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Abstracts

Background: Both taurine, an inhibitory neurotransmitter and granulocyte colony-stimulating factor (G-CSF), a
growth factor, possess neuroprotective and neurotrophic properties in vitro. However, the mechanisms of their
underlying neuroprotective effects are not fully understood.

Methods: In the present study, we investigated the potential protective benefits of taurine, G-CSF and the
combination of taurine and G-CSF against excitotoxicity induced by glutamate in primary cortical neuronal cultures.

Results: 25 mM taurine, 25 ng/ml G-CSF and the combination of 25 mM taurine and 25 ng/ml G-CSF showed a
protective effect reaching 75%, 75% and 88%, respectively. Furthermore, taurine exerted its protective effect
through down-regulation of expression of GRP 78, CHOP, Bim and caspase 12.

Conclusion: The results showed that all of these treatments, taurine, G-CSF and the combination of taurine and
G-CSF, protected primary cortical neurons against excitotoxicity induced by glutamate. ER stress is suppressed by
taurine after glutamate toxicity.

Background
Taurine (2-aminoethanesulfonic acid), an inhibitory neu-
rotransmitter, is present at high concentrations in many
invertebrate and vertebrate systems [1-3]. Taurine has
received much attention in the field of neuroprotection
since the original experiments of Curtis and Watkins on
the synaptic effects of inhibitory and excitatory amino
acids [4,5]. Taurine is at a high level in the immature
brain, serving as a trophic factor [6]. It has been thought
to induce hyperpolarization, to inhibit firing of central
neurons and to act as a modulator of synaptic activity in
the brain [7-9]. The maintenance of the integrity of
membranes, transmembrane Cl- flux and intracellular
calcium homeostasis are also important functions of
taurine in the brain [10-13]. Taurine also acts as an
osmoregulator and plays an antioxidant role [14-16]. In

addition, it has been related to neuroprotection against
multiple neurological diseases including Alzheimer’sdi-
sease, Huntington’s disease and brain ischemia [17-19].
Moreover, taurine was found in neuronal systems to
exert a protective function against toxicity induced by
glutamate [20,21].
G-CSF is one of the few growth factors currently

approved for clinical use for routine treatment of neu-
tropenia [22]. It primarily stimulates proliferation, differ-
entiation and maturation of cells committed to the
neutrophilic granulocyte lineage through binding to the
specific G-CSF receptor [23]. G-CSF also has been
shown to have trophic effects on neuronal cells in vitro
[24]. Moreover, G-CSF is an effective neuroprotectant in
the treatment of a number of neurological diseases
including stroke, Parkinson’s disease and Alzheimer’s
disease [25-28]. In addition, apart from its protective
role in neurons, G-CSF also dampens systemic inflam-
matory reactions, which may be of additional benefit in
neurodegenerative conditions [29].
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Although it is established that taurine and G-CSF have
many beneficial effects under a variety of conditions of
cell damage, the protective mechanisms are still unclear.
We have recently demonstrated that taurine protects
PC12 cells against ER stress induced by oxidative stress
[30]. Here, we studied the protective effect of taurine,
G-CSF and the combination of taurine and G-CSF
against excitotoxicity induced by glutamate in rat pri-
mary neuronal cultures. We demonstrated that ER stress
is also involved in the excitotoxicity induced by gluta-
mate. Moreover, taurine protects primary neurons by
suppressing ER stress induced by glutamate.

Methods
Materials
Basal medium-Eagle, fetal bovine serum, poly-D-lysine,
taurine, Penicillin-Streptomycin and other chemicals
were purchased from Sigma (St. Louis, MO, USA).
Mouse anti-actin, rabbit anti-GRP78, rabbit anti-CHOP/
GADD153, rabbit anti-caspase-12 antibodies and sec-
ondary mouse and rabbit antibodies were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Rabbit anti-Bim antibody was purchased from Assay
Designs (Ann Arbor, Michigan, USA). Adenosine 5′-tri-
phosphate (ATP) Bioluminescent assay kit was pur-
chased from Promega (Madison, WI, USA). RIPA buffer
was purchased from Thermo Scientific (Rockford, IL,
USA). Pregnant Sprague Dawley rats were purchased
from Harlan (Indianapolis, IN) and housed in the animal
care facility at Florida Atlantic University. The proce-
dures for the care and use of rats, in accordance with
the National Institutes of Health Guidelines for the Care
and Use of Laboratory Animals, were approved by the
Institutional Animal Care and Use Committee of Florida
Atlantic University.

Primary cortical neuronal cell culture
Primary cortical neuronal cell cultures were prepared
using a previously described protocol [13]. Briefly, rat
embryos at 17-18 days were removed and brains were
isolated from the fetuses and kept in basal media Eagle
(BME) supplemented with 2 mM glutamine, 26.8 mM
glucose, and 20% heat-inactivated fetal bovine serum.
This medium is referred to as growth medium-eagle
(GME). The cortices then were dissociated by passing
the tissue through a 14-G cannula. Cells were centri-
fuged at 200 g/min for 5 min at 25oC. The resulting pel-
let was resuspended in GME and plated on appropriate
tissue culture plates precoated with 5 ug/ml of poly-
D-lysine. Cells were maintained for 1 hour in a humidi-
fied incubator (37oC, 99% humidity and 5% CO2) before
the incubation medium was replaced with serum-free
neurobasalmedium (GIBCO) supplemented with B27

and 500 uM glutamine. The cultures were maintained in
an incubator for 14 -18 days.

Measurement of cell viability
Cells were measured by ATP assay. Neurons at 14 days
in vitro were preincubated with 25 mM taurine for
1 hour. Then the neurons were treated with 100 uM
glutamate for 4 hours. ATP solution was added to each
well and cells were incubated for 10 minutes, after
which levels of ATP were quantified in a luciferase reac-
tion. The luminescent intensity was measured using a
luminometer (SpectraMax, Molecular Devices) after
transferring the lysate to a standard opaque walled
multi-well plate.

Western blot analysis
Primary cortical neuron cultures were lysed in RIPA
buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-
40, 1% sodium deoxycholate, 0.1% SDS) containing 1%
(v/v) mammalian protease inhibitor cocktail from Sigma
and separated on a SDS-PAGE. After proteins were
transferred to a nitrocellulose membrane, the membrane
was then blocked in blocking buffer (20 mM Tris-HCl,
150 mM NaCl, 0.1% Tween-20, 5% milk) for 1.5 hours
at room temperature. After blocking, the corresponding
primary antibody was incubated for one hour, followed
by one hour incubation with the corresponding HRP-
conjugated secondary antibody at room temperature.
Extensive washes with blocking buffer were performed
between each step. The protein immuno-complex was
visualized using ECL detection reagents.

Statistical analysis
All data shown were expressed as the mean ± SEM. The
Student’s t-test or one-way ANOVA was used to com-
pare means between groups. Differences of P<0.05 were
considered statistically significant.

Results
Dose-dependent glutamate toxicity in primary neuron
cultures
Excessive levels of the neurotransmitter glutamate trig-
ger excitotoxic processes in neurons that result in cell
death [31].To identify the excitotoxic dose range of glu-
tamate, rat cortical neurons were treated for 4 hours
with 50, 100, 200 or 300 uM glutamate respectively. The
results are shown in Fig. 1. We found that glutamate
treatment caused a dose-dependent increase in neuronal
apoptotic processes. There was approximately 50% sur-
vival of cortical neurons with 100 uM glutamate treat-
ment for 4 hours (Fig. 1, lane 3). 100 uM glutamate was
chosen as an optimal concentration to induce the
excitotoxicity.
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Protective effects of taurine against glutamate toxicity in
primary neuron cultures
Previously, we found that 25 mM taurine resulted in the
optimal neuroprotection against glutamate induced exci-
totoxicity [32]. For this reason, we selected the 25 mM
taurine concentration for testing cell viability using the
ATP assay. For testing the protective effect of 25 mM
taurine against glutamate in cortical neurons, cells were
seeded in 96-well plates and treated with or without
25 mM taurine for 1 hour followed by 100 uM gluta-
mate exposure for 4 hours. The cell survival results are
shown in Fig. 2. The treatment of 25 mM taurine
increased the cell survival by 75% compared to the
condition with 100 uM glutamate treatment.

Protection of G-CSF against glutamate toxicity in primary
neuronal cultures
G-CSF has been widely investigated in terms of protec-
tion of neurons in stroke, as shown in numerous papers
[25,26,33-36]. Glutamate has been shown to play a key
role in the pathogenesis of stroke [37]. However, there
has been little research on the protective function of G-
CSF in glutamate induced excitotoxicity in vitro. G-CSF
was previously shown to exhibit a protective effect in
cerebellar granule cells exposed to glutamate toxicity

[25]. In the current study, we demonstrated the protec-
tive function of G-CSF at a range of concentrations
from 10 to 40 ng/ml against excitotoxicity induced by
glutamate in primary neuronal cultures (Fig. 3). G-CSF
treatment resulted in an enhanced cell survival at several
concentrations, with the highest protection of 75%
occurring at 25 ng/ml.

The protective effect of the combination of taurine and
G-CSF in primary neuronal cultures
To test whether the combination of taurine and G-CSF
promotes protection against glutamate induced toxicity,
we treated primary neurons with 25 mM taurine plus 25
ng/ml G-CSF for 1 hour, followed by glutamate treat-
ment for 4 hours. The results are shown in Fig. 4. The
combination of taurine and G-CSF increased the protec-
tive effect against glutamate toxicity to 88% cell survival
compared to 75% cell survival from taurine or G-CSF
treatment alone.

Taurine protects neurons against glutamate excitotoxicity
by suppressing the expression of GRP78, CHOP,
Caspase-12 and Bim
To investigate if ER stress can be induced by glutamate
and then suppressed by taurine, specific ER stress effec-
tor proteins were analyzed by western blot. Glucose
regulated protein-78 (GRP78) is an ER-associated

Figure 1 Effect of glutamate on cell viablility - A dose-dependent
study. Primary cortical neurons were exposed to 50 uM, 100 uM and
300 uM glutamate for 4 hours and cell viability was measured by ATP
assay.

Figure 2 Neuroprotective effect of taurine against glutamate-
induced excitotoxicity measured by ATP assay. Primary cortical
neurons were treated with 25 mM taurine for 1 hour before
exposure to 100uM glutamate for 4 hours and cell viability was
measured by ATP assay.
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chaperone, which facilitates protein folding in ER [38].
The expression of GRP78 protein was up-regulated in
primary neurons after treatment with 100 uM glutamate
for 4 hours. However, taurine restored the level of
GRP78 to control levels, as shown in Fig. 5. C/EBP
homologous protein (CHOP), also known as growth
arrest and DNA damage inducible protein 153
(GADD153), is an important ER stress marker [39]. Fig.
6 shows that the expression of CHOP was up-regulated
by glutamate. Taurine treatment restored CHOP expres-
sion to the control level (Fig. 6). Both Caspase-12 and
Bim play an essential role in the progression of pro-
grammed cell death during the proapoptotic phase of
the ER stress response [40,41]. Taurine reversed the
induction of Caspase-12 and Bim caused by glutamate
in primary neurons, as shown in Fig. 5 and Fig. 6.

Discussion
In the present study, we have demonstrated the potent
protection by taurine and by G-CSF in an in vitro
model of primary cortical neuronal cell death induced
by glutamate. Taurine and G-CSF protected primary
cortical neurons against glutamate-induced neurotoxicity
as determined by measuring cell viability using the ATP
assay. On the other hand, we found that the combina-
tion of taurine and G-CSF gave a synergistic enhance-
ment of protection against glutamate in primary cortical
neurons. We have further shown that the suppression of

ER stress is an essential underlying mechanism for taur-
ine-induced neuroprotection. Our investigation of the
intracellular mechanisms downstream of ER stress
demonstrated a reversal by taurine of glutamate-induced
increases in GRP78, CHOP, Caspase-12 and Bim levels.

Figure 3 Neuroprotective effect of G-CSF against glutamate-
induced excitotoxicity - A dose-dependent study. Primary
cortical neurons were preincubated with 10, 25, 40 and 50ng/ml G-
CSF for 1 hour, then exposed to 100uM glutamate for 4 hours. Cell
viability was measured by ATP assay.

Figure 4 Neuroprotective effect of the combination of taurine
and G-CSF against glutamate-induced excitotoxicity. Primary
cortical neurons were preincubated with 25 mM taurine and 25 ng/
ml G-CSF for 1 hour, and then exposed to 100 uM glutamate for 4
hours. Cell survival was measured by ATP assay.

Figure 5 Effect of taurine on glutamate-induced elevated
expression of GRP78 and Caspase-12 by Western blot analysis.
Primary cortical neurons were preincubated with 25 mM taurine for
1 hour, and then exposed to 100 uM glutamate for 4 hours.
Expression of GRP78 protein and caspase 12 was analyzed by
Western blot assay. Beta-actin was included to show equal loading.
C: Control; glu: Glutamate-treated group; tau+ glu: Same as glu
group except pretreated with taurine.
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A previous paper reported that taurine and basic
fibroblast growth factor (bFGF) in combination gave an
enhanced neuroprotection in granule neurons against
glutamate induced excitotoxicity [42]. They showed that
neuroprotection was obtained only through the com-
bined action of taurine and bFGF in a cerebellar granule
neuron rich culture, but not by these factors alone.
Therefore, they believed that taurine can augment bFGF
function under certain conditions. Here, we demon-
strated that taurine or G-CSF administrated alone
showed a neuroprotective effect. Furthermore, an
enhanced protection against glutamate was also
observed with a combination of taurine and G-CSF. The
clinical application of taurine was investigated and
found to be effective in studies as early as 1974 when it
was applied to treatment for refractory epilepsy [43].
Both taurine and G-CSF have been shown to be poten-
tial drugs for ischemia or stroke in clinical applications
[44,45]. Since the combination of taurine and G-CSF
have synergistic neuroprotective effects against gluta-
mate excitotoxicity, as demonstrated in this paper, this
strongly suggests that the combination of taurine and
G-CSF may be more effective than the individual agents
in treatment of neurological diseases, such as stroke.
Many neurological disorders such as Alzheimer’s dis-

ease, stroke and Parkinson’s disease have been linked to
the overactivation of glutamatergic transmission and
excitotoxicity as a common pathway of neuronal injury
[46-48]. Previous studies have also shown that ER stress
is induced in neurons by glutamate toxicity [49,50].
Recently, kainic acid (KA), a non-NMDA glutamate
receptor agonist, was found to cause the disintegration
of the ER membrane in hippocampal neurons and to
cause ER stress [51]. In this study, we demonstrated glu-
tamate induced ER stress associated with the up-regula-
tion of the proteins GRP78, CHOP, Bim and caspase-12.
Although taurine has been investigated and applied to

treat many diseases, the protective mechanism is still
not fully understood. We have already demonstrated

that ER stress induced by H2O2 in PC12 cells was pre-
vented by taurine treatment [30]. In the present study,
our results show that taurine reduces the ER stress
induced by glutamate in primary neuronal cultures.

Conclusion
In the present study, we demonstrated that both taurine
and G-CSF protect primary cortical neurons against glu-
tamate-induced cell death. Interestingly, we found that
the combination of taurine and G-CSF results in an
enhanced protective effect. Because both taurine and G-
CSF are neuroprotective agents that are approved for
clinical use, the combined administration of these two
factors may constitute a viable therapy with potentially
enhanced therapeutic efficacy. Moreover, taurine sup-
pressed the ER stress induced by glutamate. Further
investigation will be performed to examine the specific
pathway responsible for ER stress induced by glutamate
and to identify molecular targets in the ER stress path-
way that are specifically inhibited by taurine, G-CSF and
their combination.
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