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Improving clinical efficacy of adeno associated
vectors by rational capsid bioengineering
Dwaipayan Sen
Abstract

Adeno associated vectors (AAV) have shown considerable promise to treat various genetic disorders in both
preclinical and clinical settings mainly because of its safety profile. However, efficient use of AAV to deliver genes in
immune-competent sites like muscles and liver requires very high doses which are associated with concomitant
cellular immune response against the viral capsids leading to destruction of the transduced cells. Coupled with
that, there are enough evidences that at high doses, AAV particles are subjected to increased cellular phosphorylation/
uniquitination leading to proteasome mediated degradation and loss of the viral particles. The presence of preexisting
immunity against AAV further adds on to the problem which is acting as a major roadblock to efficiently use it as a
gene therapy vector in the clinics. To overcome this, rational bioengineering of AAV capsid becomes a prime tool by
which specific amino acid residue(s) can be suitably modified/replaced by compatible residue(s) to create vectors
having lower host immune response and higher intracellular trafficking rate. This article reviews the various aspects of
rationally designing AAV capsids like by site-directed mutagenesis, directed evolution and combinatorial libraries which
can create vectors having not only immune evasive property but also enhanced gene expression and transduction
capability. One or more combinations of these strategies have strong potential to create novel vectors which will have
suitable clinical efficiency even at a low dose.
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Introduction
AAV Biology
Adeno-associated virus (AAV) is a non-pathogenic
parvovirus that has been widely used as a vector of
choice for gene therapy. Although the virus has been
detected in many different tissues of several animal species
[1] it has not been associated with any disease [2,3].
Coupled with its ability to transduce both dividing and
non-dividing cells, and low immunogenicity, AAV makes
an exciting candidate for a gene therapy vector. Its
genome is composed of a 4.7-kb single-stranded DNA
packaged into a non-enveloped, icosahedral capsid [4].
The single stranded genome encodes for three open
reading frames (ORF) placed in between two inverted
terminal repeats (ITR), which helps in packaging by acting
as the origin of replication. Viral replication, transcription,
assembly and site specific integration is regulated by the
four non-structural proteins (Rep78, Rep68, Rep52, and
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Rep40) [5] encoded by the rep ORF. A 60-mer capsid is
formed by the assembly of three structural proteins (VP1,
VP2, and VP3) encoded by the cap ORF. The capsid
proteins responsible for viral entry into the cells recognizes
specific receptors on the cell surface leading to receptor
mediated endocytosis from clathrin-coated pits [6]. In
recombinant AAV, the gene of interest is included between
the ITRs while the rep and cap ORFs are supplied in trans.
Thus current recombinant AAV (rAAV) vectors persist
primarily as extra-chromosomal elements [7,8]. AAV has
been used for in vivo gene transfer to various target tissues
like muscle, liver, retina, lung or the brain. Despite the
reported success it is becoming increasingly clear that
humoral and cell mediated immune response against the
vector is a major impending factor towards the efficacy of
gene therapy [9]. Preexisting neutralizing antibodies and
antigen specific T cells recognizing AAV capsid proteins
against AAV capsids has been shown to negatively impact
the vector transduction and sustained gene expression by
immune mediated clearance of the transduced cells
expressing the capsid proteins [10,11].
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AAV and clinical trials- the problem of immune mediated
clearance of AAV vectors
AAV has been used in several clinical trials for both
inherited and non-inherited diseases with considerable
success (Table 1). In the phase-I dose escalation trial for
Leber’s congenital amaurosis (LCA), all 12 patients who
received a subretinal injection of AAV2 encoding a
protein required for isoamerohydrolase activity of retinal
pigment epithelium demonstrated improved vision [12]
with no significant immunological or toxic adverse events
[12,13]. As another example, AAV has also been used
to treat a chronic neurodegenerative disorder called
Parkinson’s disease. A study in which [14,15] 12 patients
with advanced Parkinson’s disease, AAV vector carrying a
gene encoding glutamic acid decarboxylase was injected
into the subthalamic nucleus on one side. Following
injection, motor activity on the treated side was improved
significantly relative to the untreated side which was
persistent for atleast one year. Most importantly there
were no adverse affects attributable to gene therapy even
at the highest dose.
In contrast to these clinical studies, which targeted

immune privileged sites, AAV has limited success when it
came to treat monogenic diseases like haemophila B and
lipoprotein lipase (LPL) deficiency following intravenous,
intrahepatic or intramuscular administration (Table 2).
For example in the first clinical trial for hemophilia B
conducted by Katherine High’s group [11] there was
strong-cell mediated immune response against the AAV
capsid antigens in the high dose recipient subject which
lead to destruction of the AAV2 transduced hepatocytes
resulting in only transient therapeutic expression of Factor
(F). IX (2 months). There was also a very steep increase in
the neutralizing antibody titer against the capsid following
Table 1 AAV in clinical trials

AAV serotype Disease Administration

rh.10 Late Infantile Neuronal Ceroid
Lipofuscinosis

Intracranial

1 Pompe disease Intradiaphragma

2 Leber Congenital Amaurosis Subretinal

2 Retinal disease (MERTK mutation) Subretinal

2.8 Hemophilia B Intramuscular, h
intravenous

2 Idiopathic Parkinson’s Disease Intracranial

1,2 Alpha-1 Antitrypsin Deficiency Intramuscular

1 Lipoprotein Lipase Deficiency Intramuscular

2.5 Duchenne Muscular Dystrophy Intramuscular

2 Cystic Fibrosis Intranasal, endo

2 Rheumatoid arthritis Intraartiular

2 Age-related macular degeneration Intravitreal

1,6 Severe heart failure Intracoronary
vector administration [11]. In the recent hemophilia B
clinical trial using self complementary AAV8 vector, [16] a
similar problem was encountered in the high vector dose
group. There was an increase in liver transaminases with
concomitant drop in the circulating Factor IX levels
8 weeks post vector administration (Table 2). These
findings were found to be because of capsid specific
T-cell responses which lead to the loss of the transduced
hepatocytes. Thus, overall the theme of dose dependent
immune response against the AAV capsid is still a persisting
and real problem [17].

Review
Strategies to avoid immune response against AAV capsid
Transient immune-suppression
One of the major barriers to successful gene delivery
with AAV vectors is the humoral immunity to wild type
vectors. Humans are natural carriers of AAV genome.
Neutralizing antibodies (NAb) to AAV (AAV1 and 2) in
humans was first reported in the early 60s and 70s
[18,19]. Recently, more than 100 natural AAV variants have
been isolated from human and non-human primates tissue
specimens [1,20,21]. AAV2, which is the most widely used
and characterized serotype has a seroprevalence of almost
30-60% in samples from 10 countries and 4 continents
(America, Europe, Africa, and Australia) [22]. In the naïve
host, humoral immune responses are elicited upon AAV
vector application. Transient immune-suppression is one
of the ways that has been considered to circumvent this
humoral response against AAV. Use of clinically approved
immunosuppressive drugs like rituximab and cyclosporine
in rhesus monkey which were systemically injected with
AAV vector resulted in elimination of anti-F.IX NAb with
restoration of plasma F.IX transgene product detection.
route Trial Number (www.clinicaltrial.gov)

NCT01161576

tic NCT00976352

NCT00643747; NCT00516477; NCT00999609; NCT00749957

NCT01482195

epatic, NCT00515710; NCT01687608; NCT00979238; NCT01620801

NCT00985517

NCT00430768; NCT01054339; NCT00377416

NCT00891306; NCT01109498

NCT00428935

bronchial NCT00004533

NCT00617032, NCT00126724

NCT01024998

NCT00454818; NCT00534703

http://www.clinicaltrial.gov


Table 2 Adverse immune response against AAV in haemophilia B clinical trials

Vector No of
subjects

Vector dose Adverse Effect Immune response Reference

AAV2 2 2X10^12 (high dose) Liver toxicity based on elevated AST/ALT
levels beginning 4 weeks post vector
infusion with concomitant decline of
circulating h.FIX to the baseline (<0.1%)
by 8 weeks

CD8+ T cell response against AAV capsid as
well as preexisting neutralizing antibody against
AAV2 capsid prevented long term expression

[11]

AAV2 4 4X10^11 (low dose) No increase in circulating hF.IX from the
baseline (<0.1%), increased transaminases
only in one subject having the lowest
pretreatment NAb

CD8+ T cell response against AAV capsid as
well as prexisting neutralizing antibody against
AAV2 capsid prevented hF.IX expression

[11]

AAV8 1 2X10^12 (high dose) Liver toxicity based on elevated AST/ALT
levels beginning 8 weeks post vector
infusion with concomitant decline of
circulating hF.IX levels

CD8+ T cell response against AAV capsid leading
to destruction of the transduced hepatocytes

[16]
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When this finding was extended to humans, rituximab
reduced neutralizing antibodies to AAV2 and 5 significantly
in ~30% of subjects [23]. However immune-supression
has its own disadvantage also. Manning and his group
demonstrated that the use of antibodies and or small
molecule inhibitors against CD40 was successful in vector
readiministration, which was however dented following the
second administration due to development of neutralizing
antibodies (without immune-suppression) [24]. In another
study, Jiang et al., tried to transiently suppress the immune
system to inhibit AAV capsid specific T cell response
against transduced hepatocytes expressing F.IX transgene
in rhesus macaques [25]. But no effect was found on
the expansion of memory T cells in any of the animals.
Also one of the three animals who received immune-
suppression unexpectedly developed strong anti-AAV
antibody response. Furthermore in this study neutralizing
antibody titres increased dramatically upon withdrawal of
the immune-supression therapy after 6 weeks indicating
that the tolerogenic properties of AAV can be altered after
prolonged immunosuppressive treatment.
To summarize, immune-suppression can be advantageous

as it represses the body’s immune response long enough for
the AAV capsid proteins to be not recognized by our
defense mechanism thereby preventing NAb formation and
allowing readministration of the vector. However this
strategy will not be useful to circumvent preexisting
NAb against AAV capsid. Thus, alternate strategies like
rational capsid modifications must be looked into to evade
these neutralizing antibodies.

Rational design of AAV variants by site-directed
mutagenesis
The ubiquitin–proteasome pathway has been shown to play
an essential role in AAV intracellular trafficking [26,27] and
this pathway has been shown to be modulated by epidermal
growth factor receptor protein tyrosine kinase (EGFR-PTK)
signaling [28]. In this study, the authors found that
inhibiting the EGFR-PTK signaling enhances the efficiency
of AAV transduction by efficient second strand synthesis
as well as increased viral trafficking from the cytoplasm
to the nucleus. The same group later showed that
EGFR-PTK is able to phorphorylate tyrosine residues
on AAV capsids invitro. Extending this finding invivo
the authors were able to elucidate a negative effect of
tyrosine phosphorylation on viral intracellular trafficking
and transgene expression [29]. Thus based on these
findings it was hypothesized by the authors that phosphor-
ylation of tyrosine residues on AAV capsid mediated by
EGFR-PTK serves as a signaling for uniquitination of the
capsid leading to proteasomal degradation in the cytoplasm
before the viral particles can enter into the nucleus. Thus
the authors carried out site directed mutagenesis of
surface exposed tyrosines (tyrosine(Y) to phenylalanine
(F)) on the AAV capsid (Y252, Y272, Y444, Y500, Y700,
Y704, and Y730) and showed increased invitro (~10 fold)
and invivo (hepatic, ~30 fold) transduction efficiency of
the novel vectors.
Following this finding, tyrosine mutant AAV vectors

were used in other target sites like retina [30], skeletal
muscles [31], human hematopoietic stem cells (HSCs)
[32], fibroblasts and mesenchymal stem cells [33] where
it showed efficient transduction as compared to the wild
type vectors. For example AAV 2-Y444F and Y730F,
mutant Y733F in AAV-8, and mutant Y446F in AAV-9
demonstrated enhanced transduction efficiency in the
retinal ganglion cell layer after intravitreal injection
[34]. AAV6 is reported to be the most efficient vector for
transducing muscles with ~500 fold higher efficiency than
AAV2 vector [35]. In one study, the authors demonstrated
high efficiency transduction in muscles using the tyrosine
mutant AAV6-Y445F and AAV6-Y731F compared to
WT-AAV6 (6–8 fold). More recently a novel double
tyrosine mutant of AAV6 (Y705 + 731 F) demonstrated
high-efficiency transduction of HSCs as well as expression
of the β-globin gene in erythroid progenitor cells for the
potential gene therapy of human hemoglobinopathies
such as β-thalassemia and sickle cell disease.
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Apart from tyrosines, serines (S), threonines(T) and
lysines(K) are also potential sites for phosphorylation and
or ubiquitination on the AAV capsids and traditionally
mutating them could augment AAV transduction effi-
ciency. It has been shown earlier that targeted inhibition of
the serine/threonine kinase phosphorylation of a cellular
protein FK506-binding protein (FKBP52), improved AAV
mediated gene transfer by 30-fold compared to ~5 fold
increase seen with inhibition of tyrosine kinases alone [36].
It is also known that lysine residues are direct targets for
host cell ubiquitination [37] and therefore modifying them
is likely to be reduce vector ubiquitination and subsequent
proteasome mediated degradation. The degraded capsid
proteins could also be presented to the T-cells via major
histocompatibility complex (MHC)-class I leading to
destruction of the transduced cells (Figure 1).
Going by this logic, several studies by our laboratory at

Christian Medical College, Vellore, India, had generated
S/T/K mutants on AAV1, 2, 5 and 8 which has proven to
be more efficient in hepatic gene delivery as compared to
their wild type counterparts [38-40]. S/T residues were
mutated to alanine (A), while K were mutated to arginine
(R). The residues chosen for mutation were selected based
on structural predictions on their presence in and around
phosphodegrons (phosporylation sites) on the AAV capsid
structure as well as residues which lie in the antigenic
epitopes that will create vectors which not only will
be efficient in terms of higher transduction and gene
Figure 1 Targeted mutation of S/T/K residues on AAV capsid. Followin
travels through the cytosol, undergoes acidification in the endosomes befo
trafficking, where uncoating of the viral capsid takes place resulting in relea
are potential sites for phosphorylation and subsequent poly-ubiquitination
This prevents trafficking of the vectors into the nucleus to express its transg
capsid fragments can be presented by the MHC-Class I molecules on the c
thus destroying the transduced cells and further reducing persistent transgen
phosphorylation sites on the capsid. This leads to reduced ubiquitination and
enter nucleus and express the transgene. Preventing/lowering the overall cap
lower host immune response against the vectors. ub- ubiquitination, p- phop
expression, but also will have reduced neutralizing
antibody response against the viral capsids allowing
for persistent transgene expression. Indeed it was
found that several vectors like AAV2-S489A, S662A,
T251A, K544R, AAV5-S652A, AAV1-S669A, AAV8-K137R,
S671A to demonstrate several fold increase in transgene
expression (enhanced green fluorescence protein, luciferase
or human F.IX) in murine liver as compared to their WT
vectors [38-40]. Also, the AAV8-K137R mutant vector
showed reduced hepatic inflammatory response as well
as reduced neutralizing antibody response (2 fold) in
comparison to the wild type vector.
In summary, rational point mutations on AAV capsids

have shown considerable promise and this field is still
wide open to explore especially since we have access to
the 3 dimensional (3D) structures of several clinically
important AAV serotypes [41-49]. Using the 3D models,
exact prediction of phosphorylation/ubiquitination and
antigen recognition epitopes are possible which will
give scientists more confidence to modify those regions.
For example, it is important to understand that phosphor-
ylation of the viral capsid serves as a trigger for uncoating
and release of viral genome inside the host cell. Thus
phosphorylation sites cannot be replaced randomly and
have to be mutated strategically. Knowledge of the 3D
structure enables us to choose the phosphorylation sites
to mutate safely within the phosphodegrons as they are
the ones that are used by host as a signal for clearance of
g cellular internalization of AAV by receptor-mediated endocytosis, it
re getting released. Post endosomal escape, AAV undergoes nuclear
se of its genome and induction of gene expression (a) S/T/K residues
which serves as a cue for proteasomal degradation of capsid proteins.
ene leading to low gene expression. Also, the proteasomally degraded
ell surface for CD8 + T-cell recognition. This leads to immune response
e expression. (b) Point mutations, S/T to A and K to R, prevents/reduces
proteosomal degradation allowing more number of intact vectors to
sid degradation also reduces antigen presentation to T cells resulting in
horylation.
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the virus. These residues are thus expected to have
minimum effect on the capsid uncoating processes,
essential for gene expression inside host cells. Also, to
preserve capsid geometry, only those residues that lie
outside the interaction interfaces in the phosphodegron
can be selected for mutagenesis. Knowledge of the 3D
structures also allows us to avoid mutating any residues
which falls in the capsid interaction domains or receptor
binding domains thus preserving their infectivity and
tropism. Recently, with help of the 3D structural
information, Tenney et al., [50] could define the amino
acids responsible for AAV8’s high hepatic transduction
efficiency. In this study, the authors created chimeric
AAV2 vectors (containing amino acid residues from the
AAV8 capsid variable regions at the two fold symmetry
axis) that were found to transduce murine liver cells
nearly as well as AAV8. More importantly, knowledge of
the antibody binding domain (s) and or T- cell recognition
epitope (s) from 3D structural analysis coupled with wet
laboratory experiments will enable us to save time and
enforce informed judgment on choosing the appropriate
residues for mutation. Thus, studying the 3D structures of
AAV capsids enables us to further optimize and create
efficient mutants to take them to the clinics for treatment
of diseases like hemophilia.

Rational design of AAV variants via peptide insertion
Another approach to create novel AAV variant is to insert
known ligands into the AAV capsid thereby allowing
retargeting to specific cell types to which the WT
vectors have a low affinity [51]. By this method it has been
shown retargeting AAV vectors limits bio-distribution and
improves specificity of transduction. For example targeted
insertion of receptor-specific ligands or single-chain
antibodies at the N-terminus of VP proteins has been
tried out as early as 1998 by Yang et al., [52] where the
authors inserted a single-chain antibody against human
CD34, a cell surface protein present on haematopoietic
progenitor cells, at the 5′ ends of VP1, VP2 and VP3
resulting in an increased transduction of CD34-positive
KG-1 cells. Later Wu et al., [53] demonstrated that
exchanging the HA epitope by the serpin receptor ligand
KFNKPFVFLI78 resulted in a 15-fold higher infection of
the lung epithelial cell line IB3 than by wild-type AAV-2.
Targeting of rAAV-2 vectors by insertion of ligand coding
sequences into the capsid genes was first done by Girod
et al., in 1999 [51]. In this study the authors inserted a 14
amino-acid peptide L14 (QAGTFALRGDNPQG) into the
capsid DNA sequence. The L14 peptide contained a motif
of the laminin fragment P1 which is the target for many
integrin receptors that could be recognized by viruses for
their cellular entry. The novel vector created by this
peptide insertion could infect cell lines like B16F10
(mouse melanoma) and RN22 (rat swannoma) cell lines in
contrast to wild-type AAV-2. AAV vectors are naturally
hepatotrophic when injected systemically with varying
propensity towards the liver [54]. However, it is sometimes
desirable to get the AAV directed towards organs other
than the liver. To this end Asokan et al., [55] generated a
hybrid vector AAV2i8 which contains a linear epitope of
AAV8 on the heparin binding site of AAV2. In this study,
using site-directed mutagenesis the authors replaced the
hexapeptide motif 585-RGNRQA-590 (heparin sulfate
footprint on AAV2 capsid) with corresponding amino
acids from different AAV serotypes and non human
primate isolates thereby generating a series of AAV2 inner
loop (AAV2i) mutants. Amongst the several mutants that
were created AAV2i8 displayed systemic biodistribution
(more redirection to muscles) as compared to the wild type
vectors when injected systemically in BALB/c mice.
Additionally, the chimeric AAV2i8 also elucidated signifi-
cantly less neutralization by anti-AAV2 serum or human
serum. Because of its efficient retargeting to muscles,
AAV2i8 can be a promising candidate for treating several
musculoskeletal diseases. In a recent study, the authors
created improved AAV vectors by rational engineering of
capsid-glycan receptor interactions [56]. Two new vectors
were created, AAV2G9 (dual glycan binding strain) and
AAV2i8G9 (muscle tropic strain) by including the Gal
binding footprint from AAV9 onto the VP3 backbone of
AAV2 or the chimeric AAV2i8 with the help of structural
aligning and site directed mutagenesis. The onset of gene
expression from AAV2G9 (luciferase) was more rapid as
compared to the parent vector AAV2 in Balb/c mice
although the tropism was more or less towards liver (like
AAV2). Further evaluation of the transduction profile of
AAV2G9, revealed a significantly higher propensity towards
heart (25 fold), kidney (4 fold), skeletal muscle (4 fold) and
liver (4 fold) compared to WT-AAV2. The liver detargeted,
muscle specific AAV2i8G9 also showed similar improve-
ment in its transduction profile making it an ideal and
optimal vector for systemic gene therapy of muscular
dystrophies [57-59]. Bowles et al., described a rationally
designed chimeric AAV2.5 [59] used for a phase I clinical
trial for Duchenne Muscular Dystrophy (DMD) in 2011.
Following a rational approach, AAV2.5 was generated
from the AAV2 capsid with five mutations from AAV1.
The novel AAV2.5 vector not only had improved muscle
transduction capacity like AAV1, but also had reduced
antigenic cross reactivity against both AAV1 and AAV2.
In this randomized trial with DMD boys (AAV vector
injected into bicep muscle), no cellular immune response
or any other adverse events were noticed against AAV2.5,
although recombinant AAV genome were detected in all
the patients establishing the safety and efficacy of the
rationally designed AAV2.5 vector. Vandenberghe et al.,
[60] described a hybrid vector AAV6.2 which contained a
single F129L mutation in the phospholipase A2 domain.
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This vector demonstrated functional correction of cystic
fibrosis transmembrane regulator in cultured human
airway epithelia [61] as well as demonstrated efficient gene
transfer compared to other AAV serotypes in mouse nasal
airways and cultured human airway epithelia [62].

Directed evolution of AAV variants
Chimeric capsids based on in vitro evolution strategy
was first described by Grimm et al.,, in 2008 [63]. In this
study, cap sequences from 8 AAV serotyopes (AAV2,4,5,8,9,
avian, caprine and bovine AAV) were randomly shuffled
and reassembled and selected first for its ability to
transduce hepatoma cell lines in the presence of IVIG.
The authors were able to get a single mutant after the
selection process, AAV-DJ, a chimera of AAV2, 8 and 9.
AAV-DJ was shown to have a reduced host immune
response compared to AAV8 and AAV9 at lower IVIG
levels. Koerber et al., in 2008 [64] created seven chimeric
AAV vectors by shuffling capsid sequences of AAV1,2,4,5,6,8
and 9. One of the chimeric mutant vectors with a
greater than 90% similarity to AAV1/6 showed a 400
fold more reduction to neutralization by IVIG com-
pared to AAV2. Maheshri et al., [65] utilized directed
evolution approach to generate AAV with enhanced
gene delivery capability. Using combinatorial library
approaches the authors created two AAV2 derived
mutants, AAV2.15 and AAV2.4 which contained mutations
at critical antigenic sites. Both these vectors could resist
neutralization from antibodies in vivo at serum levels which
were much higher than what is required to neutralize the
wild type vector. Additionally, both the mutants elucidated
increased gene expression when compared to the wild type.
Using DNA shuffling in an in vitromodel of human ciliated
airway epithelium, Li et al., [66] were able to generate two
AAV variants (harboring capsid components from AAV-1,
AAV-6, and/or AAV-9) with improved efficiency (25% com-
pared to the parental vectors) to deliver cystic fibrosis
transmembrane conductance regulator (CFTR) gene to
human ciliated airway epithelium isolated from cystic fibro-
sis patients. More recently Dalkara et al., [67] successfully
created a novel AAV vector to infect outer retina from the
vitreous by utilizing the technique of directed evolution
invivo. In this study they enriched for an AAV variant
which showed widespread delivery to the outer retina and
reverses the disease phenotypes of X-linked retinoschisis
and Leber’s congenital amaurosis in murine models. This
vector also efficiently transduced primate photoreceptors
from the vitreous.

Peptide scanning for immunogenic epitopes
We have seen in clinical trials using AAV that in targeting
immune competent sites like liver and muscles, preexisting
humoral immunity acts as an impediment to long term
gene expression. Thus it necessitates basic knowledge of
immunogenic epitopes on AAV capsids to rationally design
AAV variants that can evade this immune response. Peptide
scanning to map neutralizing epitopes for antibodies
against AAV capsid opens up another rational approach
to bioengineer AAV capsids. In one such early study
Moskalenko et al., [68] identified 6 linear epitopes that are
targets of neutralizing antibodies present in human serum
samples. Mouse monoclonal antibody epitope was further
identified by Wobus et al., [69] where the authors mapped
both linear and conformational immunogenic epitopes by
using antibodies and peptide insertion mutants of AAV2
[51]. These AAV2 mutants displayed an integrin binding
ligand, L14, at surface exposed positions of the capsid
[69]. In later years further work was carried out by
Huttner et al., [70] which led to the identification and
validation of positions 534 and 573 on AAV2 capsid as the
major antigenic determinants in humans. One important
aspect to keep in mind is that altering the immune epitope
on the AAV capsids should not change its transduction
efficiency. To this end, Huttner et al., [70] created a
mutant I-587 which was able to transduce B16F10 cells
despite the presence of neutralizing antibodies. Further
Perabo et al., [71] and Huttner et al., [70] demon-
strated similar finding where insertion of peptides at 587
modulated both cell tropism and antibody neutralization.

Conclusion
Although AAV has gained immense popularity as a gene
therapy vehicle to treat several genetic disorders, there is
still a persistent need to further improve on the vector
capsid design and engineering which can bypass the
problem of neutralization by preexisting antibodies as
well as T-cell mediated immune clearance. Over the past
decade, many technologies have been used to make the
AAV capsids less immunogenic and more efficient. For
example, coating of AAV particles by inert polymers like
polyethylene glycol (PEG) has been shown to modestly
decrease its immunological properties. Site directed muta-
genesis of amino acid residues (S/T/K/Y) on AAV capsids
based on their phosphorylation status and presence on
B- cell epitope has created novel vectors with reduced
antibody response as well as high transgene expression.
Rationally creating point mutations does not seem to
interfere with their overall safety profile or packaging
efficiency when compared to wild type vectors. Thus, it
enables us to achieve high gene expression at a low vector
dose which will further reduce the chance of eliciting
immune response against the viral particles. Also, inserting
known peptides at specific sites on AAV capsids can alter
the natural tropism of AAV which is extremely helpful for
targeted gene delivery at specific organs. Finally directed
evolution of AAV can create novel chimeric vectors which
can also have reduced neutralizing antibody response along
with high target site specificity.
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An alternate strategy that can be employed in quest of
a ‘stealth’ vector is to isolate/screen novel AAV’s from
human sources [8]. This strategy can potentially minimize
immune response against the viral capsids because the
host immune surveillance will most likely treat them as
self antigens. Overall, although considerable progress has
been made in the field of capsid bioengineering, there is
still a need to improve on the available tools and existing
vectors along with continued search to find/design newer
vectors which can be truly called as a ‘super vector’ that is
independent of prexisting antibody and immune profile
across different patients.
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