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Abstract

Enterovirus 71 (EV-71) is the main etiological agent of hand, foot and mouth disease (HFMD). Recent EV-71
outbreaks in Asia-Pacific were not limited to mild HFMD, but were associated with severe neurological
complications such as aseptic meningitis and brainstem encephalitis, which may lead to cardiopulmonary failure
and death. The absence of licensed therapeutics for clinical use has intensified research into anti-EV-71
development. This review highlights the potential antiviral agents targeting EV-71 attachment, entry, uncoating,
translation, polyprotein processing, virus-induced formation of membranous RNA replication complexes, and
RNA-dependent RNA polymerase. The strategies for antiviral development include target-based synthetic
compounds, anti-rhinovirus and poliovirus libraries screening, and natural compound libraries screening. Growing
knowledge of the EV-71 life cycle will lead to successful development of antivirals. The continued effort to develop
antiviral agents for treatment is crucial in the absence of a vaccine. The coupling of antivirals with an effective
vaccine will accelerate eradication of the disease.
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Introduction
Human enterovirus A71 (EV-71) belongs to the Entero-
virus genus within the family of Picornaviridae. The EV-
71 genome is a single-stranded, positive sense RNA with
approximately 7411 nucleotides, and consists of an open
reading frame flanked by 5′ and 3′ untranslated regions
(UTRs) [1]. Internal ribosome entry site (IRES)-dependent
translation initiates synthesis of the viral polyprotein,
which is subsequently cleaved into structural proteins
(VP1-VP4) and non-structural proteins (2A-2C and 3A-
3D). The RNA genome is enclosed in an icosahedral cap-
sid assembled from 60 copies of each of the four structural
proteins [2].
EV-71 was first described in 1969, after its isolation

from a two-month-old infant with aseptic meningitis
in California, USA. Several EV-71 epidemics with high
mortality rates occurred in Bulgaria and Hungary in
1975 and 1978 [3-5], respectively. Since then, many
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EV-71 outbreaks have been reported in Taiwan [6],
Australia [7], Singapore [8], Malaysia [9], China
[10-14], Vietnam [15] and Cambodia [16].
EV-71 infections usually manifest as mild hand, foot

and mouth disease (HFMD), characterized by fever,
mouth ulcers, and vesicles on the palms and feet. Unlike
other HFMD-related enteroviruses, EV-71 also causes se-
vere neurological manifestations, such as poliomyelitis-
like acute flaccid paralysis and brainstem encephalitis in
infants and children below 6 years old [17,18]. The fatal
brainstem encephalitis is characterized by rapid progres-
sion of cardiopulmonary failure. Patients with neuro-
logical involvement who survive often have permanent
neurological sequelae, with delayed neurodevelopment
and reduced cognitive function [19,20].
Similar to the global poliovirus (PV) eradication initia-

tive, an EV-71 vaccine is likely to be the most effective
way to control, and hopefully eradicate disease [21,22].
Several promising EV-71 vaccine candidates are cur-
rently under clinical trial [23]. Nevertheless, effective an-
tivirals are still needed for treatment of infected patients
with severe disease [21,22]. This review will highlight the
potential targets for EV-71 antivirals as well as recent
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developments and future prospects of antivirals against
EV-71 infections.

Review
EV-71 virus life cycle
Similar to other viruses, EV-71 infection begins with initial
attachment to attachment factors present on the cell sur-
face, followed by interaction with entry receptors. EV-71
enters the cells through clathrin-mediated endocytosis and
uncoats in the early endosomes. The viral RNA undergoes
IRES-dependent translation, and the polyprotein is cleaved
by 2A and 3C proteases into structural and non-structural
proteins. Non-structural proteins are mainly involved in
negative-sense and positive-sense RNA synthesis. The
positive-sense viral RNA is then packed into the procapsid,
which finally matures into infectious viral particles. Details
of the EV-71 replication steps will be discussed according
to their therapeutic targets [18,21,22].

Therapeutics targeting viral attachment and entry
Virus-host receptor interaction is the first essential event
during virus infection. The ability to recognize and bind
to specific receptors determines the host range and tis-
sue tropism [24]. Cell surface carbohydrates such as
heparan sulfate glycosaminoglycan and sialic acid are
often targeted by pathogens as attachment factors. EV-
71 uses cell surface heparan sulfate [25] and sialylated
glycan [26,27] as attachment receptors, which could
concentrate the virus on the host cell surface and there-
fore enhance infectivity. Further interaction with entry
receptors is required to initiate infection. Two function-
ally important entry receptors have been identified, scav-
enger receptor class B2 (SCARB2) and P-selectin
glycoprotein ligand-1 (PSGL-1) [28,29]. SCARB2 is
expressed in all cell types and regarded as the major
EV-71 entry receptor. At low endosomal pH, SCARB2 is
needed to induce viral uncoating [30,31]. Human
SCARB2 transgenic mice infected with EV-71 showed
lethal neurological manifestations with pathological fea-
tures similar to humans and monkeys, suggesting that
SCARB2 contributes to its pathogenesis [32,33]. PSGL-1
is only present on neutrophils and leukocytes. EV-71
binds to PSGL-1 and enters the cells through the caveo-
lar endocytosis pathway [34]. Transgenic mice express-
ing human PSGL-1 failed to enhance EV-71 infectivity,
suggested that PSGL-1 alone does not contribute to its
pathogenesis [35].
Since host-receptor interactions are the first event dur-

ing infection, inhibitors that block this event could act
as potential therapeutics. The soluble form of cellular re-
ceptors could act as molecular decoys of cell-associated
receptors. Soluble SCARB2, PSGL-1, sialic acid and hep-
arin or heparin mimetics have been demonstrated to ex-
hibit inhibitory effects against EV-71 infection in vitro
[25,26,28,30,36]. Highly sulfated suramin and its analog,
NF449, exhibited antiviral activity against EV-71 infec-
tion [25,37]. NF449-resistant mutants consist of two mu-
tations in VP1, E98Q and K244R, implying that NF449
inhibited EV-71 infection by binding to the VP1 protein
[37]. Similarly, kappa carrageenan, a sulfated polysac-
charide from seaweed, also exhibited significant antiviral
activity through targeting EV-71 attachment and entry
[38]. The mechanism of these soluble decoys is possibly
by disruption of the integrity of the EV-71 capsid struc-
ture or steric hindrance of receptor interactions.
Receptor antagonists could also be developed as poten-

tial antiviral agents. A peptide derived from EV-71 VP1,
designated SP40 peptide (Ac-QMRRKVELFTYMRFD-
NH2), was found to exhibit significant antiviral activity
against different strains of EV-71 by blocking viral attach-
ment to the cell surface heparan sulfate [39]. An anti-
heparan sulfate peptide (Ac-MPRRRRIRRRQK-NH2),
previously identified by Tiwari et al. [40], also inhibited
EV-71 infection [25]. Another antimicrobial peptide,
lactoferrin, also exhibited anti-EV-71 properties in vitro
and in vivo through blocking viral attachment to the cell
surface [41-43].

Therapeutics targeting viral uncoating
The proposed EV-71 uncoating event involves attach-
ment to the entry receptor, triggering a series of con-
formational changes resulting in A-particle formation
that is primed for genome release. A second uncoating
event occurs after endocytosis, and an unknown trigger
causes RNA expulsion from the A-particles via the 2-
fold axis, leaving behind an empty capsid [44]. Forma-
tion of the 135S A-particle happens in the presence of
SCARB2 receptors and a low pH environment, suggest-
ing that the A-particle is formed in the early endosomes
[30,31]. Uncoating inhibitors (pocket binders) have been
intensively studied as antiviral agents against many
picornaviruses, including rhinovirus [45], PV [45], echo-
virus [46] and coxsackievirus [47]. The complex of
WIN51711 with the EV-71 hydrophobic pocket under-
neath the canyon depression has recently been resolved
by X-ray crystallography [48]. The key success factor of
these uncoating inhibitors is their ability to fit into the
VP1 hydrophobic pocket, stabilize the capsid structure,
and therefore block the receptor-induced uncoating
mechanism [48].
A series of modified WIN compounds including

BPROZ-194, BPROZ-112, BPROZ-284, BPROZ-103,
BPROZ-299, BPROZ-101, BPROZ-033, and BPROZ-074
were effective against EV-71 infection with IC50 values
ranging from 0.8 nM to 1550 nM [49-54]. However, a
single point mutation in VP1 V192M was sufficient to
confer resistance to BPROZ-194 [51]. Other than modi-
fied WIN compounds, the broad spectrum enterovirus
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inhibitor pleconaril also inhibited EV-71 infection
in vitro and in vivo [55,56]. However, pleconaril failed to
inhibit the cytopathic effect induced by a Taiwan 1998
EV-71 isolate [49]. Another group of capsid binders,
pyridazinyl oxime ethers chemically derived from piroda-
vir such as BTA39 and BTA188, significantly inhibited
EV-71 infection [57]. Crystallographic studies showed the
pirodavir predecessor R61837 complexed with rhinovirus
14 by binding to the hydrophobic pocket underneath the
canyon floor, similar to the mechanism of WIN com-
pounds [58]. 4′,6-Dichloroflavan (BW683C), previously
identified as an anti-rhinovirus compound, was also
effective against EV-71 infection [59,60]. Mechanistic
studies demonstrated that BW683C binds to and stabi-
lizes rhinovirus to heat or acid inactivation, implying
that BW682C acts as viral uncoating inhibitor [61-63].
Therapeutics targeting viral RNA translation
EV-71 protein synthesis commences with translation initi-
ation of the cap-independent IRES element at the 5′UTR
of the EV-71 genome [64]. IRES is a cis-acting element
that forms tertiary RNA structures and requires assistance
from IRES-specific trans-acting factors (ITAFs) to recruit
other cellular translation machinery to the viral RNA. The
EV-71 open reading frame (ORF) is translated into a
single polyprotein, which is subsequently processed by
virus-encoded proteases 2A and 3C into the structural
capsid proteins (VP1-VP4) and the nonstructural proteins
(2A-2C and 3A-3D) mainly involved in the replication of
the viral RNA [65].
The antisense-mediated mechanism consists of oligo-

nucleotides (8-50 nucleotides in length) that bind to
RNA through Watson-Crick base pairing and modulate
the function of the targeted RNA [66]. RNA interference
(RNAi) involves the cleavage of targeted mRNA through
the RNA-induced silencing complex. Small interfering
RNA (siRNA) targeting highly conserved regions of 5′
UTR [67], VP1, VP2 [68], 2C, 3C, 3D [69,70], and 3′
UTR [69] significantly inhibited EV-71 infection in a
dose-dependent manner. In addition, short hairpin RNA
(shRNA) was effective against EV-71 infection in vitro
and in vivo [70-72]. The use of siRNA in clinical settings
is hampered by its short half-life in plasma. Improved
siRNA with 2′O methylation and 2′ fluoro modifications
have recently been demonstrated against EV-71 infection
[67]. However, siRNA also has poor endosomal uptake
which limits the clinical application of these siRNAs.
Other translation suppressing nucleotides, for example,
peptide conjugated phosphodiamidate morpholino oligo-
mers (PPMO) showed promising results in inhibiting PV
and coxsackievirus B3 [73,74]. Unlike siRNA or shRNA,
PPMO interacts with targeted RNA, especially the IRES
region, and blocks ribosome recruitment and therefore
inhibits viral RNA translation [66]. PPMO readily pene-
trates the cells and is resistant to nuclease degradation.
Our unpublished data confirms that PMO are highly
effective against EV-71.
Compounds that down-regulate the activity of IRES-

dependent translation could potentially be developed
into antiviral agents. Quinacrine, which impairs IRES-
dependent translation by preventing the interaction be-
tween polypyrimidine-tract binding protein (PTB) and
IRES, has been demonstrated to act against EV-71 infec-
tion [75]. Kaempferol, a flavonoid, was found to inhibit
EV-71 IRES activity by altering the composition of
ITAFs [76]. Geniposide derived from Fructus gardeniae
inhibited EV-71 replication via inhibition of viral IRES
activity [77]. Amantadine, a tricyclic symmetric amine
previously used against influenza A virus infection, was
found to suppress EV-71 IRES translation [78-80].
Therapeutics targeting viral polyprotein processing
Maturation cleavage of polyprotein into different viral
proteins is a critical step during EV-71 infection. EV-71
2A and 3C protease are the key proteases that cleave the
viral precursor polyprotein into each of the component
proteins required for viral replication and packaging.
Interestingly, EV-71 2A and 3C proteases suppress type
I interferon by targeting mitochondrial anti-viral signal-
ing (MAVS) protein and melanoma differentiation asso-
ciated gene (MDA-5) viral recognition receptor signaling
[81,82]. Since EV-71 2A and 3C proteases are involved
in multiple roles in EV-71 infection and evasion of host
innate immunity, they are important potential targets for
development of antiviral therapeutics.
A pseudosubstrate, LVLQTM peptide, could inhibit

EV-71 infection through binding to the active site of 2A
protease [83]. Rupintrivir (AG7088) is an irreversible
peptidomimetic inhibitor of human rhinovirus 3C prote-
ase, which reached phase 2 clinical trials with promising
outcomes [84-89]. Rupintrivir showed significant inhib-
ition of EV-71 infection in vitro and in vivo but with re-
duced efficacy as compared with human rhinoviruses
[90-93]. X-ray crystallography of the complex of EV-71
3C protease with rupintrivir revealed that the half-closed
S2 sub-site and the size reduced S1′ pocket of EV-71 3C
protease limits the access of the rupintrivir’s P1′ group
which contains a lactam ring [94,95]. A series of 3C prote-
ase rupintrivir analogues were designed based on AG7088,
with an aldehyde replacement of the α,β-unsaturated
ester. Compound 10b significantly inhibited EV-71 infec-
tion [96]. An orally bioavailable 3C protease inhibitor, des-
ignated as compound 1, also exhibited antiviral activities
against multiple rhinovirus serotypes and enteroviruses
in vitro [89]. Flavonoids such as fisetin and rutin, have also
been identified as 3C protease inhibitors [97].
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Therapeutics targeting the membranous viral RNA
replication complex and other host factors
The genomic replication of enteroviruses has been shown
to occur in membranous compartments in the cytoplasm.
The membranous vesicles induced during PV infection have
been reported to be associated with autophagy signalling
[98,99]. These compartments resemble the autophagosomes
and consist of viral proteins as well as microtubule-
associated protein 1 light chain 3-II (LC3-II). LC3-II is the
membrane-bound form of LC3 that serves as the marker of
autophagy induction [100]. During PV infection, these
double-membrane vesicles consist of viral particles that
undergo autophagic maturation typically characterized by
LC3-II co-localization with lysosomal-associated membrane
protein 1 (LAMP1) [100]. Similarly, EV-71 induces autoph-
agy formation in RD and SK-N-SH cells, and association
between autophagosome-like vesicles and EV-71 VP1 in
neurons of the cervical spinal cords of mice was observed
[101]. The authors concluded that autophagic signalling
induced by EV-71 is crucial for EV-71 replication. This pro-
vides an alternative antiviral strategy for EV-71 to target host
factors related to autophagy that are crucial for viral
replication.
The discovery of antiviral drugs is mainly based on

virus targets. The high replication and mutation rates of
enteroviruses may generate resistance to these direct-
acting antivirals. Targeting host factors may establish a
higher genetic barrier to resistance and can be used in
combination with viral inhibitors. The compound
GW5074, a Raf-1 inhibitor, has been shown to influence
EV-71 viral yield [37,102]. Activation of the Raf-1/ERK
pathway in host cells induces autophagy signalling [103].
The downstream transducer of this pathway, BNIP3
competes with Beclin 1 for binding with Bcl-2 during
autophagy induction [104]. GW5074 may impair au-
tophagy activation through the inhibition of the Raf-1/
ERK pathway. Thus, the replication of EV-71 that re-
quires autophagosome formation may be inhibited in
the presence of the GW5074 compound. Heat shock
protein 90 beta (HSP90β), an isomer of HSP90, has been
reported to have crucial roles in EV-71 entry and assem-
bly. Geldanamycin (GA) and its analog, 17-allyamino-
17-demethoxygeldanamycin (17-AAG), inhibit HSP90β
activities and protect hSCARB2 transgenic mice from
the challenge with EV-71 [105].
Inhibitors that target host factors such as those in-

volved in cellular autophagy and HSP90β could be used
against multiple EV-71 genotypes and enterovirus sero-
types, due to their similar pathways of replication
[106,107]. The major drawbacks of these inhibitors that
target host factors are specificity and cellular toxicity.
Therefore, there is an unmet need to develop specific
and non-toxic antivirals that impair the cellular autoph-
agy pathway and HSP90β during EV-71 infection.
The amino acid sequences of the non-structural pro-
teins of EV-71 are highly conserved and have more than
60% similarity to PV. Two hydrophobic regions are
found in the 2B viral protein of PV and are pivotal for
its viroporin functionality [108]. 2B viroporin mediates
the integration of viral protein into the ER membrane
and this increases the membrane permeability to pro-
mote virus release [108]. A study has reported that
EV-71 2B protein might mediate a chloride-dependent
current in oocytes. A chloride-dependent current in-
hibitor, 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid
(DIDS) has been reported to inhibit EV-71 infection in
RD cells [109]. The 2C viral protein of PV consists of
Walker A, B and C motifs that are homologous to the
motifs found in NTP-binding proteins or in members of
the helicase superfamily III [110]. An amphipathic helix
domain is located at the N-terminal of 2C viral protein
that has the function of promoting oligomerization
[110]. Recently, two antiviral compounds, metrifudil
(N-(2-methylphenyl) methyl adenosine) and N6-benzyla-
denosine, blocked EV-71 replication via interaction with
2C viral protein or 2BC precursor protein [37]. Mutants
resistant to metrifudil had a mutation in the 2C viral
protein (E325G), while N6-benzyladenosine-resistant
mutants had double mutations at the 2C viral protein
(H118Y and I324M) [37]. However, the mechanism of
inhibition is yet to be determined. Both MRL-1237 and
TBZE-029, derivatives of benzimidazole, exhibit antiviral
activity against various enteroviruses, and have been
identified to target the picornaviral 2C viral protein
[111,112]. Both of these derivatives may exert potent
antiviral activity against EV-71 since EV-71 and PV shared
high similarity in all the non-structural proteins. Guanidine
hydrochloride is an extensively-studied picornavirus inhibi-
tor [113,114], which inhibits the replication of PV
[115,116], coxsackieviruses [117], echoviruses, and foot-
and-mouth disease virus [118]. Interestingly, guanidine
hydrochloride also inhibits EV-71 infection and a single
mutation, M193L at the 2C protein was sufficient to confer
resistance [119]. This agent is likely to prevent the associ-
ation of 2C/2BC with host membrane structures during
viral replication [120].
The 3A viral protein of PV contains hydrophobic do-

mains that facilitate its binding with membranous vesi-
cles induced during viral RNA replication [121,122]. A
benzimidazole derivative, enviroxime exhibits potent ac-
tivity against PV and rhinovirus by interacting with 3A
viral protein [119]. Strong antiviral effects of enviroxime
have been shown against EV-71 [123]. Bifunctional in-
hibitors AN-12-H5 and AN-23-F6, are enviroxime-like
compound that also targets 3A, VP1 and VP3, inhibits
EV-71 infection efficiently [124]. However, the precise
mechanism of action by enviroxime and AN-12-H5
against EV-71 infection remains unknown. Another
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compound, TTP-8307, was identified as a potent 3A in-
hibitor that significantly inhibited CV-A16 infection,
with reduced activity against EV-71 [112].

Therapeutics targeting RNA-dependent RNA polymerase
(RdRP) complex
The viral RNA replication of enteroviruses begins with the
linkage of genomic RNA with the 3B protein (VPg) at the
5′ end to form the uridylylated state of VPg (VPg-pUpU).
Additionally, VPg uridylylation is stimulated by the viral
precursor protein 3CD [125]. The positive strand of viral
RNA is used as a template to synthesize the negative strand,
Figure 1 Schematic illustration of EV-71 intracellular infection and su
according to their mechanism of actions, which include molecular decoys,
polyprotein processing inhibitors and replication inhibitors.
which in turn serves as the template for the synthesis of
new positive strands. The synthesis of both positive and
negative strands of viral RNA is primed by VPg-pUpU
[126]. Nucleotide site 311 of the RNA-dependent RNA
polymerase (RdRP) of EV-71 is pivotal for VPg uridylylation
and viral RNA synthesis, as mutations here impair the
binding of VPg to RdRP, but did not influence normal
RdRP activity [127].
Ribavirin (1-β-D-ribofuranosyl-1,2,4-triazole-3-carbox-

yamine) is a conventional nucleoside analogue that targets
the RdRP of picornaviruses [128]. Ribavirin inhibits EV-71
infection with an IC50 of 266 μM, and prevents EV-71
mmary of the antiviral agents. The antiviral agents are classified
receptor antagonists, uncoating inhibitors, translation inhibitors,



Table 1 List of antivirals against EV-71 infection tested in vitro and in vivo

Antivirals EV-71 genotype
tested

IC50/EC50 In vitro cell
type

Resistant
mutants

In vivo mouse model Reference

Therapeutics targeting viral
attachment and entry

Molecular decoys

Recombinant SCARB2 B3 N/R RD [28]

PSGL-1 C2 N/R L-PSGL-1.1 [29]

Heparin mimetics

Heparin C2 205 μg/ml Vero, RD [25,36]

Heparan sulfate C2 290 μg/ml Vero [36]

Pentosan polysulfate C2 238 μg/ml Vero [36]

Dextran sulfate B4 N/R RD [25]

Suramin/NF449 B1, B3, B4 6.7 μM RD VP1 E98Q,
K244R

[25,37]

Kappa carrageenan B4 N/R Vero [38]

Enviroxime-like compounds

AN-12-H5 B1 0.55 μM RD VP1 M119L, VP3
R227K

[124]

AN-23-F6 B1 0.15 μM RD VP1 A224T [124]

Receptor antagonists

Anti-SCARB2 antibodies B3 N/R RD [28]

Anti-PSGL-1 antibodies B3, B4, C1, C2, C4 N/R Jurkat [29]

Bovine lactoferrin C2, MP4a 10.5 –
24.5 μg/ml

RD, Vero, SK-N-
SH

17-days old ICR [42,43]

Human lactoferrin N/R 103.3 –
185.0 μg/ml

RD, Vero [42]

SP40 peptide A, B4, C2 6 – 9.3 μM RD, HeLa, HT-
29, Vero

[39]

Anti-heparan sulfate peptide B4 N/R RD [25,40]

Therapeutics targeting viral
uncoating

Pyridyl imidazolidinone

BPROZ-299 C2 0.02 μM RD VP1 V192M [52]

BPROZ-284 A, B1, C2 0.04 μM RD [49]

BPROZ-194 C2 1.552 μM RD VP1 V192M [51,52]

BPROZ-160 C2 0.011 μM RD VP1 V192M [52]

BPROZ-112 A, B1, C2 0.04 μM RD [49]

BPROZ-103 C2 0.13 μM RD VP1 V192M [52]

BPROZ-101 A, B1, C2 0.0012 μM RD [52,53]

BPROZ-074 A, B1, C2 0.0008 –
0.018 μM

RD VP1 V192M [52,54]

BPROZ-033 A, B1, C2 0.0088 –
0.069 μM

RD [52,54]

WIN51711 B3 N/R RD [48]

Pleconaril A 0.13-0.54 μg/
ml

RD 1-day old ICR [56]

BW683C A > 10 μM HEp-2 [59]

Compound 3 g A 0.45 μM HEp-2 [59]

BTA39 A 0.001 μM Vero [57]
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Table 1 List of antivirals against EV-71 infection tested in vitro and in vivo (Continued)

BTA188 A 0.082 μM Vero [57]

Therapeutics targeting viral
translation

RNA-based therapeutics

siRNA B4 < 1 nM RD 1-day old Balb/c [67-72]

shRNA B4 < 1 nM RD 1-day old Balb/c [67-72]

Quinacrine C4 9.71 μM RD [75]

Amantadine Pseudo-EV-71 N/R COS-1 [78]

Therapeutics targeting viral
polyprotein processing

2A inhibitor

LVLQTM peptide C4 9.6 μM HeLa [83]

3C inhibitors

Rupintrivir C4 0.014 μM RD 2-days old ICR [93]

Compound 10b C2 0.018 μM RD [96]

Fisetin CMUH01* 85 μM RD [97]

Rutin CMUH01* 110 μM RD [97]

Therapeutics targeting viral
replication

2B inhibitor

DIDS C4 N/R RD [109]

2C inhibitors

Metrifudil B1 1.3 μM RD 2C E325G [37]

N6 benzyladenosine B1 0.1 μM RD 2C H118Y,
I324M

[37]

Guanidine-HCl B3 N/R RD 2C M193L [119]

3A inhibitors

Enviroxime A 0.15 μM Vero [112]

AN-12-H5 B1 0.55 μM RD 3A E39G [124]

AN-23-F6 B1 0.15 μM RD [124]

TTP-8307 A > 60 μM Vero [112]

GW5074 B1 6.4 μM RD [124]

3D inhibitors

DTriP-22 A, B2, C2 0.3 μM RD 3D R163K [130]

Ribavirin C2, M2b 266 μM RD, SK-N-SH,
N18

3D G64R, S264L 12-days old ICR [129]

Heat-shock protein 90 inhibitor

Geldanamycin B4, C2 N/R RD [105]

17-AAG C2, C4 N/R N/R 7-days old hSCARB-Tg
C57BL/6 mice

[105]

aMouse-adapted EV-71 strain Tainan/4643/98 (C2); bMouse-adapted EV-71 strain derived from MP4 with additional two passages in mice; *EV-71 strain with
unidentified genotype; and N/R means not reported.
RD: rhabdomyosarcoma cells; Vero: African green monkey kidney cells; SK-N-SH: human neuroblastoma cells; N18: mouse neuroblastoma cells; HeLa: human
cervical adenocarcinoma epithelial cells; HT-29: human colon adenocarcinoma cells; HEp-2: HeLa contaminant cells; Jurkat: human T lymphocytes cells; and COS-1:
monkey kidney fibroblast cells.

Tan et al. Journal of Biomedical Science 2014, 21:14 Page 7 of 11
http://www.jbiomedsci.com/content/21/1/14
induced paralysis and death in mice [129]. Recently, a
piperazine-containing pyrazolo [3,4-d] pyrimidine deriva-
tive, DTriP-22, was shown to effectively target the RdRP
of EV-71 with IC50 values of 0.15 – 0.98 μM, and suppress
the accumulation of both positive and negative strands of
viral RNA during EV-71 infection. DTriP-22-resistant
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mutants had mutations in the RdRP, implying that DTriP-
22 interacts with RdRP and inhibits poly (U) elongation
activity, but not VPg uridylylation [130].
Conclusion
Figure 1 and Table 1 summarizes all the potential targets
of antivirals and lists the recent antiviral agents with sig-
nificant antiviral activities against EV-71 infection as dis-
cussed above. Amongst these drugs, modified WIN
compounds are antivirals with the lowest IC50. Only
bovine lactoferrin, pleconaril, shRNA, siRNA, rupintrivir,
ribavirin and 17-AAG have been tested in vivo. Ribavirin
and amantadine are already in clinical use for other vi-
ruses, and rupintrivir and pleconaril are in clinical
development.
The availability of a suitable animal model carrying all

the required receptors and attachment factors for testing
of the antivirals will accelerate the development of antivi-
rals. The clinical use of other antiviral agents has been
hampered by the potential adverse effects to the host and
emergence of drug resistance mutants. Combination
therapy targeting different replication steps of EV-71
infection cycle has shown synergistic activity [131] and
could minimize the emergence of antiviral resistance. A
new antiviral strategy to screen all licensed drugs against
EV-71 infection would be more promising for clinical
use. Other newer antivirals that act as immunomodula-
tors and lethal mutagens offer a new strategy for develop-
ment of antivirals. With the endemic and epidemic
nature of EV-71, the continued efforts to develop anti-
viral agents for prophylaxis or treatment are crucial in
the absence of a vaccine. Together with an effective vac-
cine, eradication of EV-71 is anticipated.
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