteins and uPAR have been studied extensively in order
to resolve these issues.

Endocytosis of Folate Receptor
GPI-anchored FR was shown to recycle in cells between
acid resistant (intracellular) and acid-sensitive (extracellu-
lar) pools presumably via endosomal compartments [53].
Replacement of the GPI-anchor of FR with a transmem-
brane one resulted in endocytosis via clathrin coated pits
but the chimeric receptor was unable to deliver the endo-
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cytosed folate to the cytoplasm with the same efficiency as
the GPI-anchored FR [18]. Moreover, the cytoplasmic
accumulation of folate via the transmembrane anchored
was not inhibited by the confluence status of the cells. The
transmembrane anchored FR was therefore not subjected
to cellular regulatory processes in the same manner as the
native GPI-anchored FR [18]. Presumably, replacement of
the GPI-anchor with a transmembrane one resulted in
altered intracellular destinations of the FR where the effi-
ciency of folate absorption was considerably reduced.

GPI-anchored FR was thought to be organized within
caveolae in cholesterol-dependent clusters (detected using
primary and secondary antibody staining techniques[54])
and a mechanism for folate-uptake based on this cluster-
ing was proposed (termed as "potocytosis"), whereby,
transient closure and acidification of the caveolae would
facilitate folate-uptake and release into the cytoplasm.
This model was proposed as an explanation of the fact
that FR recycles in MA104 cells [53], resulting in an intra-
cellular and an extracellular pool. Yet these authors were
not able to conclusively present an endosomal location
for the intracellular pool of recycling receptors.

The potocytosis model of caveolar organization and inter-
nalization of GPI-APs were revised when it was found that
cross-linking of GPI-APs lead to their selective localization
into caveolae [50]. Immunodetection procedures employ-
ing primary and secondary antibodies resulted in the for-
mation of clusters of GPI-APs in caveolae. Interestingly,
the cross linking of GPI-APs is not prevented by standard
paraformaldehyde based fixation techniques. The native
distribution of FR visualized by labeled primary antibod-
ies was uniform at the plasma membrane without any
quantitative enrichment in any class of cell surface invagi-
nations [50].

Cross-linking induced caveolar sequestration of GPI-APs
has been confirmed in several other studies [55,56]. How-
ever, the native organization of GPI-APs has been shown
to be independent of caveolae [50,57].

Studies on endocytosis of non-cross linked GPI-APs, using
monovalent ligands have been possible with the FR
[58,59]. Sabharanjak et al have demonstrated that FR
bound by a fluorescent monovalent analogue of folic acid
(PLF, [59]) is internalized into a distinct set of early endo-
somes that may include fluid phase markers but are dis-
tinct from the endosomes derived from the clathrin-
coated pits. GPI-anchored FR is endocytosed at very early
time points (typically 2 minutes) into GPI-AP enriched
endosomal compartments (GEECs) that are distinct from
the endosomes that contain endocytosed Transferrin
receptor (TfR,[59]. These two sets of endosomes then sub-
sequently fuse with each other and merge with the recy-

cling endosomal compartment (REC) [58,59].
Endocytosis of FR into GEECs is also regulated by the
GTPase Cdc42, whereas the endocytosis of TfR is unaf-
fected under conditions wherein dominant negative or
constitutively active Cdc42 is expressed in cells [59]. These
studies have established beyond doubt that very early
events in the internalization of GPI-APs like FR are com-
pletely distinct from the well characterized clathrin-coated
pit mediated endocytic pathway and that GEECs represent
a novel endocytic pathway.

Depletion of specific lipids like cholesterol resulted in a
dramatic redirection of the FR into endosomes containing
endocytosed TfR. Since the segregation of GPI-AP and
transmembrane anchored proteins like TfR is evident at
very early time points (2 minutes, early relative to the
recycling periods of these receptors), it is clear that these
sorting events are mediated at the plasma membrane.
Interestingly, endocytosis via the Cdc42 regulated path-
way was also sensitive to lipid perturbations, like choles-
terol depletion, which altered the cell surface organization
of GPI-APs in lateral inhomogeneities termed as "lipid
rafts" [59,60]. These elegant experiments demonstrate
that internalization of GPI-APs occurs via distinct cell sur-
face invaginations apart from clathrin-coated pits and
caveolae [59], and is dependent on lateral associations of
GPI-APs with cholesterol and sphingolipids in the exo-
plasmic leaflet of the plasma membrane. In the end, the
efficiency of folate absorption by the GPI-anchored FR is
determined by these endocytic events.

Recently Chen et al [61] demonstrated that FR endosomes
are delivered to endosome recycling compartment in KB
and HeLa cells via microtubules. Using antibodies for
dynein and kinesin I, these authors verified the role of
dynein and kinesin I in traffic-mediating of FR endosomes
towards the minus or plus end of microtubules, respec-
tively. Metabolic depletion of endosomal cholesterol led
to increased FR endosome motility in KB cells. This
increase in FR endosome motility was proposed to be a
consequence of altered associations with Rab GTPases.
Cholesterol-depletion was found to lead to decreased
association with Rab7 and dynein and increased associa-
tion with Rab4 and kinesin (KIF3), which ultimately
caused the enhanced endosome motility. These results
support the earlier work by Chatterjee et al demonstrating
how the depletion of cellular cholesterol and sphingolip-
ids leads to increased recycling of GPI-APs from recycling
endosomal compartments [62].

Ultimately, studies such as those detailed above help clar-
ify the endocytosis events mediating folate-uptake and
will prove valuable for the general comprehension of the
efficiency of cellular folate absorption.
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Endocytosis of Cholera Toxin B
Another piece of evidence that demonstrates that caveolin
is not involved in the mechanism for internalization of
GP-APs with membrane inhomogeneites is derived from
studying the cholera toxin B subunit (CT-B). CT-B, which
binds to the ganglioside GM1 [63], has been shown to be
endocytosed via multiple endocytic pathways including
caveolae (when stimulated with okadiac acid or lactosyl-
ceramide treatments) as well as a non-clathrin non-caveo-
lae mediated endocytic pathway [64]. These CT-B positive
endosomes are formed even in cells derived from caveo-
lin-1 null mutant mice and demonstrate tubulovesicular
and ring shaped morphologies similar to those of GEECs
[59,64]. The ultra-structural characterization of these early
endosomes shows that these are tubular structures, [65]
which are capable of including cell surface bound cholera
toxin, fluid phase markers like HRP and GPI-APs. In fact,
in cav-1 null mouse embryonic fibroblasts, a major frac-
tion of internalized CT-B was found to be co-localized
with GPI-APs at 2 minutes post-internalization and not
with transferring, a marker for the endosomes derived
from clathrin-coated pits. Taken together, these results
indicate that inclusion of membrane inhomogeneities
consisting of GPI-APs, cholesterol, sphingolipids and
GM1 can be organized in the absence of caveolin and that
these structures do not utilize caveolar invaginations for
endocytosis. It must be noted, however, that CT-B shows
limited specificity for GM1 [66] and is capable of binding
other glycolipids as well which is probably why the mole-
cule can enter cells via multiple pathways. In order to use
CT-B as a selective marker for GPI-AP associated mem-
brane regions, a distinction between the binding sites on
the plasma membrane for CT-B is essential.

Tubular Endosomes
Tubular endosomes have been shown to be regulated by
another GTPase, ARF-6 [67,68]. ARF-6 and Tac (IL-2
receptor alpha subunit) were shown to traffic from the
plasma membrane to a perinuclear endocytic compart-
ment which was distinct from endosomes containing
clathrin-coated-pit derived cargo (TfR) [67,68]. These
endosomes also display tubular morphologies and were
shown to facilitate endocytosis and recycling of the major
histocompatibility complex class I (MHC-I) protein [69].
Naslavsky et al have proposed that the ARF-6 regulated
tubular endosomes also included GPI-APs like CD59 in
HeLa cells [70]. Inclusion of GPI-APs and MHC-I into the
clathrin-independent tubular endosomes was also shown
to be dependent upon cholesterol. Sequestration of
plasma membrane cholesterol by filipin resulted in
reduced endocytosis of these proteins. It is unclear
whether fluid phase cargo like dextrans, representing large
scale endocytosis, which is a characteristic feature of
GEECs, is also included in these tubular endosomes.
However, a distinction has emerged between the ARF6-

regulated tubular endosomes [67,68] and GEECs from the
work of Kalia et al. [71]. These researchers have shown
that GEECs capable of endocytosing fluid phase markers,
as well as GPI-APs, are not regulated by ARF6 in CHO cells
and thus represent a completely distinct pathway. Over-
expressed wild type or dominant negative ARF6 was not
co-localized with GEECs and did not affect the delivery of
endocytosed GPI-APs to the recycling endosomes contain-
ing TfR [71]. The acidic nature of the GEECs (pH 6.0, [71])
is also a feature that sets them apart from other endo-
somes like sorting endosomes, and pH neutral caveo-
somes [72]. Also, proteins internalized via the ARF6-
regulated endocytic pathway and clathrin-mediated endo-
cytosis do not enter into a common compartment in HeLa
cells even at later time points (30 minutes) post-endocy-
tosis [70]. Internalization of CD59 is dependent upon
Rab22a activity [70], whereas the endocytosis of GPI-APs
in CHO cells is regulated by Cdc42 [59]. It is therefore
possible that the ARF6 regulated pathway, although cho-
lesterol-dependent, represents a distinct pathway from
that described by Sabharanjak et al in CHO cells. Alterna-
tively, existence of multiple endocytic pathways may be a
cell-type specific feature, and these studies reflect the
inherent differences between HeLa (epithelial) and CHO
(fibroblasts) cells in maintaining membrane flux. It
would be interesting to understand whether these differ-
ences are instrumental in regulating physiological
responses in various cell types. Also, the cholesterol
sequestration methods used in these studies are different.
Using metabolic inhibitors of cholesterol synthesis like
statins is expected to reduce the overall levels of choles-
terol in cells but would presumably not perturb the inher-
ent distribution patterns of cholesterol in various cell
membranes as well as in lateral membrane inhomogenei-
ties. Filipin, on the other hand, binds to cholesterol in the
plasma membrane and it is yet unclear whether this proc-
ess in itself disrupts the partitioning of plasma membrane
cholesterol between raft-associated and free cholesterol.

Endocytosis of uPAR
Urokinase type plasminogen activator (uPA) is an essen-
tial component of the plasmin generation system. Plas-
min is a protease that facilitates cell mobility by digesting
the integrin family of anchoring and adhesion proteins
([73], reviewed in [74]). uPA activity is in turn regulated
by its inactivators, plasminogen activator inhibitors-1 and
-2 (PAI-1 and -2, also referred to as serine protease inhib-
itors or serpins) [11]. uPA bound with PAI-1/2 or serpins
is then sequestered by the GPI-anchored uPA receptor
(uPAR)[11]. uPAR, thus bound to a ligand complex, has
been shown to interact with the LDL-receptor related pro-
tein (LRP) [75]. Unoccupied uPAR is diffusely distributed
on the cell surface, however, lateral interactions between
uPAR and LRP mediated by the D3 domain of uPAR result
in the inclusion of uPAR into early endosomes derived
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from the clathrin-coated pits [75]. The endocytosis of
uPAR is thus directed by its association with another
transmembrane protein. uPAR has also been shown to
exist in dimer form in the basal membrane of HEK293
cells [76]. Using functional uPAR- and -EGFP or -RFP chi-
meras with FCS and FRET analyses, Caiolfa et al have
shown that uPAR exists in monomeric as well as dimeric
forms in the apical as well as the basal membrane with the
dimeric form prominent in the basal membrane [76]. The
dimerization is induced by the interactions of uPAR with
vitronectin present in the extracellular matrix. The endo-
cytosis of uPAR stimulated by the binding of uPA:PAI1
complex results in disengagement of the dimers into
monomers that are endocytosed by binding to LRP [76].
This data re-emphasizes the effect of lateral interactions of
GPI-APs with other membrane resident proteins and their
influence on endocytosis of GPI-APs. Endocytosis of
uPAR triggered by PAI-1 activity also results in disengage-
ment of uPAR from interactions with fibronectin and
integrins resulting in loss of cell adhesion [77]. It would
be interesting to note whether other membrane lipids are
instrumental in maintaining the flux of uPAR between the
dimer and monomer fractions in a manner similar to that
seen for raft-associated GPI-APs.

uPAR bound to uPA is known to interact with α5β1
integrin as well as EGFR and thereby facilitate signal trans-
duction via phosphorylation of focal adhesion kinase
(FAK) and EGFR (reviewed in [11] and [78]). The down-
stream effectors of these signaling events then facilitate
cell migration [78]. Gangliosides seem to moderate these
interactions in an interesting manner. Squamous carci-
noma cells (SCC12), showed increased mobility in
scratch as well as chemotaxis-induced migration assays
post-stimulation with uPA, when these cells were
depleted of gangliosides [79]. Conversely, increased levels
of gangliosides GT1b and GM3 reduced the mobility of
cells when challenged with uPA. Significantly, increased
levels of GT1b also blocked the phosphorylation of FAK,
which is normally facilitated by the interaction of
uPa:uPAR with α5β1 integrin. Likewise, increased levels of
GM3 inhibited phosophorylation of EGFR when cells
were stimulated with uPA [79]. These results show that
GT1b and GM3 are capable of disrupting the interactions
of uPAR with α5β1and of the uPAR: α5β1complex with
EGFR [79]. It may be envisaged that the presence of uPAR
in plasma membrane inhomogeneities can be influenced
by the plasma membrane levels of gangliosides. uPAR
present in cholesterol-sphingolipid organized rafts would
presumably be incapable of interacting with α5β1 integrin
and EGFR. Thereby the rafts would serve as a regulatory
sequestering mechanism that governs uPA-mediated
transmembrane signaling and chemotaxis events. Alterna-
tively, the aggregation of uPAR into rafts may also cause
the endocytosis of these receptors into GEECs, or similar

endosomes in other cell systems, thereby preventing uPA-
induced cell motility.

It is unclear whether uPAR can be endocytosed via GEECs
(or similar CDC42-regulated endocytic pathways) when
cellular levels of gangliosides, and possibly cholesterol,
are elevated (see Figure 1). However the existence of such
a mechanism is possible. The inclusion of GPI-APs into
laterally-organized membrane rafts seems to facilitate not
just endocytosis but modulation of cell surface events, like
receptor engagement and signal transduction. Engage-
ment of uPAR:uPA complexes with PAI-1 also results in
disengagement of uPA:uPAR and vitronectin [77], leading
to a loss of anchorage and increased mobility of cells. It is
unclear whether these functions of uPAR are also modu-
lated by cholesterol and sphingolipid levels in the plasma
membrane but it would be interesting to examine these
phenomena, especially in metastatic cells.

Given that cellular lipids can modulate the signaling inter-
actions of uPA:uPAR complexes, it is likely that raft-facili-
tated endocytosis of uPAR may serve as spatial-temporal
regulatory mechanism to control cellular signaling events.

Endocytosis of Prion Proteins
Cell surface resident prion proteins were shown to traffic
through endocytic intermediates and this step was shown
to be necessary for conversion of PrPC to PrPSc [22]. In
N2A neuroblastoma cells, transfected chicken PrP (chPrP)
was shown to be endocytosed in endocytic structures that
also showed uptake of a fluid phase marker [80]. Clathrin-
coated pits were shown to be instrumental in the endocy-
tosis of chPrP, since the endocytosis of prion proteins was
shown to be inhibited by treatment with hypertonic
medium [81]. This is in contradiction with the endocytic
pathway demonstrated for the endocytosis of FR-GPI [59],
where the fluid phase filled endosomes were shown to be
distinct from those derived via clathrin-coated pits.

Prion protein endocytosis is also stimulated by binding of
cupric (Cu2+) ions to the extracellular domain [82]. Cop-
per-binding stimulated the endocytosis as well as recy-
cling of GPI-anchored prion proteins for a sustained
period (60 min.), indicating that perhaps the prion pro-
teins act as receptors for Cu2+ and facilitate its cellular
uptake. Quite noticeably, mutant prion proteins incapa-
ble of binding copper or zinc ions are not endocytosed
[83]. Mutations in the copper binding octarepeats of the
sequence PHGG(G/S)WGQ results in loss of copper-bind-
ing sites as well as reduction in copper-induced endocytic
trafficking of prion proteins [83].

Furthermore, endocytosis of prion proteins was found to
be dependent upon dynamin and to occur independently
of co-expressed GFP-GPI [84]. In co-transfected SN56
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cells, dynamin K44A mutant expression reduced the
endocytosis of PrPc whereas GFP-GPI was endocytosed
into recycling endosomes despite an over-expression of
dominant-negative dynamin. Co-localization of PrPc with
GFP-Rab5-Q79L in early endosomes suggested that these
proteins are internalized via the clathrin-coated pit-
derived dynamin-dependent endocytic processes. GFP-
GPI is seen to be endocytosed and trafficked to the recy-
cling endosomes despite the expression of Rab5-Q79L.
These results propose that additional factors may influ-
ence the endocytosis of PrPC and the GPI-anchor itself
may not be a sole deterministic factor.

The existence of a potential cell surface receptor, a 66kD
protein, for PrPc has been suggested from complementary
hydropathy studies [85]. Recently, the LDL-receptor-
related protein (LRP-1) has been shown to act as a recep-
tor for PrPc [86-88]. These results are in concord with the
fact that cellular or over-expressed prion proteins are
found in transferrin and Rab5 positive early endosomes,
explaining the differences in the endocytic trafficking of
other GPI-APs like FR-GPI and GFP-GPI [59,84]. How-
ever, these results contradict earlier experiments with
transmembrane anchored prion proteins [25,89] wherein
conversion to the infectious and neurodegerative scrapie
isoform was prevented when the GPI-anchor was replaced
with transmembrane anchoring sequences that directed
the chimeric protein(s) to be internalized via clathrin-
coated pits.

It is possible that the endocytic compartments involved in
prion protein mediated copper uptake may be distinct
from those that are involved in the conversion of cellular
prion proteins to the scrapie isoform. Alternatively, the

Figure 1

Schematic visualization of endocytic routes adopted by vari-ous GPI-Anchored proteins and other endocytic markersFigure 1
Schematic visualization of endocytic routes adopted 
by various GPI-Anchored proteins and other endo-
cytic markers. A) Various membrane resident proteins and 
lipids like FR-GPI, prions, LRP, uPAR, cholesterol, sphingolip-
ids and cholera-toxin bound to GM1 are present in a diffuse 
distribution in the plasma membrane. B) GPI-APs like FR-GPI 
align with cholesterol and sphingolipids to form lateral aggre-
gates termed as rafts. uPAR and prion proteins, although 
GPI-anchored, interact with LRP and are endocytosed into 
the clathrin-coated pits. The interaction of the protein 
domains of uPAR and Prion with LRP seems to override the 
influence of the lateral segregation into rafts mediated by the 
GPI-anchor of these proteins. LRP has signal sequences in the 
cytoplasmic domain for recruitment into clathrin-coated pits. 
C and D) Raft-included markers like FR-GPI and cholera 
toxin bound to GM1 are endocytosed into GEECs whereas 
uPAR:LRP and prion;LRP complexes are endocytosed into 
vacuoles derived from clathrin-coated pits.
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cell surface organization of prion proteins into choles-
terol-sphingolipid domains (rafts) may influence the
endocytic pathway and thereby the decision to be con-
verted to the disease-inducing isoform(s). Since lateral
interactions with LRP-1 would necessitate that prion pro-
teins be organized in monomers (or cause a dissociation
of raft included multimers), internalization into the clath-
rin-mediated endocytic pathway would possibly preclude
lateral interactions between PrPC and PrPSc. It is likely that
GPI-anchored prion proteins organized into lipid raft-
included multimers may get internalized into acidic com-
partments similar to FR-GPI. These endosomes being
acidic (pH ~6.0) may be the sites for the conformational
changes responsible for conversion of PrPcinto PrPSc as
can be seen from in vitro conformational change studies
[90,91]. Since protein-protein interactions between the
PrPC and PrPSc isoforms can possibly be facilitated by mul-
timeric organization into cholesterol-sphingolipid
ordered rafts and inclusion into acidic endosomes, it is
likely that GEEC-like endosomes may be the sites for this
conversion. Inclusion into the clathrin-coated pit pathway
stimulated by the binding of the metal cations Cu2+ and
Zn2+ may actually serve to be a disease preventive mecha-
nism by promoting the dissociation of multimeric prion
proteins into monomers. These hypotheses need to be
evaluated in vivo using biophysical techniques to identify
raft-associated and monomeric species of prion proteins.

A comparison of the endocytic pathway followed by PrPC

and PrPSc by simultaneous visualization of both proteins
would probably shed some light on the endocytic destina-
tions of these proteins. Differential regulation of endo-
cytic pathways in various cell types can also account for
the observed differences in endocytic trafficking of prion
proteins. It is unclear whether all endocytic pathways

remain active in all cell types, especially in terminally dif-
ferentiated cell types such as neurons.

Possible Areas for Future Research
A summary of the endocytic mechanisms of membrane
markers examined in this review is presented in Table 1.
Further characterization of GEECs in multiple cell types
may provide some answers to the ongoing debate regard-
ing existence of multiple endocytic pathways for GPI-APs.
An existing hypothesis is that the sorting of endocytosed
GPI-APs is dependent on its raft association time that is in
turn determined by the raft-lipid composition. Fivaz et al
have proposed a model wherein GPI-APs associated with
fluid-domain preferring rafts most likely exit early endo-
somes quickly and are recycled, while those associated
with more rigid raft domains are slowly passed into late
endosomes and subsequently degraded [92]. Thus sorting
fate of GPI-APs will likely be dependent on cell-type and
other physiological conditions that control lipid compo-
sition of raft domains. Since endosomal systems can vary
in cell types, it is problematic to arrive at a single unified
pattern of trafficking of GPI-APs.

Cellular sphingolipids and cholesterol have been shown
to play a major role in the endocytic processes of GPI-APs.
In human diseases wherein sphingolipid storage is aber-
rant concomitant redistribution cholesterol in affected
cells is manifested, which in turn leads to altered GPI-AP
endocytosis and distribution [93].

Recent work by Lundmark et al suggests that the protein
GTPase regulator associated with focal adhesion kinase-1
(GRAF1) could be a major non-cargo marker as well as
regulator for clathrin-independent endosomes such as
GEECs in HeLa cells [94]. Over-expression of a dominant
negative form of GRAF1 reduced the amount of GFP-GPI

Table 1: Summary of endocytic routes of membrane proteins and lipids.

Protein Invagination Endocytic partners Motor proteins Cell type Ref

FR-GPI GEECs Cholesterol and sphingolipids CDC42 CHO cells [59]

chPrPC Clathrin-coated pits LRP 1 and Cu2+ Dynamin N2A [81,84]

Transferrin Clathrin-coated pits ND Dynamin CHO [59]

GFP-GPI Presumably GEECs, distinct from 
clathrin coated pits

Presumably Cholesterol and 
sphingolipids

ND SN56 [84]

CT-B GEECs Presumably CDC42 Cav-1null mouse fiborblasts [64]

CD59 Tubular endosomes ARF6 and Rab22a HeLa [70]

uPAR Clathtrin coated pits LRP Dynamin Normal Rat Kidney (NRK) 
and HT1080

[75]
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endocytosed in these cells. GRAF1 may be an important
regulator of membrane curvature in these structures.
Future analysis of such regulatory factors will provide fur-
ther clarification of endocytic mechanisms controlling the
endocytosis of GPI-APs and other dependent physiologi-
cal events like cellular signaling.

Is the sorting of membrane segments mutually exclusive?
Assuming an unbiased cell surface distribution of all
membrane resident proteins, it is theoretically valid to
assume that LRP and LRP-1 may be included in choles-
terol-sphingolipid organized rafts for some time on the
cell surface. However, during internalization of these pro-
teins as well as uPAR and prion proteins bound to them
respectively, the peptide signal in the cytoplasmic tail for
clathrin recruitment would be a more dominant factor
than the interactions with laterally-situated cholesterol
and sphingolipids. Therefore it can be safely assumed that
LRP and LRP-1 cannot be endocytosed via the GEECs.
Moreover, conditions that inhibit clathrin-coated pit-
mediated endocytosis inhibit the endocytosis of prions
(and therefore LRP-1) but not of co-transfected GFP-GPI
[84].

Conversely, GPI-APs which span only the extracellular
leaflet of the plasma membrane are likely to leave the rafts
and can possibly be endocytosed via clathrin-coated pits.
However, cellular and physiological evidence goes against
this assumption. Quantification of endocytosed FR-GPI
and TfR fluorescence shows that a large fraction of FR-GPI
is not co-localized with TfR at 2 minutes post-internaliza-
tion [59]. This ratio is significantly reduced (showing
more co-localization of the two proteins) only when cel-
lular cholesterol is depleted metabolically. Nonetheless,
absorption of folate into the cytoplasm is significantly
compromised in cholesterol-depleted cells, which indi-
cates that the monomeric form or GPI-anchored folate
receptor may not be the default state of these proteins in
living cells [95].

Prion proteins directed towards clathrin coated pits are
not capable of forming amyloid plaques whereas GPI-
anchored prions do result in amyloid plaques in an endo-
cytic compartment, sensitive to cholesterol depletion and
chloroquine [25]. Likewise, the folate transport function
of transmembrane-anchored FR is not regulated in the
same manner to FR-GPI [18].

Although the endocytosis of monomeric GPI-APs via
clathrin-coated pits cannot be ruled out absolutely with
the state-of-the-art evidence, the functional correlates
argue against this mechanism as being the dominant one
for endocytosis of "raft-included" GPI-APs. Since choles-
terol-sphingolipid ordered rafts are dynamic structures, it
has been extremely difficult to establish distinct popula-

tions of raft-organized multimers and monomers of GPI-
APs in living cells, visible at the resolution limit of light
microscopy. That said, the differences in the morpholo-
gies of the two populations of endosomes in living cells
suggest that the membrane deformation required to form
the tubular GEEC invaginations can possibly be induced
by the coalescence of cholesterol-sphingolipid ordered
rafts. Clathrin-coated pits, on the other hand, are formed
from the selective interaction of clathrin and other associ-
ated proteins with membrane segments containing mem-
brane-spanning proteins with clathrin-recruitment signal
sequences. The inherent differences in the mechanisms of
these endocytic processes sufficiently indicate exclusion of
cholesterol-sphingolipid ordered rafts from clathrin-
coated pits and of LRP-1 from GEECs. As further support
of this, Nichols [96] has demonstrated the exclusion of
lipid rafts from clathrin-coated pits. It has been found that
the cholesterol-dependent association of glycosphingoli-
pid (GM1) labeled with cholera toxin B subunit did not
internalize within clathrin-coated pits.

Biochemical isolation of GEECs has not been achieved
yet. Membrane fragment isolation techniques are always
subject to contamination from other internal membrane
systems, and therefore any claims about lipid composi-
tion of selective membrane fragments becomes a contro-
versial exercise. It may be possible to isolate GEECs by
inhibiting clathrin-mediated endocytosis and then puls-
ing the cells with a fluorescent, non-cross-linking GPI-AP
ligand for a short time to achieve selective labeling of
GEECs to help isolation. However, to the best of our
knowledge, this has not been achieved as yet.

Conclusion
The significance of understanding the membrane organi-
zation and endocytic pathways of GPI-APs cannot be
overstated. Recent research into the endocytosis of various
GPI-APs has shown that the cell surface organization of
GPI-APs into monomers or multimers may directly influ-
ence their endocytic pathways and intracellular destina-
tions.

Since GPI-APs can participate in complex, multivalent lig-
and receptor interactions such as the serpin-uPA:uPAR
[75,76,79], these complexes can also possibly influence
the cell surface distribution and therefore perhaps the
intracellular trafficking and destinations of GPI-APs.
Internalization of naturally cross-linked GPI-APs (bound
to ligand complexes as well as internalization partners) is
a significant event in cellular physiology. However, it is
essential to understand and differentiate between endocy-
tosis of un-cross-linked and native GPI-APs in their own
context. Given that cellular lipids can modulate the sign-
aling interactions such as that of uPA:uPAR complexes, it
is likely that raft-facilitated endocytosis of GPI-APs may
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serve as a spatial-temporal regulatory mechanism to con-
trol cellular signaling events. Furthermore, GPI-APs may
display interactions which are mediated by their protein
domains capable of contribute to their endocytic fate,
such as uPAR and prions with LRP and LRP-1 [75,86-88].
It is imperative to understand that various GPI-APs may
follow distinct endocytic mechanisms at the cell surface
and endosomal pathways in various cell types and under
different physiological conditions. For GPI-APs like FR
and GFP-GPI, their existence into monomers or raft-
ordered multimers is solely dependent upon the GPI-
anchor. Although the distribution of such GPI-APs is
likely to be weighted towards the raft-ordered multimers,
monomeric species may be included into clathrin-coated
pits. Recent research indicates the functional significance
of the chosen endocytic route and demonstrates the sort-
ing capabilities of the plasma membrane. These events
may have profound effects in cellular physiology such as
initiation of metastasis in cancers and onset of neurode-
generative disorders.
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