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Abstract

Background: lonizing radiation (IR) activate the early growth response-1 (Egr-1) promoter by
production of radical oxygen intermediates (ROls). Egr-EF, an expression vector pClneo containing
Egr-1 promoter cloned upstream of the cDNA for Fit3 ligand, was used to treat hematopoietic
damage. 5-fluorouracil, a commonly used chemotherapeutic agent, cause tumor cell death by
producing DNA damage and generating ROls. We therefore hypothesized that clinically employed
chemotherapeutic agents that increase ROIls could also be employed to activate Egr-EF in a
chemoinducible gene therapy strategy. The goal of this study was to explore the effect of Flt3
Ligand gene transcription regulated by fluorouracil-induced Egr-1 promoter on hematopoietic
recovery.

Methods: Human Flt3 Ligand (FL) cDNA and enhanced green fluorescent protein (EGFP) cDNA
were linked together with IRES and inserted into the expression vector pCl-neo under control of
the Egr-1 promoter (Egr-EF). The vector was transfected into the HFCL human bone marrow
stromal cell line, and these cells were exposed to 5-FU, a chemotherapeutic drug. Expression of FL
by HFCL/EF cells after 5-FU treatment was determined with ELISA, western blot and RT-PCR
assays. In addition, the effect of FL from HFCL/EF cell culture supernatants on growth of CD34*
cells from cord blood was also studied. HFCL/EF cells were injected into CB-17 combined
immunodeficient (SCID) mice with BI16 melanoma. 5-FU was given three days after injection of the
HFCL/EF cells. In the recipient mice, white blood cell levels in peripheral blood and expression of
EGFP and FL in human stromal cells were measured. Tumor volumes in tumor-bearing mice were
also measured.

Results: 5-FU treatment increased EGFP levels and secreted FL levels in HFCL/EF cells.
Supernatants from HFCL/EF cell cultures treated with 5-FU increased CD34* cell growth
significantly. HFCL/EF exhibited an increase in the number of white blood cells after chemotherapy.

Conclusion: The data presented here support the use of transcriptional control mediated by
chemoinducible gene therapy to reduce hematopoietic injury associated with 5-FU.
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Background

Gene therapy for hematopoietic deficiencies is based on
delivery and expression of hematopoietic tissue specific
genes encoding hematopoietic growth factors [1]. Thera-
peutic gene delivery systems include vectors, lipofection,
naked DNA and cellular vehicles. Poor specificity of
hematopoietic tissue targeting and limited control of
hematopoiesis-specific gene expression have limited the
clinical utility of gene therapy for hematological diseases
[2]. One approach to control gene expression is through
the use of tissue-selective promoters to activate transcrip-
tion of transgenes |3]. Another more interesting approach
is the eukaryotic inducible expression system [4,5]. It is
important to determine whether spatial and temporal
control of hematopoietic gene expression following
chemotherapy increases the efficiency and safety of radio/
chemoinducible gene therapy. Recently, ionizing radia-
tion (IR) has been used to activate target genes for therapy
[6]. Cells exposed to IR generate reactive oxygen interme-
diates (ROIs) that activate radio-inducible CArG [CC (A/
T)6GG| DNA elements of the early growth response gene-
1 (Egr-1) [7]. Egr-1 expression induces expression of
downstream target genes. Therefore, therapeutic genes can
be inserted downstream of Egr-1 and their expression can
be induced by IR. This approach is known as radiation-
gene therapy [8]. This strategy has been used with cDNA
encoding human recombinant FIt3 Ligand (FL) that has
been ligated into a eukaryotic expression vector. Using
this vector system, FL has been preferentially activated in
the hematopoietic microenvironment by IR [9]. FL is a
cytokine that has been shown to induce early hematopoi-
etic activity in animal studies and is secreted by bone mar-
row stromal cells and other hematopoietic cells [10]. The
combination of FL with chemotherapeutic agents that
damage DNA, such as 5-FU and adriamycin, has resulted
in synergistic anticancer effects and reduced hematopoi-
etic cytotoxicity in experimental models [11,12].

Similar to IR, chemotherapeutic agents such as 5-FU cause
ROI generation and DNA damage. Therefore, chemother-
apy can also be used to activate the Egr-1 promoter and
induce expression of downstream therapeutic genes. This
approach is known as chemo-inducible gene therapy [13].
Although cytokines that stimulate hematopoiesis often
result in hematopoietic recovery after chemotherapy, no
correlation has been established between expression of
chemo-inducible genes and hematopoietic protective
effects. A common feature of chemotherapeutic agents is
the production of oxygen and other free radical species
that lead to DNA damage, lipid peroxidation, protein
modification and cellular death [14,15]. ROIs are gener-
ated by a number of widely used anticancer drugs includ-
ing doxorubicin [16], cisplatin [17], cyclophosphamide
[18], 5-fluorouracil (5-FU) [19], gemcitabine [20], paclit-
axel [21], temozolomide [22] and resveratrol [23]. We
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hypothesized that ROI generating chemotherapeutic
agents could induce production of hematopoietic growth
factor in bone marrow stromal cells transfected with a vec-
tor encoding the CArG elements of the Egr-1 promoter
ligated upstream of cDNA encoding Flt3 Ligand. Fms-like
tyrosine kinase 3 (FLT3) ligand (FL) is a novel hematopoi-
etic cytokine that is involved in regulation of early hemat-
opoiesis [24]. Either alone or in combination with other
growth factors, FL stimulates the proliferation of highly
enriched human and murine hematopoietic stem cells in
vitro and leads to the proliferation and mobilization of
hematopoietic and lymphoid progenitor cells in vivo in
animals and humans [10]. In addition, FL may enhance
dendritic cell (DC)-driven homeostatic T cell expansion
and may also improve thymopoiesis [25]. Locally
expressed FL may also show anti-tumor effects [11]. Daily
subcutaneous administration of FL is associated with
dose-limiting systemic side effects. As an alternative to
daily systemic subcutaneous injections, localized FL
expression restricted to stromal cells within bone marrow
may facilitate hematopoietic effects without the systemic
toxicity associated with gene transfer [26]. FLT3 gene
mutations have been identified as prognostic factors in
myeloid malignancies, even though no evidence for con-
stitutive activation of FLT3/FLT3L has been found in such
malignancies [27,28]. It is important to determine
whether spatial and temporal control of hematopoietic
gene expression following chemotherapy increases the
efficiency and safety of gene therapy. For example, 5-FU
has been replaced in an established 5-Fu combination
chemotherapy with the gene therapy/chemotherapy sys-
tem, Ad-LpCDIRESE1A/5-fluorocytosine (5-FC), in order
to reduce toxicity and increase efficacy. This approach is
known as "genetic combination therapy" [12]. The goal of
using this vector is to decrease the toxic effects of chemo-
therapy on normal cells and to increase the efficacy of
chemotherapy in cancer cells. Using this approach, the
concentration of 5-FU administered can be sufficiently
high to kill even nondividing cancer cells.

In this study, to decrease systemic toxicity and increase
safety of FL, regional delivery approaches were developed
to restrict FL to bone marrow stromal cells in the hemat-
opoietic microenvironment. Based on our previous study
on Egr-1 promoter regulated Flt3 ligand (FL) or GM-CSF
expression induced by ionizing radiation (IR) or chemo-
therapy [9,29], we report here that 5-fluorouracil (5-FU),
a commonly used chemotherapeutic agent that stimulates
ROIs generation, induces the production of FL in human
bone stromal cells transfected with Egr-EF containing
CAr1G elements cloned upstream of the cDNA for human
recombinant FL. 5-FU was used to recover hematopoiesis
from chemotherapy- induced marrow failures and CFU-
GM in culture and as xenografts in tumor-bearing SCID
mice. These data support the use of chemoinducible gene
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therapy to reduce toxicity of 5-FU and facilitate the effect
of the 5-FU-induced FL on hematopoietic recovery after
exposure to 5-FU.

Methods

Recombinant vector construction

The Egr-EF vector was constructed as follows. FL cDNA
and EGFP cDNA were linked together with IRES in the 5'
non-translated region and then inserted into the eukaryo-
tic expression vector pCl-neo under the control of the
radiation-inducible Egr-1 promoter as described previ-
ously [9]. The pCI-F vector (containing FL cDNA without
Egr-1 ¢DNA) and pCl-neo vector (without FL ¢cDNA or
Egr-1 cDNA) were used as control vectors. Vectors were
stored at -80°C and diluted in formulation buffer (Gen-
Vec) to the appropriate concentration before use.

Cell culture and transfection

Egr-EF, pCI-F and pCl-neo vectors were transfected into
human bone marrow stromal cells (human fibroblast cell
line, HFCL, ATCC, Rockville, MD, USA) using Lipo-
fectamine (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer's instructions as previously described
[30]. Positive clones were identified by G418 resistance. A
standard clone selection method was used to assay the
transduction efficiency. B16 cells (ATCC, Rockville, MD,
USA), un-transfected HFCL cells and transfected HFCL
cells were maintained in Dulbecco's modified Eagle's
medium (DMEM; Gibco BRL, Grand Island, NY, USA)
with 10% fetal calf serum (FCS) at 37°C and 5% CO,.

Cord blood samples (CB) were obtained from umbilical
tissues of full-term deliveries with informed consent of
the mothers and used in accordance with procedures
approved by the Academy of Military Medical Science of
China on Clinical Investigation [31,32]. Mononuclear
cells (MNC) were isolated using Ficoll-Hypaque (1.077 +
0.001 Kg/L, Sigma, St. Louis, MO), washed, and resus-
pended in Iscove's modified Dulbecco's medium (IMDM;
HyClone, Logan, UT) supplemented with 100 mL/L fetal
bovine serum (FBS; GibcoBRL, Grandlsland, NY). CD34+-
enriched cell purification utilized positive selection using
the miniMACS immunomagnetic separation system
(Miltenyi Biotec Bergish, Glodbach, Germany) according
to the manufacturer's instructions as previously described
[33]. The purity of selected cord blood CD34+ cells was
always greater than 87%, and the cells were cryopreserved
in liquid nitrogen until use.

In vivo studies

Six- to eight-week-old female B17 SCID mice (20 + 2 g)
were purchased from the Laboratory Animal Center of
Academy of Military Medical Science (Beijing, China). All
animals were housed under specified pathogen free (SPF)
conditions. Experiments were performed in accordance
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with the guidelines of the Institutional Animal Care and
Use Committee of the Academy of Military Medical Sci-
ence of China. The mice were subcutaneously inoculated
in the oxter of the left forelimb with 0.2 ml of 2 x 10¢/ml
B16 cells. Five to six days later, healthy mice with tumors
were randomly divided into four groups (n = 9/group).
Next, 106 cells (HFCL, HFCL/pCl, HFCL/F, or HFCL/EF
cells) were injected into the tail vein of the mice. Three
days after injection of the transfected cells, mice were
given intraperitoneal injections of 100 mg/kg 5-FU, d1-3.
White blood cell counts in the peripheral blood were
determined before 5-FU treatment (day 0) and 5, 10, 15,
20, and 25 days after 5-FU treatment. In a second experi-
ment, tumor-bearing mice were randomly divided into
four groups (n = 6/group): HFCL/EG + 5-FU, HFCL + 5-
FU, HFCL/EG + normal saline (NS), HFCL + NS. The mice
were given an intravenous injection of 1 x 100 transfected
cells. After three days, mice were given intraperitoneal
injections of 100 mg/kg 5-FU or an equivalent volume of
normal saline. Bone marrow cells were harvested from
three mice from each group 72 h after injection of 5-FU or
saline.

Total RNA was isolated using TRIzol reagent (Invitrogen
Life Technologies, Carlsbad, California, USA) from cul-
tured HFCL/EF cells and bone marrow cells of tumor-
bearing mice 72 h after 100 mmol/L and 100 mg/kg 5-FU
treatment, respectively.

Blood cell type determination and tumor volume
determination

Peripheral blood was harvested from the transfected,
tumor-bearing mice at 0, 5, 10, 15, 20 and 25 days after 5-
FU or saline injection. The number of each cell type was
determined using an automated blood cell counter (NE-
8000, Toa. Medical Electronics, Kobe, Japan).

Tumor growth was monitored by periodic measurement
with calipers, and tumor

volume, V,, was calculated using the following formula: V,
= 1/2(maximal length, a) x (perpendicular width, b)2. The
tumor inhibition value, T, was calculated using the fol-
lOWing formula: TI (0/0) = [Vl, control group ~ Vt, treated group/vt,
control group] * 100%. Normalized tumor volumes, Vy, were
calculated using the following formula: Vg = V/V, 4,y o-
Day 0 is the day of vector injection.

Flow cytometry analysis of enhanced green fluorescent
protein reporter

In total, 2 x 10> HFCL/EF cells were seeded in a 12-well
plate. 12 h before treatment, the medium was replaced
with serum-free medium. Serum-free medium was used
because serum factors have been shown to stimulate the
Egr-1 regulatory sequence and induce gene expression.
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The cells were treated with various concentration of 5-FU
(0, 1, 2,50, 100, 200, 300 and 400 mmol/L) for 8 h, fixed
in 10% paraformaldehyde and imaged with a fluores-
cence microscope (Olympus, Tokyo, Japan). EGFP expres-
sion was further determined by FACS as described
previously [9]. Bone marrow cells were isolated from the
femur of transfected, tumor-bearing mice 3 days after
chemotherapy. EGFP-expressing cells were counted by
FACS.

In vitro measurement of FL protein expression
In total, 2 x 10> HFCL/EF, HFCL/F, HFCL/pCI and HFCL
cells were seeded in a

96-well plate (n = 3 wells/group). The cells were allowed
to adhere to the plate and were then washed with phos-
phate buffered saline (PBS) 3 times. The cells in each
group were treated with 100 mmol/L 5-FU in serum-free
medium. The culture supernatant was harvested at various
time points, and human FL expression was detected using
an FL ELISA kit (R&D Systems Inc, Minneapolis, MN,
USA).

Effects of HFCL/EF supernatant on CD34* cells
Confluent HFCL/EF cells were treated with 5-FU (100
mmol/L) for 24 h. The medium was replaced with serum-
free medium and the cells were incubated for 24 h. Super-
natants were then collected. CD34+ cells (1 x 104 cells/
well, 6 wells per group) were cultured in 24-well plates
with 30% (v/v) supernatant from transfected 5-FU treated
cells, 2-mercaptoethanol (104 mol/L), hydrocortisone
(106 mol/L), or SCF (50 ng/ml) + IL-3 (20 ng/ml) + IL-6
(20 ng/ml) in serum-free medium (CellGro SCGM, Boe-
hringer Mannheim). Supernatant from HFCL/EF cells that
were not exposed to 5-FU was used as a negative control.
Supernatants from HFCL/F, HFCL/pCI and HFCL cell cul-
tures 24 h after exposure to 5-FU were also used as nega-
tive controls. Cultures were incubated at 37°C with 5%
CO, for 10 days before FACS analysis. Two-color flow
cytometry was performed on a FacScan (Becton-Dickin-
son, Mountain View, CA, USA) as previously described
[30]. Briefly, cells were incubated in the presence of satu-
rating amounts of monoclonal anti-CD34-FITC (HPCA-1;
Becton-Dickinson, Mountain View, CA, USA) and anti-
CD38-PE (Leu-17; Becton-Dickinson, Mountain View,
CA, USA) antibodies. IgG1 isotype controls conjugated to
FITC and PE were also included.

RT-PCR analysis of FL RNA transcripts

Total RNA in each group was isolated using TRIzol reagent
(Invitrogen Life Technologies, Carlsbad, California, USA)
from cultured HFCL/EF cells 72 h after 100 mmol/L 5-FU
treatment and bone marrow cells from tumor-bearing
mice 72 h after 100 mg/kg 5-FU treatment. The following
primers were used: FL: P1 5'-GCG GAT CCG CTG GAG
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GAT GTG GCTG-3'; P2 5'-ATG AAA CAA GAG CTA GAA
ACT CAGG-3'; B-actin: P1 5'-AAG GCC AAC CGC GAG
AAG AT-3"; P2 5'-TCG GTG AGG ATC TTC ATG GAG-3'.
PCR was performed using an RT-PCR kit (Takara, Dalian,
China). The PCR conditions were as follows: pre-denatur-
ing at 94°C for 5 min, 36 cycles at 94°C for 60 s, 68°C for
60 s and 72°C for 120 s. PCR products were separated by
electrophoresis on a 1.5% agarose gel followed by ethid-
ium bromide staining. The target bands were analyzed by
densitometry using a Gel Imaging System (Bio-Rad). The
results were calculated as a ratio of OD values for FL and
B-actin relative to mouse GAPDH (gel control).

Western blot analysis for the expression of FL protein in
HFCLIEF

Transfected cultured cells and bone marrow cells for each
group were harvested after 72 h treatment with 5-FU. Alig-
uots of cell lysates (50 pg protein) were separated on a
12% NuPAGE gel (Invitrogen) and transferred to nitrocel-
lulose filters. The filters were blocked with TBST buffer
containing 5% skimmed milk and incubated with FL
monoclonal antibodies (1:2000, Calbiochem, Cam-
bridge, MA, USA) and GAPDH monoclonal antibodies
(1:2000, Sigma, St. Louis, MO, USA) overnight. Horserad-
ish peroxidase-linked anti-mouse IgG was then added
(1:15000, Sigma, St. Louis, MO, USA) and ECL visualiza-
tion of the bands was performed as previously described
[30].

In vitro effects of N-Acetylcysteine on TNF- production

In total, 2 x 105 HFCL/EF, HFCL/F, HFCL/pCI and HFCL
cells were seeded in 96-well plates. The cells were allowed
to adhere to the plates and then washed with PBS three
times. HFCL/EF cells were treated with 2, 100, or 200
mmol/L 5-FU in serum-free medium. The culture super-
natant was collected after 24 h. Cells were treated with a
combination of 20 mmol/L N-acetylcysteine (NAC; Sigma
St. Louis, MO, USA) and various concentrations of 5-FU
for 24 h. FL expression was measured using an ELISA kit
(R&D, Minneapolis, MN, USA) according to the manufac-
turer's instructions.

Statistical Analysis

All measurements were performed at least in triplicate.
Statistical evaluation of the raw data was performed using
one-way analysis of variance (ANOVA). Data are pre-
sented as mean * standard deviation (SD).

Results

Effect of 5-FU treatment on EGFP expression in HFCL/EF
EGFP expression in cultured HFCL/EF cells was higher in
cells treated with 5-FU over a range of doses (0 - 400
mmol/L, Figure 1.A) than in those not treated with 5-FU.
Increased EGFP expression indicates that the Egr-1 pro-

Page 4 of 11

(page number not for citation purposes)



http://www.jbiomedsci.com/content/16/1/85

Journal of Biomedical Science 2009, 16:85

HFCL/EF

12

10

©58810U| P|04

100 200 300 400

50

5-Fu (mmol/L)

o

0O TNO WO TN

(w/Bu)Buery €114 40 [9A8) ayL

o, ox

144

a8

2

Time (h)

FL

FL
GAPDH

P —— - W T GAPDI—J

10

7 8 9

Figure | (see legend on next page)

Page 5 of 11

(page number not for citation purposes)



Journal of Biomedical Science 2009, 16:85

http://www.jbiomedsci.com/content/16/1/85

Figure | (see previous page)

A: Induced expression of EGFP in HFCL cells transfected with Egr-EF after exposure to 5-FU. EGFP expression in
HFCL/EF cells transfected with Egr-EF was used to evaluate activation of the Egr-1 promoter by 5-FU treatment. EGFP expres-
sion in HFCL/EF cells exposed to I, 2, 50, 100, 200, 300 mmol/L 5-FU was significantly higher than that in HFCL/EF cells not
exposed to 5-FU and the HFCL group, P < 0.01. However, at 400 mmol/L 5-FU, there was no difference between the 5-FU
treated group and the untreated group. Data are reported as mean £ SEM: B: EGFP expression confirmed by fluores-
cence inverse microscopy. (1) HFCL/EF group x 400. (2) HFCL/EF + 5-FU group x 400. C: Effect of supernatant from
HFCLJ/EF cells treated with 5-FU on CD34* cells. (1) HFCL/EF + 5-FU, (2) HFCL/EF, (3) HFCL/F + 5-FU, (4) HFCL/pCI
+ 5-FU, (5) HFCL + 5-FU. D: FL expression by HFCL/EF cells after Egr-1 promoter activation with 5-FU. FL pro-
duction by HFCL/EF cells exposed to 5-FU (100 mmol/L) was measured using ELISA assay. Significant increases in FL protein
levels were detected 24, 48, 72, 96, 120 and 144 h after exposure to 5-FU (P < 0.01, versus FL protein level at 0 h). Data are
reported as mean + SEM. E: (I)RT-PCR analysis of FL mRNA levels in HFCL/EF cells after 5-FU treatment. |.
I.DNA Marker | I, 2.HFCL/EF with 5-Fu treatment group (in vitro), 3.HFCL/F without 5-Fu treatment group(in vitro), 4.HFCL/
EF without 5-Fu treatment group(in vitro), 5.HFCL with 5-Fu treatment group (in vitro), 6.HFCL/EF plus 5-Fu group (in vivo),
7.HFCL/EF plus NS group(in vivo), 8. HFCL plus 5-Fu group (in vivo), 9. HFCL plus NS group(in vivo), 10. HFCL/pClI with 5-Fu
treatment group (in vitro). (2) Western blot analysis of FL protein levels in HFCL/EF cells after 5-FU treatment. |.
I. HFCL/EF without 5-Fu treatment group (in vitro), 2. HFCL/EF with 5-Fu treatment group (in vitro), 3. HFCL/pCl with 5-Fu
treatment group (in vitro), 4. HFCL/F with 5-Fu treatment group (in vitro), 5. HFCL with 5-Fu treatment group (in vitro), 6.
HFCL/F without 5-Fu treatment group (in vitro), 7. HFCL/EF plus NS group(in vivo), 8. HFCL/EF plus 5-Fu group(in vivo), 9.
HFCL plus 5-Fu group(in vivo), 10. HFCL plus NS group(in vivo), Lain 2. the consistent expression of GAPDH in various

groups.

moter could induce downstream gene expression after
treatment with the chemotherapeutic agent 5-FU.

The fluorescent intensity of the group treated with 100
mmol/L 5-FU was five times higher than the group with-
out 5-FU treatment. The enhancement of EGFP expression
with 5-FU treatment declined with treatment above 100
mmol/L 5-FU. At 400 mmol/L 5-FU, there was no differ-
ence between the 5-FU treated group and the untreated
group. In cells isolated from mice injected with HFCL/EF
cells, treatment with 5-FU resulted in higher levels of
EGFP expression than in the absence of 5-FU treatment
(Figure 1.B). Both the HFCL + NS group and HFCL + 5-FU
groups were negative for EGFP-expressing cells. The
HFCL/EF + NS and HFCL/EF + 5-FU groups contained
0.12 + 0.05% and 0.26 + 0.08% EGFP-expressing cells,
respectively.

Effect of supernatants from 5-FU treated HFCL/EF cells on
CD34* proliferation

Serum-free supernatants from 5-FU-treated HFCL/EF cells
increased CD34+ cellular proliferation (Figure 1.C). After
10 days of culture, the number of CD34+ cells cultured
with supernatant from HFCL/EF + 5-FU cells was 163.11
+10.58 x 103 cells/ml, which was significantly higher than
that of the control groups (HFCL/EF: 69.01 + 12.73 x 103
cells/ml; HFCL/pCI + 5-FU: 70.31 £ 15.02 x 103 cells/m];
HFCL/F + 5-FU: 93.56 + 22.68 x 103 cells/ml; HFCL + 5-
FU group: p < 0.01).

FL secretion from HFCLIEF cells after 5-FU treatment
The FL content in serum-free supernatants from HFCL/EF
cell culture was determined by ELISA assays. HFCL trans-

fected cells did not produce detectable amounts of FL
from endogenous FL genes. Supernatants from HFCL/EF
cells contained 0.15 ng/ml FL. Supernatants from HFCL/
EF cells treated with 5-FU (100 mmol/L) contained even
higher FL levels. Maximum FL production by HFCL/EF
cells treated with 5-FU was observed after 72 h (14.35 ng/
ml, Figure 1.D). FL levels secreted by HFCL/EF cells were
significantly higher than without 5-FU treatment at all
time points (p < 0.01).

RT-PCR analysis of FL mRNA levels in HFCL/EF cells
treated with 5-FU

FL mRNA levels in 5-FU-treated HFCL/EF cells were meas-
ured by RT-PCR. FL mRNA levels in HFCL/EF cells were
significantly higher in cells treated with 5-FU. FL mRNA
was also detected in HFCL/F cells, but levels were low
without 5-FU treatment (Figure 1.E.1). No FL mRNA was
detected in the HFCL + NS, HFCL + 5-FU or HFCL/EF + NS
groups. FL mRNA levels were higher in bone marrow cells
from mice injected with HFCL/EF cells and treated with 5-
FU.

Western blot analysis of FL protein expression in HFCLIEF
cells

FL protein expression was not detected in the HFCL cells
cultured in vitro (Figure 1.E.2). Treatment of the HFCL/EF
group with 5-FU resulted in significantly higher levels of
FL protein expression than in the HFCL, HFCL/F, HFCL/
pCI and HFCL/EF without 5-FU treatment groups. In the
in vivo study, FL protein expression was detected in bone
marrow cells of tumor-bearing mice treated with 5-FU and
injected with HFCL/EF cells. No detectable FL expression
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was found in any control group (Figure 1.E.2, lanes 7, 9
and 10).

Effect of N-acetylcysteine on FL secretion in HFCL/EF cells
treated with 5-FU

FL secretion in NAC-treated (200 mmol/L) 5-FU-treated
(2, 100, 200 mmol/L) HFCL/EF cells was significantly less
(P < 0.01) than for 5-FU-treated HFCL/EF cells not
exposed to NAC (Figure 2). NAC had no effect on the
HFCL/F group (P > 0.05). FL secretion in the HFCL and
HFCL/pCI groups was not detectable (with or without
NAC). In the HFCL/F group, there was no significant dif-
ference in FL secretion with or without NAC.

Effect of 5-FU induced gene therapy on peripheral blood
cell count in tumor-bearing mice

All mice were inoculated by B16 cells, and black spots
were gradually seen in BALB/c mice's back skin, feet or
ankle 5 days later. Among them, the symptoms such as,
fast tumor growth, ulceration and hemorrhage were
observed in one mouse, which died at 15 days following
the inoculation. All but one mouse (HFCL group) sur-
vived the 25 days of observation. Blood was withdrawn
from the tail vein every week and used to determine white
blood cell counts, platelet counts and Hemoglobin levels.
The white blood cell (WBC) counts of the HFCL/EF group
5, 10, 15 and 20 days after 5-FU treatment (100 mg/kg)
were higher than those for the HFCL, HFCL/pClI, and
HFCL/F groups (P < 0.05, Figure 3). The WBC count of the
HFCL/EF group was 3.51 + 0.62 x 10%/L compared to 4.92
+0.72 x 109/L, 5.80 + 0.68 x 109/L, 5.76 + 0.86 x 109/L
for the with HFCL, HFCL/pCI and HFCL/F groups, respec-

18 O 5-Fu+NAC
E »
o 10
£ 3
|
i £§ c§
2
0 ;& .
& o N\
SN of &
R \Q@“ @4‘
& Qo\f" ((0&
X N
Figure 2

Effect of N-acetylcysteine on FL gene expression in
HFCLI/EF cells treated with 5-FU. FL expression of
HFCL/EF cells exposed to 5-FU (2, 100, 200 mmol/L) with or
without addition of N-acetylcysteine (200 mmol/L). FL pro-
tein levels secreted by HFCL, HFCL/pCI and HFCL/F cells
are shown for comparison.
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Figure 3

Peripheral white blood cell counts in mice after 5-FU
treatment. Results are shown for mice injected with HFCL/
EF, HFCL/F, HFCL/pCl and HFCL cells at days 0 through 25

(n = 6/group).

tively. In addition, the hematopoietic recovery of the
HFCL/EF group was faster than the HFCL, HFCL/pCI and
HFCL/F groups. Hemoglobin (Hb) levels and platelet
(PLT) counts were not significantly different among the
four groups. The WBC counts for the HFCL/EF + NS and
HEFCL + NS groups did not change significantly over 0 to
20 days (Figure 4). Treatment with 5-FU resulted in
decreased WBC counts in both the HFCL/EF + 5-FU and
HFCL + 5-FU groups. However, the WBC count of the
HFCL + 5-FU group was lower than that of the HFCL/
EF+5-FU group. Periodic analyses of peripheral blood
cells from tumor-bearing mice showed an increase in the
number of white blood cells at an early stage after chem-
otherapy.

—+— Contro HFCL+NS)
—®— HFCUEF(HF CUEF+NS)
—o— 5-Fu[HFCL+5-Fu)

—=— HFCUEF+5-Fu

WBC (10°/L)

Time(days)

Figure 4

Peripheral white blood cell counts in mice after 5-FU

or saline. Treatment. Results are shown for HFCL/EF + 5-
FU, HFCL + 5-FU, HFCL/EF + NS and HFCL + NS at days 0

through 25 (n = 6/group).

Page 7 of 11

(page number not for citation purposes)



Journal of Biomedical Science 2009, 16:85

Effect of 5-FU-mediated hematopoietic growth factor
gene therapy on tumor size

After 10 - 12 days, reductions were observed in tumor vol-
umes in the HFCL + 5-FU and HFCL/EF + 5-FU groups
(Figure 5). By day 25, tumor volumes were 1422.61 +
320.32 mm3 (HFCL + 5-FU) and 1282.35 + 451.15 mm3
(HFCL/EF + 5-FU), and the tumor inhibitory rates were
46.20% and 51.51%, respectively. The tumor volumes in
the HFCL + NS and HFCL/EF + NS group increased from
0 to 25 days, reaching volumes of 2644.43 + 466.12 mm3
and 2480.54 + 688.24 mm?3, respectively. The correspond-
ing inhibitory rates were 0.00 and 0.06%, respectively.

Discussion

Egr-1 gene expression is induced by a variety of stimuli,
including growth factors, IR, chemotherapy, hypoxic
stress and ROIs [34]. Transcriptional activation of Egr-1
requires the CArG DNA sequence element in the pro-
moter region of this gene [35]. Radiation-gene therapy
using TNFerade, a second-generation E1-, partial E3- and
E4-deleted adenoviral vector carrying the transgene
encoding human TNF-a downstream of the Egr-1 pro-
moter, has been used in two phase I trials for patients with
various solid tumors [36]. IR has been used to produce
ROIs that activate the highly conserved sequence CArG of
the Egr-1 promoter, thereby regulating the expression of
downstream therapeutic target genes [17,18,37].

We have previously constructed a pCI-neo expression vec-
tor containing the Egr-1 regulatory sequence including the
CArG element upstream from FL ¢cDNA to promote FL
expression. IR was used to activate the Egr-1 promoter to

HFCL+NS group g s T X
HFCL/EF+NS group g b8 s X

HFCL+5-Fu group

$o=8 6

HFCL/EF+5-Fugroup 3

Figure 5

Effect of 5-FU-mediated hematopoietic growth fac-
tor gene therapy on tumor size. By day 25, tumor vol-
umes were 1422.61 + 320.32 mm3 (HFCL + 5-FU) and
1282.35 £ 451.15 mm3 (HFCL/EF + 5-FU), and the tumor
inhibitory rates were 46.20% and 51.51%, respectively. The
tumor volumes in the HFCL + NS and HFCL/EF + NS group
increased from 0 to 25 days, reaching volumes of 2644.43 +
466.12 mm3 and 2480.54 + 688.24 mm?3, respectively. The
corresponding inhibitory rates were 0.00 and 0.06%, respec-
tively.

http://www.jbiomedsci.com/content/16/1/85

regulate FL gene expression in human bone marrow stro-
mal cells injected into SCID mice.

Hematopoietic recovery was promoted by IR activation of
FL expression. Chemotherapy-induced and target-regu-
lated gene therapy is a new approach for tumor chemo-
therapy and gene therapy [38]. Chemotherapeuticdrugs
significantly injure hematopoietic tissues. Therefore, com-
bining chemotherapy and hematopoietic growth factors
in gene therapy is one approach to reduce the damage
caused by chemotherapy. 5-FU is a commonly used,
broad-spectrum anti-tumor drug that causes tumor cell
death by producing ROIs that result in DNA damage. The
half-life of 5-FU in mice and humans is only 0.5 h, and 5-
FU affects proliferative cells, especially those in S phase.
Its principal restrictive toxicity is marrow hematopoietic
depression [39]. Iko et al. [40] found that reactive oxygen
species limit the productive lifespan of hematopoietic
stem cells. Flt3 Ligand (FL) is a cytokine that regulates
early hematopoiesis by regulating the proliferation and
differentiation of early hematopoietic stem cells and pro-
genitor cells, as well as enhancing hematopoietic and
immunological functions [41]. Bone marrow stromal
cells are the ideal cell type targets for gene therapy, as these
cells determine the speed of hematopoietic function
recovery after chemotherapy [42]. We hypothesized that
ROS produced by 5-FU treatment could be used activate
the Egr-1 promoter and thereby regulate downstream FL
gene expression. Promotion of FL gene expression should
reduce hematopoietic injury caused by chemotherapy. In
this study, EGFP and FL cDNA were inserted into the
eukaryotic expression vector pCl-neo containing the Egr-1
promoter. The vector was transfected into bone marrow
stromal cells (HFCL/EF). The integration and expression
of the exogenous EGFP gene was confirmed by expression
of green fluorescent protein in HFCL/EF cells detected by
FACS. FL expression was confirmed by RT-PCR detection
of FL. mRNA and detection of FL protein by western blot
and ELISA assays.

Chemo-inducible FL gene therapy was demonstrated by
hemotherapy-induced activation of the Egr-1 promoter
resulting in enhanced recovery from hematopoietic
injury. However, the proper dose of 5-FU for this hemat-
opoietic factor gene therapy approach still needs to be
determined.

The oxygen free radical inhibitor NAC was used to block
ROI formation in order to verify whether 5-FU induces FL
expression through ROI generation. FL expression was sig-
nificantly decreased in the presence of NAC, indicating
that oxygen free radical production is involved in activa-
tion of the Egr-1 promoter. Oxygen free radicals are pro-
duced by a number of chemotherapeutic drugs [43,44].
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Consequently, other chemotherapeutic drugs could also
be used for gene therapy using the Egr-1 promoter.

In our study, 5-FU was employed to activate the Egr-1 pro-
moter in human bone marrow stromal cells injected into
tumor-bearing mice, resulting in exogenous FL expres-
sion. EGFP positive cells were observed by flow cytometry
and fluorescence microscopy, indicating that the trans-
planted human HFCL/EF cells were viable. EGFP expres-
sion increased in the HFCL/EF group after 5-FU treatment,
indicating that 5-FU activated the Egr-1 promoter, which
resulted in downstream gene expression.

These results are similar to those observed by Lopez [23].
In addition, RT-PCR and western blot assays demon-
strated that human FL mRNA and protein are expressed in
bone marrow cells after 5-FU treatment. FL. mRNA and
protein levels were not significantly different between the
HFCL/EF + 5-FU, HFCL/EF and HFCL/F groups. This may
be due to hematopoietic function recovery that occurred
over the 25 days after chemotherapy.

Hou et al. [45] Combined FL gene therapy with 5-FU
treatment and observed a synergistic effect on tumor ther-
apy. In our study, 5-FU-induced FL gene therapy showed
no effect on the growth of transplantation tumors. The
tumor inhibitory rate was only related to the chemother-
apy group, indicating that FL expression does not directly
affect the efficacy of chemotherapy on tumor reduction.
The decline of peripheral white blood cells in the HFCL/
EF + 5-FU group was less than that in the control group.
The hematopoietic absence in the agranulocytosis stage
was also shortened in the HFCL + 5-FU group versus the
control group.

Recent research has indicated that targeted gene therapy
mediated by activation of the Egr-1 promoter with chem-
otherapeutic drugs is a promising treatment option for
solid tumors [46]. In this study, chemotherapy was used
to activate the Egr-1 promoter, resulting in expression of a
hematopoietic growth factor that reduced hematopoietic
injury. The hematopoietic growth factor did not affect
tumor growth, but it reduced the hematopoietic injury
associated with chemotherapy. Since the Egr-1 promoter
is activated by ROls, it can be used to induce expression of
downstream hematopoietic growth factors during chemo-
therapy, thereby improving hematopoietic recovery. Gene
therapy using expression of the tumor necrosis factor reg-
ulated by the Egr-1 promoter has already been used in
humans for tumor therapy. Hematopoietic factor gene
therapy regulated by chemotherapy-induced activation of
the Egr-1promoter shows great promise [29]. In the
future, other genes could be used in chemotherapy-
induced gene therapy for various diseases.

http://www.jbiomedsci.com/content/16/1/85
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