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Abstract

AChE inhibitors.

are highly selective for its dual binding sites.

Background: Alzheimer's disease (AD) is the most common cause of dementia characterized by progressive
cognitive impairment in the elderly people. The most dramatic abnormalities are those of the cholinergic system.
Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system, and hence, inhibition of
AChE has emerged as one of the most promising strategies for the treatment of AD.

Methods: In this study, we suggest a workflow for the identification and prioritization of potential compounds
targeted against AChE. In order to elucidate the essential structural features for AChE, three-dimensional
pharmacophore models were constructed using Discovery Studio 2.5.5 (DS 2.5.5) program based on a set of known

Results: The best five-features pharmacophore model, which includes one hydrogen bond donor and four
hydrophobic features, was generated from a training set of 62 compounds that yielded a correlation coefficient of
R = 0851 and a high prediction of fit values for a set of 26 test molecules with a correlation of R* = 0.830. Our
pharmacophore model also has a high Glner-Henry score and enrichment factor. Virtual screening performed on
the NCI database obtained new inhibitors which have the potential to inhibit AChE and to protect neurons from
AB toxicity. The hit compounds were subsequently subjected to molecular docking and evaluated by consensus
scoring function, which resulted in 9 compounds with high pharmacophore fit values and predicted biological
activity scores. These compounds showed interactions with important residues at the active site.

Conclusions: The information gained from this study may assist in the discovery of potential AChE inhibitors that

Background

Acetylcholinesterase (AChE), one of the most essential
enzymes in the family of serine hydrolases, catalyzes the
hydrolysis of neurotransmitter acetylcholine, which plays
a key role in memory and cognition [1-3]. While the
physiological role of the AChE in neural transmission
has been well known, it is still the focus of pharmaceuti-
cal research, targeting in treatments of myasthenia
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gravis, glaucoma, and Alzheimer’s disease (AD). It has
been elucidated that cholinergic deficiency is associated
with AD [4]; therefore, one of the major therapeutic
strategies is to inhibit the biological activity of AChE,
and hence, to increase the acetylcholine level in the
brain. Currently, most of the drugs used for the treat-
ment of AD are AChE inhibitors, including the synthetic
compounds tacrine, donepezil, and rivastigmine, which
have all been proven to improve the situation of AD
patients to some extent. So far, the four drugs that have
been approved by the Food and Drug Administration
(FDA) to treat AD in the US are tacrine, rivastigmine
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(E2020), donepezil, and galanthamine, which all have
some success in slowing down neurodegeneration in AD
patients.

In the past decade, it has been found that AChE is
involved in pathogenesis of AD through a secondary
noncholinergic function associated with its peripheral
anionic site. Recent findings support the enzyme’s role
in mediating the processing and deposition of A pep-
tide by colocalizing with AB peptide deposits in the
brain of AD patients and promoting AP fibrillogenesis
through the formation of stable AChE-Af3 complexes.
The formation of these complexes promotes AP aggre-
gation as an early event in the neurodegenerative cas-
cade of AD [5,6] and results in cognitive impairment in
doubly transgenic mice expressing human amyloid pre-
cursor protein (APP) and human AChE [7,8]. Based on
these new findings, the recent design of novel classes of
ACHhE inhibitors as therapeutic intervention for AD has
been shifted toward blocking the peripheral site of
AChE, the AP recognition zone within the enzyme [9],
thereby affect the AChE-induced AP aggregation and
thus, modulate the progression of AD.

X-ray structures of AChE co-crystallized with various
ligands [10-14] provided insights into the essential struc-
tural elements and motifs central to its catalytic
mechanism and mode of acetylcholine (ACh) processing.
One of the striking structural features of the AChE
revealed from the X-ray analysis is the presence of a
narrow, long, hydrophobic gorge which is approximately
20 A deep [15,16]. The enzyme has a catalytic triad con-
sisting of Ser203, His447, and Glu334 [17] located in the
active site of the narrow deep gorge, the lining of which
contains mostly aromatic residues that form a narrow
entrance to the catalytic Ser203 [16]. A peripheral anio-
nic site (PAS) comprising another set of aromatic resi-
dues Tyr72, Tyr124, Trp286, Tyr341, and Asp74 [18] is
located at the rim of the gorge and provides a binding
site for allosteric modulators and inhibitors. The inter-
action between highly potent inhibitors, such as tacrine
and donepezil, and the enzyme is characterized by
cation-t interactions between the protonated nitrogens
and the conserved aromatic residues, tryptophan
(Trp86) and phenylalanine (Phe337). Moreover, -1t
stacking between the aromatic moieties of the inhibitors
and the aromatic amino acids mentioned above, as
well as ion-ion-interactions between the protonated
nitrogens of the inhibitors and the anionic aspartic acid
(Asp72) all play crucial roles in ligand binding [15].
Most ligands, as observed from their crystal structures,
are located at the bottom of the gorge that forms a wide
hydrophobic pocket base, although larger ligands such
as decamethonium [10] and donepezil [19] extend to
the mouth of the gorge, the opening of the hydrophobic
pocket.
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The drug discovery process is both time-consuming
and expensive [20] yet new drugs are required to satisfy
the numerous unmet clinical needs in many disease
indications. The number of potential target 3D struc-
tures is increasing in the Protein Data Bank (PDB) [19]
and the number of drug/lead-like compounds is
estimated to be at least 10%* [21]. Therefore, to deal
with such a large amount of data and to facilitate the
drug discovery process, in silico virtual screening and
computer-aided drug design have become increasingly
important [22]. Virtual screening provides an inexpen-
sive and fast alternative to high-throughput screening
for discovering new drugs. The binding of ligand to
receptor is driven in part by shape complementarity and
physicochemical interactions. One of the virtual screen-
ing approaches is to develop a pharmacophore query
from an inhibitor, which describes the spatial arrange-
ment of a group of essential structural features common
to a set of compounds that are critical to interacting
with the receptor. The pharmacophore approach is
applied in drug design and takes in consideration that
molecules are active at the receptor binding site because
they possess both a number of chemical features that
favor the target interaction site and are geometrically
complementary to it. A good pharmacophore model col-
lects important common features of molecules distribu-
ted in the 3D space and provides a rational hypothetical
conformation of the primary chemical features responsi-
ble for activity; therefore, it has become an important
method and has proven extremely successful not only in
demonstrating structure-activity relationships, but also
in the development of new drugs [23,24].

Providing that the experimentally determined high-
resolution 3D structure of the target is available, ligand-
based drug design can be performed in association with
molecular docking, a structure-based method, and
underlying scoring functions to reproduce crystallo-
graphic ligand-binding modes. These methods can be
combined to identify a number of new hit compounds
with potent inhibitory activity and to understand the
main interactions at the binding sites. It is believed that
the concurrent use of molecular docking and consensus
scoring functions could readily minimize false positive
and false negative errors encountered by ligand-based
(pharmacophore) virtual screening. In addition, the
complementation of molecular docking and pharma-
cophore can produce reliable true positive and true
negative results in the subsequent virtual screening pro-
cedure. The appropriate use of these methods in a drug
discovery process should improve the ability to identify
and optimize hits and confirm their potential to serve as
scaffolds for producing new therapeutic agents.

In this study, we developed both qualitative and quanti-
tative pharmacophore models based on AChE inhibitors
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collected from the same laboratory [25-33]. The pharma-
cophore features were used to identify potent AChE inhi-
bitors as well as to clarify the quantitative structure-
activity relationship for previously known AChE inhibi-
tors. The best quantitative model was used as 3D search
queries for screening the NCI databases to identify new
inhibitors of AChE that can block both the catalytic and
peripherical anionic sites. Blocking the daul-binding sites
has the advantages of both preventing the degradation of
acetylcholine in the brain and inhibiting the pro-aggregat-
ing effect of AChE, thus, protect neurons from Af
toxicity. Once identified, the hit compounds were subse-
quently subjected to filtering by molecular docking to
refine the retrieved hits. The virtual screening approach,
in combination with pharmacophore modeling, molecular
docking, and consensus scoring function can be used to
identify and design novel AChE inhibitors with higher
selectivity. The potential hit compounds obtained from
this study can be further evaluated by in vitro and in vivo
biological tests.

Methods

Data preparation

Pharmacophore modeling correlates activities with the
spatial arrangement of various chemical features in a set
of active analogues. The 88 AChE inhibitors in this
study were collected from nine publications reported by
the same laboratory [25-33], which employed similar
experimental conditions and procedures to obtain bioac-
tivity data for the compounds. The in vitro bioactivities
of the collected inhibitors were expressed as the concen-
tration of the test compounds that inhibited the activity
of AChE by 50% (IC50). These values are generally
transformed into pIC50 (-log IC50) as an expression of
drug potency. Additional files 1 and 2 (Tables S1 and
S2) show the structures, IC50 and pIC50 values of the
inhibitors considered for this study. Among these sets,
62 diverse compounds whose binding affinities (IC50
values) ranged from 0.00106 pM to 80.5 pM (over six
orders of magnitude) were selected as the training set
(Additional file 1: Table S1); while the remaining 26
molecules served as the test set (Additional file 2: Table
S2). The training set molecules play an important role
in determining the quality of the pharmacophore models
generated; while the test set compounds serve to evalu-
ate the predictive ability of the resultant pharmaco-
phore. Both sets of molecules must have large range of
activities to obtain critical information on the pharma-
cophoric requirements for AChE inhibition.

The two-dimensional (2D) chemical structures of
these acetylcholinesterase inhibitors (AChEIs) were
sketched using CS ChemDraw Ultra (Cambridge Soft
Corp., Cambridge, MA) and saved as MDL-molfile for-
mat. Subsequently, they were imported into Discovery
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Studio Version 2.5.5 (DS 2.5.5, Accelrys Inc., San Diego,
CA) and converted into the corresponding standard
three-dimensional (3D) structures. Molecular flexibility
of compounds is modeled by making multiple confor-
mers within a specific energy range. A maximum of 250
conformers for each compound were generated by the
“Best quality” conformational search option based on
the CHARMm force field [34], with an energy threshold
of 20 kcal/mol from the lowest energy level. Default set-
tings were kept for the other parameters.

Pharmacophore model generation

Two different methods were applied for the ligand based
pharmacophore model: HipHop and HypoGen. HipHop
is generated based on the common features present in
the training set molecules. HypoGen [35], an algorithm
that uses the activity values of the small compounds in
the training set to generate the hypothesis, was applied
in this study to build the 3D QSAR pharmacophore
models using DS V2.5.5 software. An automated 3D
QSAR pharmacophore was created by using the activity
values of compounds in the training set that includes at
least 16 molecules with bioactivities spanning at least
over four orders of magnitude. The wide range of bioac-
tivities in the training set allowed for the screening of
large database. The DS Feature Mapping module com-
puted all possible pharmacophore feature mappings for
the selected chemical features of the training set mole-
cules. A minimum of 0 to a maximum of 5 features
including hydrogen-bond acceptor (HBA), hydrogen-
bond donor (HBD), hydrophobic (HBic), and ring aro-
matic (RingArom) features were selected in generating
the quantitative pharmacophore model. A value of 3
was employed as the uncertainty value, which means
that the biological activity of a particular inhibitor is
assumed to be located somewhere in the range three
times higher to three times lower of the true value of
that inhibitor [35-38]. Ten pharmacophore models with
significant statistical parameters were generated. The
best model was selected on the basis of a highest corre-
lation coefficient (R), lowest total cost and root mean
square deviation (rmsd) values (for more details on cost
values, see Ref. [39]). From the pharmacophore models
generated, the relationship between the structures of
the training set compounds and their experimentally
determined inhibitory activities against AChE was
investigated.

Validation of the pharamacophore model

The pharmacophore models selected by correlation
coefficient and cost analysis were then validated in three
subsequent steps: Fischer’s randomization test, test set
prediction, and Giiner-Henry (GH) scoring method
[40-42]. First, cross validation was performed by
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randomizing the data using the Fischer’s randomization
test. Then, a test set of 26 diverse compounds with
AChE inhibitory activity was selected to validate the
best pharmacophore model. The test set covers similar
structural diversity as the training set in order to estab-
lish the broadness of the pharmacophore predictability.
All queries were performed using the Ligand Pharmaco-
phore Mapping protocol. The GH scoring method was
used following test set validation to assess the quality of
the pharmacophore models. The GH score has been
successfully applied to quantify model selectivity preci-
sion of hits and the recall of actives from a 3,606 mole-
cule dataset consisting of known actives and in-actives.
Of these molecules, 66 structurally and pharmacologi-
cally diverse compounds are known inhibitors of AChE
that were selected from four publications [43-46]. While
the other 3,540 molecules were from the previously
published directory of useful decoys (DUD) dataset [47].
The DUD database, which is available for public use,
was generated based on the observation that physical
characteristics of the decoy background can be used for
the classification of different compounds. DUD was
downloaded from http://dud.docking.org (accessed July
17, 2010).

The GH scoring method was applied to the previously
mentioned 66 known inhibitors of AChE and the DUD
dataset molecules to validate the pharmacophore mod-
els. The method consists of computing the following:
the percent yield of actives in a database (%Y, recall),
the percent ratio of actives in the hit list (%A, precision),
the enrichment factor E, and the GH score. The GH
score ranges from 0 to 1, where a value of 1 signifies
the ideal model.

The following is the proposed metrics for analyzing
hit lists by a pharmacophore model-based database
search [40-42]:

H
%A = —2 %100
A

%Y:Exloo
Ht
= Ha/Ht
A/D
GH = Ha(3A + Ht) 1- Ht - Ha
4HtA D-A

%A is the percentage of known active compounds
retrieved from the database (precision); Ha, the number
of actives in the hit list (true positives); A, the number of
active compounds in the database; %Y, the percentage
of known actives in the hit list (recall); Ht, the number
of hits retrieved; D, the number of compounds in the
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database; E, the enrichment of the concentration of
actives by the model relative to random screening with-
out any pharmacophoric approach and GH is the Guiner-
Henry score.

Virtual screening

Virtual screening, an in silico tool for drug discovery,
has been widely used for lead identification in drug dis-
covery programs. Virtual screening methods are gener-
ally divided into ligand-based virtual screening and
structure-based virtual screening. Pharmacophore-based
database searching is considered a type of ligand-based
virtual screening, which can be efficiently used to find
novel, potential leads for further development from a
virtual database. A well-validated pharmacophore model
includes the chemical functionalities responsible for
bioactivities of potential drugs, therefore, it can be used
to perform a database search by serving as a 3D query.
The best pharmacophore Hypol was used as a 3D
structural query for retrieving potent molecules from
the NCI chemical database. For each molecule in the
database, the fast conformer generation method pro-
duced 250 conformers with a maximum energy toler-
ance of 20 kcal/mol above that of the most stable
conformation.

The compounds were first filtered by Lipinski’s “Rule
of five” that sets the criteria for drug-like properties.
Drug likeness is a property that is most often used to
characterize novel lead compounds [48] by screening of
structural libraries. According to this rule, poor absorp-
tion is expected if MW > 500, log P > 5, hydrogen bond
donors > 5, and hydrogen bond acceptors > 10 [49].
Secondly, a molecule that satisfied all the features of the
pharmacophore model used as the 3D query in database
searching was retained as a hit. Two database searching
options such as Fast/Flexible and Best/Flexible search
are available in DS V2.5.5. Of these two, the “Best/Flex-
ible search” yielded better results during database
screening, therefore, we performed all database search-
ing experiments using the “Best/Flexible search” option.
Setting the “Maximum Omitted Features” option to
zero, the best pharmacophore model was used to screen
the databases for those compounds that fit all five fea-
tures of the pharmacophore Hypol. The calculations of
fit values were based on how well the chemical sub-
structures match the location constraints of the pharma-
cophoric features and their distance deviation from the
feature centers. High fit values indicate good matches.
The maximum fit value was set based on the fit value of
the original ligands used to create the pharmacophore
models. Those hit compounds that passed all of the
screening tests were taken for further molecular docking
study.
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Molecular docking

The DOCK protocols used in this study were the proce-
dures described in our laboratory, and the methodology
for their preparation has been previously studied
(unpublished results). Crystal structure of AChE (PDB
code: 1B41) [50], downloaded from the protein databank
(PDB) [19], was used for the study. The solvent mole-
cules were removed and hydrogen atoms were added to
the protein using DS V2.5.5. Structure-based docking of
88 minimized AChE inhibitors and hits/leads from vir-
tual screening to the active site of AChE was carried out
using the LibDock program [51], which is an extension
of the software DS V2.5.5. The active site was defined as
the region of AChE that comes within 12 A from the
geometric centroid of the ligand. Default settings for
small molecule-protein docking were used throughout
the simulations. Top 50 poses were collected for each
molecule with the best docked score value associated
with a favorable binding conformation compared to the
co-crystallized inhibitor being considered as having bio-
logical activity.

Results

Construction of pharmacophore model

Before the start of pharmacophore modeling, we col-
lected a total of 88 AChE inhibitors from different lit-
erature resources. Of these compounds, 62 were
carefully chosen to form a training set based on wide
coverage of activity range and structural diversity. Struc-
tures and biological activities of the training set com-
pounds are shown in Additional file 1: Table S1. The
remaining compounds were included in the test set (see
Additional file 2: Table S2). The top ten hypotheses
were composed of HBA, HBD, HBic, and RingArom fea-
tures. The values of the ten hypotheses such as pharma-
cophore features, root-mean-square deviations (rmsd),
correlation (r), cost values, and Fischer confidence levels
showed statistical significance (Table 1).

The best hypothesis Hypol, as shown in Figure 1, is
characterized by the lowest total cost value (289.972),
the highest cost difference (142.57), the lowest RMSD
(1.411), and the best correlation coefficient (R = 0.851).
The fixed cost and null cost are 228.233 and 432.542
bits, respectively. The total cost is low and close to the
fixed cost, as well as being less and differs greatly from
the null cost. All of these evidence indicate that the
model, accounting for all five pharmacophore features:
one hydrogen bond donor (HBD) and four hydrophobic
(HBic), has good predictive ability. Figures 1A and 1B
show the 3D spatial arrangement and distance con-
straints of all HypoGen pharmacophore features in
Hypol. The features of Hypol (HBD and HBic) were
mapped onto the most active compound of the training
set (compound 7) shown in Figure 1C. One of the low
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active compound in the training set (compound 44) was
mapped partially by the features of Hypol (Figure 1D).
Clearly, all features in the hypothesis are mapped very
well with the corresponding chemical functional groups
on compound 7, while three features (i.e. one hydrogen-
bond donor and two hydrophobic features) are not
mapped to any functional group on compound 44. The
results of our pharmacophore study appear to validate
the Hypol model to some extent.

Model validation

The pharmacophore model constructed in this study
was primarily validated to check for the best model that
can identify the active compounds in a virtual screening
process. The three steps of validation include Fischer’s
randomization test method, correlation of the experi-
mental activity and the estimated fit values of the test
set, and Giiner-Henry (GH) scoring method.

All hypotheses were then evaluated by cross-validation
using Fischer’s randomization method. Validation was
done by generating 19 random spreadsheets (95% confi-
dence level) for the training set molecules and randomly
reassigning activity values to each compound. The same
method was used for each hypothesis to generate the
random spreadsheets. The cross-validated experiment
confirmed that the hypotheses have 95% significance
and the results are shown in Table 1. The high statisti-
cal significance may be attributed to the significant dif-
ference between the activities of the training set
molecules.

The pharmacophore model should estimate the pre-
dicted fit values of the training set molecules and accu-
rately predict the fit values of the test set molecules.
First, all ten hypotheses were evaluated using a test set
of 26 known AChE inhibitors. Fit values were calculated
using all ten hypotheses and correlated with experimen-
tal activities. The best hypothesis, Hypol, showed a cor-
relation coefficient (R*> = 0.830). The correlation
between the experimentally observed and estimated fit
values for the training set and the test set molecules is
plotted in Figure 2.

Another statistical test method used for validation
includes calculation of false positives, false negatives,
enrichment, and goodness of hit to determine the
robustness of the generated hypotheses. Not only should
the pharmacophore model generated predict the activity
of the training set compounds, but it should also be
capable of predicting the activities of other compounds
as active or inactive. Hypol was used to search the
known AChE inhibitors through database mining by
using the BEST flexible searching technique. The results
were analyzed using the hit list (Ht), number of active
percent of yields (%Y), percent ratio of actives in the hit
list (%A), enrichment factor (E), false negatives, false
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Table 1 The performance of 10 pharmacophoric hypotheses generated by HypoGen for AChE inhibitors
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Hypotheses® Pharmacophoric features in generated RMS Cost Values Residual
hypotheses deviation cost®
Training set (R) Error Weight Total®

1 HBD, 4xHBic 1411 0.851 27024 1170 289972 142.57
2 HBD, 4xHBic 1416 0.850 27073 1338 290.628 141.91
3 HBD, 4xHBic 1419 0.849 27097 1.144 290681 141.86
4 HBD, 4xHBic 1.445 0.843 27331 1419 293293 139.25
5 HBD, 3xHBic, RingArom 1.469 0.836 27544 1.243 295242 137.30
6 HBD, 4xHBic 1474 0.834 27593  1.145 295636 136.91
7 HBD, 4xHBic 1484 0.834 27683 1219 296614 135.93
8 HBD, 4xHBic 1.510 0.827 27920 1.163 298925 133.62
9 HBD, 4xHBic 1514 0.826 27961 1262 299432 133.11
10 HBD, 4xHBic 1.520 0.825 28021 1127 299.899 132.64

? Fischer randomization set at 95% confidence level was performed on all pharmacophore models.

b Correlation coefficient (R) between the experimental activity and the estimated fit values of the training compounds.

 Total costs = error cost + weight cost + configuration cost, where configuration cost = 18.564.

9 Residual cost = null cost - total cost, where null cost = 432.542.

N
(A) (B) U
e

0

(D)

@

Pharmacophore features are color-coded with light-blue for hydrophobic feature and magenta for hydrogen-bond donor.

Figure 1 The best Pharmacophore model (Hypo1) of AChE inhibitors generated by the HypoGen module. (A) Three dimensional (3D)
spatial arrangement and geometric parameters of Hypol and distance between pharmacophore features (A). (B) Best Pharmacophore features
model. (C) Hypol mapping with one of the most active compound 7. (D) Hypol mapping with one of the least active compound 44.
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Estimated Activity
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Figure 2 Plot of the correlation coefficient between experimental activity and estimated fit values by Hypo 1. (A) The training set of 62
compounds (R = 0.851) and (B) the test set of 26 compounds (R* = 0.830).

6 7 8 9 10

positives, and goodness of hit score (GH scoring
method) (Table 2). Hypol succeeded in retrieving 70%
of the active compounds, 22 inactive compounds (false
positives), and predicted 13 active compounds as inac-
tive (false negatives). An enrichment factor of 38.61 and
a GH score of 0.73 indicated the quality of the model

and high efficiency of the screening test. Overall, a
strong correlation was observed between the Hypol pre-
dicted activity and the experimental AChE inhibitory
activity (IC50) of the training and test set compounds
(Figure 2). Fischer’s randomization method also con-
firmed that the hypothesis has 95% significance, and the
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Table 2 Pharmacophore model evaluation based on the
Giiner-Henry scoring method

Serial No. Parameter AChE
1 Total molecules in database (D) 3606
2 Total Number of active in database (A) 66

3 Total Hits (Ht) 75

4 Active Hits (Ha) 53

5 % Yield of actives [(Ha/Ht)x100] 7067
6 9% Ratio of actives [(Ha/A)x100] 80.30
7 Enrichment factor (E) [(HaxD)/(HtxA)] 3861
8 False negatives [A-Ha] 13

9 False positives [Ht-Ha] 22
10 Goodness of hit score® 073

? [(Ha/4HtA)(3AtHt)) x (1-((Ht-Ha)/(D-A))]; GH Score of 0.7-0.8 indicates a very
good model.

GH scoring method showed that the model can accu-
rately screen for compounds with activity. These three
validation procedures provided strong support for
Hypol as the best pharmacophore model.

Database screening

One proficient approach to drug discovery is virtual
screening of molecule libraries [52]. For conducting vir-
tual screening, we used NCI database containing
260,071 compounds (accessed July 17, 2010). These
compounds were first screened for drug like properties
using Lipinski rule of 5 as filter [49]. The remaining
190,239 compounds that passed the screening were
overlaid with the best 3D pharmacophore model
(Hypol) by using the ‘Best Fit’ selection. The top 252
hits with the highest fit values were subsequently ana-
lyzed for binding patterns using docking methods. The
flowchart in Figure 3 is a schematic representation of
the sequential virtual screening process with the number
of hits reduced for each screening step.

Molecular docking studies of AChE

Docking simulation of AChE (PDB Code: 1B41) [50]
and ligands was performed using the LibDock program.
The binding modes for the 252 compounds identified by
virtual screening were ranked according to the informa-
tion obtained by different scoring constraints. The 154
highest scoring compounds were selected from a total of
252 compounds for further evaluation. After visual
inspection, the most favorable compounds with the best
binding modes (exact matching of m-m overlap with resi-
due W86 or -1t overlap with residue W286) and struc-
tural diversity were selected. Based on the knowledge of
the existing AChE inhibitors and the active site require-
ments, we selected 9 compounds from the 252 highest
scoring structures for subsequent bioactivity prediction
and consensus scoring function assay. Information on
the molecular docking experiments and the consensus
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scoring function were taken from a previous study. The
9 hits with the highest binding affinities were ultimately
selected after careful observations, analyses and compar-
isons. The structures of these best hits from the final
screening are reported in Figure 4. The highest pose
scores extracted from the eleven default scoring meth-
ods and the predicted pIC50 values calculated by the
consensus scoring function developed in this study for
all of the 9 best hits are summarized in Table 3. Among
the hits found were some novel structures. The diversity
of the hits demonstrated that the pharmacophore model
was able to retrieve hits with similar features to the
existing AChE inhibitors as well as novel scaffolds.

Discussion

In this work, we first generated a qualitative pharmaco-
phore model to effectively map the critical chemical fea-
tures for AChE inhibitors. The resulting binding
hypotheses were automatically ranked based on their
“total cost” values, which is the sum of the three costs:
error cost, weight cost and configuration cost. As the
root mean square difference between the estimated and
measured biological activities of the training set mole-
cules increases, so does the error cost. Error cost pro-
vides the highest contribution to the total cost [35-38].
HypoGen also calculates the cost of the null hypothesis,
with the assumption that there is no relationship
between the estimated and measured biological activ-
ities. The residual cost (Table 1) is the difference
between the cost of null hypothesis and the total cost.
The larger the difference between the cost of the null
hypothesis and total cost, the greater the likelihood that
the correlation between the fit values and actual activ-
ities is not a random occurrence [35-38]. The 62 train-
ing set molecules were then mapped onto Hypol
resulting in a correlation coefficient of 0.851, which
indicates a good correlation between the actual activities
and estimated fit values (Figure 3).

The best pharmacophore model, Hypol, consists of
five features: one hydrogen bond donor and four hydro-
phobic features. The best quantitative pharmacophore
model was further validated by Fischer’s randomization
test, test set prediction, and Giiner-Henry (GH) scoring
method. Results of Fischer’s randomization test con-
firmed that the generated hypotheses from the training
set are reasonable and that the Hypol pharmacophore
model has been correctly established. The results
obtained by the test set method show good correlation
between the experimental activity and the estimated fit
values (correlation coefficient of R* = 0.830) indicating
that the pharmacophore model predicted molecular
properties well. The results of GH scoring method show
that the model is able to identify the active AChE com-
pounds from the database.
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NCI compound database
260,071 compounds
\ Lipinski rules of five /
\ 190,239 compounds /
\ Pharmacophore filter /
\ 252 compounds /

Molecular Docking
combined with
scoring
function

Figure 3 Schematic representation of virtual screening
protocol implemented in the identification of AChE inhibitors.
.

Combining the best pharmacophore model, docking,
and finally consensus scoring function activity predic-
tion, we were able to perform virtual screening on a
dataset of compounds to identify potential AChE inhibi-
tors and to examine important interactions responsible
for binding to AChE. The interactions of the best two
compounds (NSC659829 and NSC35839) with the active
site of huAChE protein are shown in Figure 5. Figure 6
maps out the interactions between the catalytic gorge of
huAChE and the corresponding AChEIs presented in
Figure 5. The structure activity relationships of the best
hit, NSC659829, against huAChE observed via docking
interactions showed that the oxygen and nitrogen func-
tionalities have strong hydrogen bond interactions with
S$203, G122 and Y124 amino acids present in the active
site of huAChE and thus these groups are essential for
activity. In the active site, the benzyl rings form a m-mn
interaction with the indole ring of W86; while in the
peripheral site (PS), the benzyl ring forms another -t
interaction with the indole ring of W286.

Docking studies of the NSC35839 compound with
huAChE revealed that the oxygen and nitrogen func-
tionalities are making hydrogen interactions with the
active site containing Y72, Y124, Y203 and Y337 amino
acids. In the PAS, the benzyl ring forms another m-mt
interaction with the indole ring of W286. Despite the
lack of m-m interaction with W86, other interactions
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were found to play important roles. Hydrogen bonds
might be one reason for the enhanced activity of nitro
substituted compounds. The proposed interactions of
these compounds with W286 in huAChE suggest a pos-
sibility to interfere with amyloid fibrillogenesis in addi-
tion to inhibiting the catalytic function of the enzyme.
The interactions found after docking include m-m stack-
ing contacts with residues in the anionic substrate
binding site (Trp86, Phe331, and Tyr334) and the PAS
(Trp286). Hydrogen bonding to amino acids is also
found at the bottom of the gorge.

The combination of these interactions in other inhibi-
tors (e.g., donepezil, galanthamine) is already found in
the AChE crystal complex structure and therefore the
docking results also show similarities that are meaning-
ful for the test compounds. In addition, although all
compounds are able to bind the active side of the gorge,
not all of them are able to interact with all the impor-
tant residues previously identified at the binding sites.
Ligand size may be one reason for some of the activities
being low. McCammon and coworkers have previously
mentioned this problem with their molecular dynamics
studies [53].

In conclusion, the previously mentioned m-m interac-
tions, hydrogen bonds, and strong hydrophobic interac-
tions formed between the inhibitors and the nearby
huAChE side chains serve dual roles: 1) to inhibit the cat-
alytic activity of AChE by competing with Ach binding
site and 2) to prevent amyloid fibrillogenesis by blocking
the AP recognition zone at the peripheral site. In light of
the pharmacophore model developed in this study and
the knowledge gained from the observations of the inter-
actions between huAChE and potential inhibitors, it can
be seen that the combination of pharmacophore, molecu-
lar docking, and virtual screening efforts is successful for
discovering more effective inhibitory compounds that
can have a great impact for future experimental studies
in diseases associated AChE inhibition.

Conclusions
The work presented in this study shows that a set of
compounds along with their activities ranging over sev-
eral orders can be used to generate a good pharma-
cophore model, which in turn can be utilized to
successfully predict the activity of a wide variety of che-
mical scaffolds. This model can then be used as a 3D
query in database searches to determine compounds
with various structures that can be effective as potent
inhibitors and to assess how well newly designed com-
pounds map onto the pharmacophore prior to undertak-
ing any further research including synthesis.

Biological evaluation and optimization in designing or
identifying compounds as potential inhibitors of AChE
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were made possible by the our pharmacophore study
that showed the best model of AChE inhibitors were
made up of one hydrogen bond donor and four hydro-
phobic features. The most active molecule in the train-
ing set fits the pharmacophore model perfectly with the
highest scores. The pharmacophore model was further
used to screen potential compounds from the NCI data-
base followed by virtual screening that produced some
number of false positives and false negatives. Then we
used molecular docking and consensus scoring methods,
as added tools for virtual screening to minimize these
errors. Through our docking study, the important

interactions between the potent inhibitors and the active
site residues were determined. Using a combination of
pharmacophore modeling, virtual screening, and mole-
cular docking, we successfully identified putative novel
AChE inhibitors, which can be further evaluated by in
vitro and in vivo biological tests.

Author details

Both SL and JW are graduate students in the Graduate
Institute of Biotechnology of National Taipei University
of Technology under HLL’s instruction. HLL is a dis-
tinguished professor in the Graduate Institute of

Table 3 The highest pose scores for the most potent AChE inhibitors from the NCI database

Name (-PLP1)  (-PLP2) (-PMF) (-PMF04) Jain LibDockScore LigScore1l LigScore2 Ludi1l Ludi2 Ludi3 PIC50
NSC 35839 128.01 12724 25945 188.38 578 15248 3.65 453 808 624 1,333 9.29
NSC 80116 131.87 13417 270.73 193.51 578 15491 263 3.75 782 623 1374 9.00
NSC 143057 141.36 13840 21512 16347 6.01 162.90 3.79 449 691 572 1,069 741
NSC 164472 11429 125.19 202.62 142.87 411 129.24 4.20 567 761 633 996 7.56
NSC 281260 134.57 139.96 207.72 14991 8.11 169.53 0.68 -0.58 674 588 1,138 8.67
NSC 636831 12845 125.65 23145 166.82 573 16151 0.75 013 693 592 984 874
NSC 659829 139.17 142.52 20747 158.28 275 14376 4.30 391 826 640 734 10.09
NSC 702105  115.87 11415 22221 142.65 430 14234 2.38 243 690 549 808 7.55
NSC 711731 13192 13218 189.08 13037 801  151.50 1.32 -0.82 619 500 840 765

The pose scores are extracted from the eleven default scoring methods with the predicted pIC50 values calculated from the consensus scoring function
developed in this study.
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Figure 6 Schematic presentations of the putative huAChE binding modes with compounds (A) NSC659829 and (B) NSC35839. Residues
involved in hydrogen-bonding, charge or polar interactions are represented by magenta-colored circles. Residues involved in van der Waals
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in the modeling. Test set of AChE inhibitors considered for this study,
including chemical structures, experimental IC50 and plC50 values.
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