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Abstract

Background: Brazilin, isolated from the heartwood of Caesalpinia sappan L., has been shown to possess multiple
pharmacological properties.

Methods: In this study, platelet aggregation, flow cytometry, immunoblotting analysis, and electron spin resonance
(ESR) spectrometry were used to investigate the effects of brazilin on platelet activation ex vivo. Moreover,
fluorescein sodium-induced platelet thrombi of mesenteric microvessels was also used in in vivo study.

Results: We demonstrated that relatively low concentrations of brazilin (1 to 10 μM) potentiated platelet
aggregation induced by collagen (0.1 μg/ml) in washed human platelets. Higher concentrations of brazilin (20 to 50
μM) directly triggered platelet aggregation. Brazilin-mediated platelet aggregation was slightly inhibited by ATP (an
antagonist of ADP). It was not inhibited by yohimbine (an antagonist of epinephrine), by SCH79797 (an antagonist
of thrombin protease-activated receptor [PAR] 1), or by tcY-NH2 (an antagonist of PAR 4). Brazilin did not
significantly affect FITC-triflavin binding to the integrin αIIbβ3 in platelet suspensions. Pretreatment of the platelets
with caffeic acid phenethyl ester (an antagonist of collagen receptors) or JAQ1 and Sam.G4 monoclonal antibodies
raised against collagen receptor glycoprotein VI and integrin α2β1, respectively, abolished platelet aggregation
stimulated by collagen or brazilin. The immunoblotting analysis showed that brazilin stimulated the
phosphorylation of phospholipase C (PLC)γ2 and Lyn, which were significantly attenuated in the presence of JAQ1
and Sam.G4. In addition, brazilin did not significantly trigger hydroxyl radical formation in ESR analysis. An in vivo
mouse study showed that brazilin treatment (2 and 4 mg/kg) significantly shortened the occlusion time for platelet
plug formation in mesenteric venules.

Conclusion: To the best of our knowledge, this study provides the first evidence that brazilin acts a novel collagen
receptor agonist. Brazilin is a plant-based natural product, may offer therapeutic potential as intended
anti-thrombotic agents for targeting of collagen receptors or to be used a useful tool for the study of detailed
mechanisms in collagen receptors-mediated platelet activation.
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Background
Brazilin (7,11b-dihydrobenz[b]indeno[1,2-d]pyran-3,6a,9,10
(6H)-tetrol) is the major component isolated from the heart-
wood of Caesalpinia sappan L. (Leguminosae) (Figure 1). C.
sappan has long been widely used as an oriental traditional
or folk medicine. It is considered an analgesic and anti-
inflammatory agent and has been used to treat emmeniopa-
thy, sprains, and convulsions [1]; it has also been used to
treat diabetic complications [2] and to improve blood circu-
lation [3]. Extracts of C. sappan have been shown to exert
various pharmacological effects, including anti-hypercholes-
terolemia, sedation, and depression of the central nervous
system [4]. In addition, it is an anti-hepatitis B surface anti-
gen (HBsAg) [5] and lowers the motility of human sperm
[6]. Brazilin is also used as a natural red pigment for
histological staining [7]. Several studies have shown that the
anti-hyperglycemic [8], anti-hepatotoxic [9], and anti-
inflammatory effects of brazilin are caused by the inhibition
of inducible nitric oxide synthase (NOS) in macrophage cells
[10], and vasorelaxation induced by the activation of NOS in
endothelial cells [4].
Intravascular thrombosis is associated with several car-

diovascular diseases. The initiation of an intraluminal
thrombosis is thought to involve platelet adherence and
aggregation. During normal circulation, platelets do not
aggregate. However, when a blood vessel is damaged, pla-
telets adhere to the disrupted surface and release biologic-
ally active constituents that induce aggregation [11].
Resting (circulating) platelets are anuclear cells, discoid in
shape, which originate from megakaryocytes in the bone
marrow. Platelets may be activated by various physio-
logical or pharmacological agents. Physiological agents in-
clude thrombin, collagen, ADP, platelet-activating factor
(PAF), and epinephrine, whereas pharmacological agents
include calcium ionophores and cyclic endoperoxide ana-
logues. Upon activation, the platelets lose their discoid
shape and become more spherical, extending long, spiky
pseudopods and bulky surface protrusions [12]. The vari-
ous agonists are thought to exert their effects by interact-
ing with specific receptors on platelet membranes. Platelet
Figure 1 Chemical structure of brazilin.
activation plays a crucial role in numerous cardiovascular
and cerebrovascular disorders.
Until this study, no data had been published on the effect

of brazilin in platelet activation. One study reported that
brazilin significantly inhibited thrombin-, collagen-, and
ADP-induced platelet aggregation in washed rat platelets
[13]. By contrast, our preliminary study showed that
brazilin potentiated or stimulated platelet aggregation in
washed human platelets. This discrepancy might result
from specie-specific characteristics of platelets. We thus
systematically examined the influence of brazilin in human
platelets ex vivo and in platelet plug formation in vivo.
The findings were used to characterize the mechanisms of
brazilin-mediated activation in human platelets.

Methods
Materials
ATP, caffeic acid phenethyl ester (CAPE), collagen (type I,
bovine achilles tendon), heparin, fluorescein sodium,
yohimbine, prostaglandin E1 (PGE1), arachidonic acid
(AA), ADP, thrombin, U73122, 5,5-dimethyl-1 pyrroline
N-oxide (DMPO), and bovine serum albumin (BSA)
were purchased from Sigma Chem. (St Louis, MO).
SCH79797 and trans-cinnamoyl-YPGKF-NH2 (tcY-NH2)
were obtained from TOCRIS Bioscience (Ellisville, MIS).
Anti-glycoprotein (GP) VI (JAQ1) and anti-integrin
α2β1 (Sam.G4) monoclonal antibodies (mAbs) were
obtained from Emfret Analytics (Würzburg, Germany);
anti-phospholipase Cγ2 (PLCγ2) and anti-phospho (Tyr759)
PLCγ2 polyclonal antibodies (pAbs) from Cell Signaling
(Beverly, MA); anti-Lyn and anti-phospho Lyn pAbs
from Santa Cruz (Santa Cruz, CA). The Hybond-P poly-
vinylidene difluoride (PVDF) membrane, an enhanced
chemiluminescence (ECL) Western blotting detection
reagent and analysis system, horseradish peroxidase
(HRP)-conjugated donkey anti-rabbit IgG, and sheep
anti-mouse IgG were from Amersham (Buckinghamshire,
UK). The brazilin was purchased from MP Biomedical
(Solon, OH). We dissolved the brazilin in 0.5% dimethyl
sulfoxide (DMSO) and stored it at 4°C until use.

Preparation of human platelet suspensions
Human platelet suspensions were prepared as previously
described [14]. This study conformed to the principles
outlined in the Helsinki Declaration, and human volun-
teers gave informed consent. In brief, blood was col-
lected from healthy human volunteers who had taken no
medicine during the preceding 2 wk, and was mixed
with acid-citrate-dextrose (ACD) (9:1, v/v). After centri-
fugation, the supernatant (platelet-rich plasma; PRP) was
supplemented with PGE1 (0.5 μM) and heparin (6.4 IU/
ml) and incubated for 10 min. The mixture was then
centrifuged at 500 g; thereafter, the platelets were
washed and suspended in a Tyrode’s solution containing
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BSA (3.5 mg/ml). The final concentration of Ca+2 in the
Tyrode’s solution was 1 mM.

Platelet aggregation
A turbidimetric method was applied to measure platelet
aggregation [14], using a Lumi-Aggregometer (Payton,
Canada). Platelet suspensions (3.6 × 108 cells/ml) were
pretreated with or without reagents for 3 min, followed
by the addition of brazilin or various agonists to trigger
platelet activation. The reaction was allowed to proceed
for at least 6 min, and the extent of aggregation was
expressed in light-transmission units.

Flow cytometric analysis
Fluorescence-conjugated triflavin, an αIIbβ3 disintegrin,
was prepared as previously described [11]. Platelet sus-
pensions (3.6 × 108 cells/ml) were preincubated with
brazilin (25 and 50 μM) or a solvent control (0.5%
DMSO) for 3 min, followed by the addition of 2 μl of a
solution of FITC-triflavin (2 μg/ml). The suspensions
were then assayed for fluorescein-labeled platelets, using
a flow cytometer (Beckman Coulter, Miami, FL). Data
were collected from 50,000 platelets per experimental
group, and the platelets were identified by their charac-
teristic forward and orthogonal light-scattering profiles.
All experiments were repeated at least 4 times to ensure
reliability.

Immunoblotting
Washed platelets (1 × 109 cells/ml) were preincubated
with reagents for 3 min, followed by the addition of ago-
nists to trigger platelet activation. The reaction was
stopped, and platelets were immediately re-suspended in
200 μl of lysis buffer. Samples containing 80 μg of pro-
tein were separated using a 12% sodium dodecylsulfate
polyacrylamide gel electrophoresis (SDS-PAGE); proteins
were electrotransferred by semidry transfer (Bio-Rad,
Hercules, CA). Blots were blocked with TBST (10 mM
Tris-base, 100 mM NaCl, and 0.01% Tween 20) con-
taining 5% BSA for 1 h and then probed with various
primary antibodies. Membranes were incubated with
HRP-linked anti-mouse IgG or anti-rabbit IgG (diluted
1:3000 in TBST) for 1 h. Immunoreactive bands were
detected using an ECL system. Bar graphs depicting
quantitative ratios were produced by scanning the react-
ive bands and quantifying their optical density using
videodensitometry (Bio-profil; Biolight Windows Appli-
cation V2000.01; Vilber Lourmat, France).

Measurement of hydroxyl radicals by electron spin
resonance (ESR) spectrometry
The ESR method used a Bruker EMX ESR spectrometer
as described previously [15]. In brief, platelet suspen-
sions (3.6 × 108 cells/ml) were incubated with brazilin
(25 and 50 μM), collagen (1 μg/ml) or a solvent control
(0.5% DMSO) for 3 min. The reaction was allowed to
proceed for 5 min, followed by the addition of DMPO
(100 μM) for the ESR study.

Fluorescein sodium-induced platelet thrombi in
mesenteric microvessels of mice
As described previously [14], mice were anesthetized,
and an external jugular vein was cannulated with PE-10
so that dye and medication could be administered by an
intravenous (i.v.) bolus. A segment of the small intestine
was placed onto a transparent culture dish for micro-
scopic observation. Venules (30 to 40 μm) were selected
for irradiation to produce a microthrombus. Using the
epi-illumination system, light from a 100-W mercury
lamp was passed through a B-2A filter (Nikon, Tokyo,
Japan) with a DM 510 dichromic mirror (Nikon). Wave-
lengths below 520 nm had been eliminated from the fil-
tered light, which was used to irradiate a microvessel;
the area of irradiation was approximately 100 μm in
diameter on the focal plane. Various dosages of brazilin
(2 and 4 mg/kg) or an isovolumetric solvent control
(0.5% DMSO) was administered 1 min after fluorescein
sodium (15 μg/kg) administration. Five minutes after ad-
ministration of the fluorescein sodium, irradiation by fil-
tered light and the video timer were simultaneously
begun, and platelet aggregation was observed on a televi-
sion monitor. The time lapse for inducing thrombus
formation leading to the cessation of blood flow was
measured.

Statistical analysis
The experimental results are expressed as the means ±
S.E.M. and are accompanied by the number of observa-
tions. Paired Student’s t-test was used to determine sig-
nificant differences in the in vivo studies of platelet plug
formation. The other experiments were assessed by the
method of analysis of variance (ANOVA). If this analysis
indicated significant differences among the group means,
then each group was compared using the Newman-
Keuls method. A p value of less than 0.05 was consid-
ered statistically significant.

Results
The influence of brazilin on platelet aggregation in
washed human platelets
Low concentrations of brazilin (1, 5, and 10 μM) poten-
tiated platelet aggregation in a concentration-dependent
manner induced by a sub-threshold concentration of col-
lagen (0.1 μg/ml) in washed human platelets (Figure 2A).
At higher concentrations (20, 30, and 50 μM), brazilin
directly triggered platelet aggregation in a concentration-
dependent manner (Figure 2B). A high dose of brazilin
(50 μM) was equally potent in inducing platelet
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Figure 2 Effect of brazilin in potentiating or stimulating human platelet aggregation in washed platelets or platelet-rich plasma.
Washed platelets (3.6 × 108/ml) were incubated with brazilin (1 to 50 μM), either with (A) or without (B) the addition of collagen (0.1 μg/ml) to
trigger platelet aggregation. In additional experiments, washed platelets (3.6 × 108/ml) were preincubated with (C) ATP (50 μM) or (D) yohimbine
(5 μM); this was followed by the addition of ADP (20 μM), brazilin (50 μM), or epinephrine (10 μM) to trigger platelet aggregation. (E)
Furthermore, platelet-rich plasma was incubated with collagen (1 μg/ml) or brazilin (50 to 10 μM) to trigger platelet aggregation. Aggregation
profiles (A to E) are representative examples of 4 similar experiments.
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aggregation compared with collagen (1 μg/ml) (data not
shown). As shown in Figure 2C, ATP (50 μM), an antag-
onist to ADP on platelets, inhibited platelet aggregation
stimulated by ADP (20 μM) more effectively than that
stimulated by brazilin (50 μM). Yohimbine (5 μM), an α2-
adrenoceptor antagonist, inhibited platelet aggregation
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ml), or (C) brazilin (50 μM) to trigger platelet aggregation. Aggregation pro
stimulated by epinephrine (10 μM), but not by brazilin
(50 μM) (Figure 2D). However, brazilin (50 μM) did not
significantly induce platelet aggregation in PRP even at a
higher concentration of 100 μM (Figure 2E), indicating
that brazilin might have high binding ability with protein
in plasma. Furthermore, we also found that there are no
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in-mediated platelet aggregation. Washed platelets (3.6 × 108/ml)
llowed by the addition of (A) thrombin (0.5 U/ml), (B) collagen (1 μg/
files (A to C) are representative examples of 4 similar experiments.
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significant differences in the platelet number between the
control (0.5% DMSO) and brazilin-treated values (control,
1376.8 ± 284.1 × 106/ml vs. 2 mg/kg brazilin, 1159.2 ±
383.4 × 106/ml, n=5, p > 0.05; control, 1252.0 ± 310.6 ×
106/ml vs. 4 mg/kg brazilin, 1020.4 ± 328.7 × 106/ml, n=5,
p > 0.05) during the administration of various doses of
brazilin (2 and 4 mg/kg) into the tail vein of mice (ICR
strain) for 10 min. In addition, SCH79797 (1 μM), a
thrombin protease-activated receptor (PAR) 1 antagonist,
and tcY-NH2 (100 μM), a PAR 4 antagonist, both mark-
edly diminished platelet aggregation stimulated by throm-
bin (0.5 U/ml) (Figure 3A), but not by collagen (1 μg/ml)
(Figure 3B). Neither SCH79797 (1 μM) nor tcY-NH2 (100
μM) significantly affected platelet aggregation stimulated
by brazilin (50 μM) (Figure 3C). These results indicated
that brazilin-induced platelet aggregation was not mediated
even partially by ADP receptors, α2-adrenoceptors, or
thrombin PAR receptors on the platelet membranes.

Collagen receptors involved in brazilin-induced platelet
aggregation
GP VI and integrin α2β1 are the main collagen receptors
involved in platelet adhesion and aggregation [16]. Pre-
treatment with JAQ1 (4 μg/ml) and Sam.G4 (4 μg/ml),
which are mAbs against GP VI and integrin α2β1 re-
spectively, abolished platelet aggregation stimulated by
collagen (1 μg/ml) (Figure 4A) but not by thrombin
(0.5 U/ml) (Figure 4B). U73122 (10 μM), a PLC inhibitor,
and indomethacin (25 μM), a cyclooxygenase inhibitor,
both markedly diminished platelet aggregation stimu-
lated by collagen (1 μg/ml) and brazilin (50 μM)
(Figures 4C and 4D), indicating that brazilin triggers
platelet aggregation perhaps mediate by thromboxane
A2-dependent mechanisms as collagen did. Furthermore,
caffeic acid phenethyl ester (CAPE; 25 and 50 μM) [17],
an active component of propolis obtained from honey-
bee hives, acts as a collagen receptor antagonist; this
compound abolished platelet aggregation stimulated by
either collagen (1 μg/ml) or brazilin (50 μM) (Figure 4E).
Pretreatment with either JAQ1 (4 μg/ml) or Sam.G4
(4 μg/ml) abolished platelet aggregation stimulated by
brazilin (50 μM) (Figure 4F). These results showed that
brazilin might activate platelet aggregation through col-
lagen receptors on the platelet membranes.
Triflavin is an αIIbβ3 disintegrin, which inhibits platelet

aggregation by directly interfering with fibrinogen binding
to the integrin αIIbβ3 [11]. We evaluated whether brazilin
would bind directly to the platelet integrin αIIbβ3, leading
to interruption of platelet aggregation. Our results showed
that the relative intensity of the fluorescence of 2 μg/ml
FITC-triflavin bound directly to platelets was 55.2 ± 4.5
(Figure 4G, a). The fluorescent intensity was markedly
reduced in the presence of 5 mM EDTA (negative control,
5.2 ± 0.6) (Figure 4G, b). Brazilin (25 and 50 μM) did not
significantly affect FITC-triflavin binding to the integrin
αIIbβ3 in platelet suspensions (25 μM, 55.1 ± 5.2; 50 μM,
54.3 ± 4.5) (Figure 4G, c and d). These results showed that
the stimulatory effect of brazilin on platelet aggregation
did not affect integrin αIIbβ3. Overall, our findings provide
evidences that brazilin acts as a collagen receptor agonist.

Brazilin stimulated PLCγ2 and Lyn activation through
collagen receptors
PLC hydrolyzes phosphatidylinositol 4,5-bisphosphate
(PIP2) to generate 2 secondary messengers: inositol
1,4,5-trisphosphate (IP3) and diacylglycerol (DAG).
These messengers trigger platelet activation [18]. The
immunoblotting analysis showed that brazilin (50 μM)
treatment resulted in marked phosphorylation of PLCγ2
compared with resting platelets (Figure 5A). Treatment
with JAQ1 (4 μg/ml) or Sam.G4 (4 μg/ml) significantly
attenuated this phosphorylation stimulated by brazilin
(Figure 5A), but not by thrombin (0.5 U/ml) (Figure 5B). In
addition, Lyn was specifically phosphorylated by brazilin (50
μM) and collagen (1 μg/ml), but not by thrombin (0.5 U/ml)
or ADP (20 μM) (Figure 5C). Brazilin (50 μM) stimulated
Lyn phosphorylation was diminished in the presence of
JAQ1 (4 μg/ml) or Sam.G4 (4 μg/ml) (Figure 5D).

Influence of brazilin in hydroxyl radical formation in vitro
and platelet plug formation in microvessels of mice
A typical ESR signal of hydroxyl radical (OH●) formation
was triggered in collagen-activated platelets compared to
resting platelets or 0.5% DMSO-treated platelets (Figures 6A,
a, b, and c). However, treatment with brazilin (25 and 50
μM) did not significantly trigger hydroxyl radical formation
(Figures 6A, d and e).
Our observation of thrombus formation in the microves-

sels of mice pretreated with fluorescein sodium (15 μg/kg)
showed that the required occlusion time was approximately
90 s. When brazilin (2 and 4 mg/kg) was administered after
pretreatment with fluorescein sodium, the occlusion time
was significantly shorter compared with the solvent con-
trols (occlusion time for 2 mg/kg brazilin was 74.4 ± 2.4 s
compared with 91.9 ± 2.3 s for 0.5% DMSO; n=5, p < 0.05;
for 4 mg/kg brazilin, occlusion time was 72.7 ± 3.4 s com-
pared with 91.2 ± 3.8 s for 0.5% DMSO; n=5, p < 0.05)
(Figure 6B). These results indicated that brazilin stimulated
platelet plug formation in vivo.

Discussion
In this study, up to our knowledge, this is a novel finding
that brazilin, a plant-based natural product acts as a col-
lagen receptor agonist induce platelet activation, other
than that some collagen receptor agonists purified from
the snake venoms [19,20].
Platelets are activated by a variety of physiological

stimuli (e.g., thrombin, collagen, ADP, epinephrine, and
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PAF). These agonists are thought to exert their effects
by interacting with specific receptors on the platelet
membranes. The primary effects of agonists may be
enhanced by secondary effects caused by the synthesis of
thromboxane A2 (TxA2) from the arachidonic acid (AA)
or by the secretion of ADP from the dense granules in
platelets. ADP binds to 2 major purinergic receptors
(P2Y1 and P2Y12), which play an important role in po-
tentiating platelet activation induced by other aggregat-
ing agonists [21]. Therefore, ATP, an antagonist to ADP,
might affect platelet aggregation stimulated by other
agonists, including brazilin (Figure 2C).
Thrombin is one of the most potent activators of platelets

and its role in promoting thrombus formation has been
clearly established. Thrombin activates platelets through
multiple cell-surface receptors, including the GP Ib/V/IX
complex and the PARs [12]. Of the 4 known PAR isoforms,
PAR1, PAR3, and PAR4 constitute the active thrombin
receptors on human platelets [22]. PAR1 and PAR4 are es-
sential for thrombin-induced human platelet activation
[23]. Furthermore, epinephrine could induce platelet aggre-
gation in the presence of sub-physiological calcium concen-
trations, as occurs in citrated plasma [24]. Aggregation as
monitored in the light transmission aggregometer occurs
without preceding shape change (disc to sphere transform-
ation) (Figure 2D). Platelets possess stimulatory α2-adreno-
ceptors and inhibitory β-adrenoceptors; in most individuals
the α2-adrenoceptors predominate.
Platelets adhere to the connective tissue protein colla-

gen, with a resulting change in shape and the release of
granules. Adhesion is partly dependent on the release of
ADP and TxA2, whereas aggregation is entirely dependent
on the release thereof [21]. The matrix protein collagen is
present in the vascular subendothelium and vessel wall,
and acts as a substrate for platelet adhesion; it is also an
endogenous platelet activator. Among the platelet recep-
tors known to interact directly with collagen, integrin α2β1
(GP Ia/IIa) and GP VI [19] appear to play a key role and
have recently gained the attention of researchers. GP VI is
widely recognized as a requisite factor for the formation
of platelet aggregates on a collagen surface under blood
flow [25]. Integrin α2β1 is another major collagen receptor
on endothelial cells and platelets. In cells expressing integ-
rin α2β1, many signals (including tyrosine phosphorylation
and matrix remodeling) are activated after cell adhesion to
collagen [26]. Recent findings suggest that integrin α2β1
and GP VI might contribute to the overall processes of
platelet adhesion and activation [19,27,28].
GP VI is a platelet membrane protein with a molecular

weight of 62 kDa. It has been identified as a physio-
logical collagen receptor and belongs to a membrane of
the immunoglobulin superfamily, which forms a com-
plex with the Fc receptor γ-chain (FcRγ) containing
immunoreceptor tyrosine-based activation motifs (ITAM)
and is phosphorylated by Src-family kinases such as Fyn
and Lyn [16,25]. Tyrosine kinases (Fyn and Lyn) are
involved in GP VI-dependent activation and might phos-
phorylate the FcRγ [29]. Fyn and Lyn were shown to bind
to the Pro-rich domain of the GP VI cytoplasmic tail in
platelets [30], suggesting that the GP VI-dependent activa-
tion mechanism might be similar to that of the cytokine
receptors. In this process, receptor-bound tyrosine kinases
(such as Src) phosphorylate the cytoplasmic tails of recep-
tors when the receptors become associated with each
other through ligand binding. This phosphorylation will
initiate the signal transduction pathway. In platelets,
cross-linking of the GP VI/FcRγ complex would enable
the GP VI-bound Fyn or Lyn to move to a position close
enough to FcRγ that it would catalyze the phosphorylation
of FcRγ ITAM. In turn, this triggers the phosphorylation
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of downstream signals, including the linker for activation
of T-cells (LAT), leading to the activation of a kinase cas-
cade (i.e., PLCγ2).
Our previous study [17] showed that the antiplatelet

activity of CAPE might involve direct interference with
the binding of collagen to its specific receptors on the
platelet membrane. The current study showed that
CAPE markedly inhibited brazilin-induced platelet ag-
gregation. Furthermore, brazilin markedly stimulated
platelet aggregation and PLCγ2 and Lyn phosphoryl-
ation. All these reactions were significantly diminished
by JAQ1 (anti-GP VI mAb) and Sam.G4 (anti-integrin
α2β1 mAb). Interestingly, we also found that the relative
fluorescence intensity of the FITC-collagen (1 μg/ml)
bound directly to platelets was 11.7 ± 1.9 (n=4) and
hence the fluorescent intensity was markedly reduced in
the presence of 1 μg/ml collagen (1.6 ± 1.4, n=4); how-
ever pretreatment with brazilin (25, 50, and 100 μM)
showed a significant increase in the relative fluorescence
intensity of FITC-collagen (25 μM, 33.8 ± 13.9; 50 μM,
38.4 ± 10.6; 100 μM, 61.8 ± 9.8; n=4) (data not shown).
These results suggest that brazilin may act at the allo-
steric site to display allosteric agonism on collagen
receptors, and subsequently enhances both the affinity
and efficacy of collagen towards its binding sites. A simi-
lar model has been proposed in G-protein-coupled
receptors and predicts that allosteric ligands bind to a
topographically distinct site on a receptor to modulate
orthosteric ligand affinity and/or efficacy [31]. A study
also reported that some allosteric ligands can enhances
both affinity and efficacy, and it displays allosteric agon-
ism [31]. Therefore, we speculate that brazilin may serve
as an allosteric ligand for collagen receptors in platelets.
Overall, these results provided evidence that the stimula-
tion of platelet activation by brazilin might be the result
of direct stimulation of collagen receptors on the platelet
membrane. However, our experiments did not rule out
the possibility that other as-yet-unidentified mechanisms
might be involved in brazilin-mediated platelet activation.
Reactive oxygen species (i.e., hydrogen peroxide and

hydroxyl radicals) derived from platelet activation might
amplify platelet reactivity during in vivo thrombus for-
mation. Free radical species act as secondary messengers
that increase cytosolic Ca2+ during the initial phase of
platelet activation processes [15]. It is also evident that
some of the hydrogen peroxide produced by platelets is
converted into hydroxyl radicals, as platelet aggregation
can be inhibited by hydroxyl radical scavengers [15]. In
the present study, we found that brazilin did not signifi-
cantly induce hydroxyl radical formation as compared
with the collagen-stimulated platelets, indicating that
brazilin may have a differential characterization on free
radical formation apart from acting as the collagen re-
ceptor agonist in platelets. Following an injury to the
endothelial cells, exposure of sub-endothelial collagen
provides the major trigger to initiate platelet adhesion
and aggregation at the site of injury. This is followed by
arterial thrombus formation [11]. When platelets aggre-
gate, they release a number of substances including
TxA2 and ADP, both of which strengthen the platelet ac-
tivation processes. He et al. [27] showed that integrin
α2β1-deficient mice exhibited delayed thrombus forma-
tion following carotid artery injury. This result was con-
sistent with the previously reported correlation between
high levels of integrin α2β1 expression and increased risk
for thrombosis involving the coronary and cerebral ves-
sels [32,33]. Nieswandt et al. [34] reported that mice
depleted of GP VI were completely protected from lethal
collagen-induced pulmonary thromboemboli. Similarly,
our study showed that brazilin potentiated platelet plug
formation in the mesenteric venules of rats. Activated
platelets also contribute to enhance the assembly and ac-
tivity of two major coagulation factor complexes which
facilitates coagulation and thrombus stabilization. There-
fore, the coagulation factors may be involved in brazilin
shortened the occlusion time in vivo.

Conclusions
In conclusion, the key finding of this study was that bra-
zilin acts as a collagen receptor agonist. However, the
detailed mechanisms of brazilin-mediated signaling
events in platelet activation require further investigation.
Brazilin is a novel plant-based natural product, may offer
therapeutic potential as intended anti-thrombotic agents
for targeting of collagen receptors or to be used a useful
tool for the study of detailed mechanisms in collagen
receptors-mediated platelet activation.
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