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Amyloid β peptide-mediated neurotoxicity is
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Abstract

Background: The specific role of microglia on Aβ-mediated neurotoxicity is difficult to assign in vivo due to their
complicated environment in the brain. Therefore, most of the current microglia-related studies employed the
isolated microglia. However, the previous in vitro studies have suggested either beneficial or destructive function in
microglia. Therefore, to investigate the phenotypes of the isolated microglia which exert activity of neuroprotective
or destructive is required.

Results: The present study investigates the phenotypes of isolated microglia on protecting neuron against
Aβ-mediated neurotoxicity. Primary microglia were isolated from the mixed glia culture, and were further cultured
to distinct phenotypes, designated as proliferating amoeboid microglia (PAM) and differentiated process-bearing
microglia (DPM). Their inflammatory phenotypes, response to amyloid β (Aβ), and the beneficial or destructive
effects on neurons were investigated. DPM may induce both direct neurotoxicity without exogenous stimulation
and indirect neurotoxicity after Aβ activation. On the other hand, PAM attenuates Aβ-mediated neurotoxicity
through Aβ phagocytosis and/or Aβ degradation.

Conclusions: Our results suggest that the proliferating microglia, but not the differentiated microglia, protect
neurons against Aβ-mediated neurotoxicity. This discovery may be helpful on the therapeutic investigation of
Alzheimer’s disease.
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Background
Microglia originates from primitive progenitors derived
from various sources and migrates into central nervous
system (CNS) during early embryogenesis [1]. In the
adult CNS, the number of microglia is hypothesized to
be maintained via self-replication or by local progenitor
cell division [2,3]. Local proliferation leads to an in-
creased number of microglia in the spinal cord of
postnatal rat [4]. In several neurodegenerative diseases,
including Alzheimer’s disease (AD), an increased
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reproduction in any medium, provided the or
number of activated microglia is commonly observed
near the foci of lesions [5-7]. Therefore, it has been pro-
posed that microglial proliferation near lesion foci is
critical for restoring homeostasis and inducing conse-
quent CNS repair [8].
The proliferation and differentiation of microglia res-

ponding to the intrinsic and extrinsic stimuli depend on a
set of growth factors, such as macrophage-colony stimu-
lating factor (M-CSF) [9,10]. Moreover, distinct pheno-
typic microglia has been identified to exist in specific
brain regions [11,12]. Microglia may exert both protective
and pathogenic functions in the CNS [13-15]. Microglia-
mediated inflammation will impede the treatment of CNS
diseases. Therefore, it is essential to identify mechanisms
of activating specific microglial phenotypes that contribute
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to neurodegeneration to define appropriate therapeutic
targets aimed at modulating microglia activities [16].
Despite microglia play in the maintenance of CNS

homeostasis and AD pathogenesis [7,17], our under-
standing of the molecular mechanisms responsible for
microglia development and function is still fragmented.
Microglia may respond to minor stimuli, which is a
major impediment for the cellular characterization of
microglia in vivo [18]. Isolation of amoeboid microglia
from mixed glial cultures is a reliable method to verify
the distinct populations of microglial phenotypes in a
mixed glial culture [19,20]. In mixed glial culture, the
amoeboid cells typically rest on top of the astrocyte
monolayer and can appear as proliferating cell clusters
promoted by astrocyte-secreted mitogens [21]. Ramified
microglia was underneath the astrocyte layer, and the
numbers of ramified cells increase with time in culture.
The ramified population has decreased phagocytic and
proliferation abilities.
Macrophage activation states have been classified as

‘classical’ activation and ‘alternative’ activation [22-24].
In general, classically activated macrophages are most
commonly associated with pathogenic disease states
[25]. In contrast, alternative activation states are gener-
ally associated with protection from diseases. In spite of
the accepted concept that microglia are brain-resident
macrophages, microglia exhibit several morphological
features that distinguish them from macrophages. These
include their ramified branches in the steady-state
phenotype and the amoeboid morphology of their
renewed and activated phenotypes [1,3,26,27]. Neverthe-
less, the classical or alternative activation concept of
macrophages may be adapted to microglia at their
steady-state and activated status [28-31]. Steady-state
microglia exhibits a resting-like phenotype, characterized
morphologically by extensively ramified processes that
continuously monitor their surroundings in the CNS
[32]. The property of the activated amoeboid microglia
is similar to macrophages [33]. However, the primary de-
terminants of ramified phenotype and amoeboid pheno-
type of microglia under pathological conditions in CNS
are less well defined and may be different from those of
macrophages in peripheral tissues.
AD is one of the most common age-dependent neuro-

degenerative diseases. AD pathology is characterized by
the accumulation of amyloid-β (Aβ) containing neuritic
plaques [34]. In addition to their direct neurotoxicity,
both oligomeric Aβ (oAβ) and fibrillary Aβ (fAβ) are
known to activate microglia [35-37]. Aβ-activated micro-
glia produces pro-inflammatory mediators, which are
neurotoxic [14]. It has been suggested that microglia can
be neuroprotective by clearing Aβ species. Although
the number of microglia is increased at the vicinity of
senile plaques, the microglial phenotype responsible for
pathological inflammation or neuroprotection remains
to be verified.
In this study, distinct effect of the proliferating and

differentiated microglia in the neuronal survival was
observed in vitro. The proliferating amoeboid microglia
(PAM) and the differentiated process-bearing microglia
(DPM) had different responses to neurons or Aβ-
mediated neurotoxicity. Their ability to protect neurons
against Aβ was determined by co-culturing microglia with
cortical neurons. In summary, we have cultured two
microglia phenotypes from the same lineage, which con-
tribute to the beneficial or destructive effects on neurons.

Methods
Materials
Mouse monoclonal antibody to GFAP and Hoechst
33258 were purchased from Invitrogen (Carlsbad, CA,
USA). An enhanced chemiluminescence detection re-
agent and anti-rabbit IgG antibody conjugated with
horseradish peroxidase were obtained from GE Health-
care (Buckinghamshire, UK). Donkey anti-goat IgG anti-
body conjugated with cy5, and donkey anti-rabbit or
anti-mouse IgG antibodies conjugated with fluorescein
were obtained from Jackson ImmunoResearch (West
Grove, PA, USA). Rabbit polyclonal anti-Iba-1 antibody
was purchased from Abcam (Cambridge, MA, USA).
Mouse monoclonal anti-CD11b and goat polyclonal
anti-tau antibodies were from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Mouse anti-CD11b monoclonal
antibody (OX-42 clone) was from Serotec (Kidlington,
Oxford, UK). Mouse anti-CD68, anti-β-actin monoclonal
antibodies, and Aβ1-42 were purchased from Millipore
(Billerica, MA, USA). The TUNEL assay kit was ob-
tained from Calbiochem (Darmstadt, Germany). Aβ25-
35, lipopolysaccharide (LPS), and polyclonal anti-Aβ
antibody were from Sigma (St. Louis, MO, USA). Re-
combinant rat interferon-γ (IFN-γ) was from PeproTech
(London, UK). The immunoassay kits for interleukine-
1β (IL-1β) and tumor necrosis factor-α (TNF-α) were
from R&D Systems (Minneapolis, MN, USA).

Preparation and biochemical characterization of Aβ25-35,
oAβ and fAβ
fAβ25-35 was prepared by dissolving Aβ25-35 in H2O at
1 mM and aging for 1 week at 37°C. oAβ and fAβ were
prepared as described [38,39]. A diluted solution of Aβs
was spotted onto a mica slide and scanned using an
Agilent® 5400 atomic force microscope (Molecular
Imaging Corporation, Tempe, AZ) as described previ-
ously [20,40].

Cell cultures
LADMAC cells (ATCC, CRL-2420) secrete M-CSF cap-
able of supporting the in vitro proliferation of bone
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marrow macrophages [41]. LADMAC cells were cul-
tured in Minimal Essential Medium (MEM) containing
10% fetal bovine serum (FBS). Once they had reached
confluence, the cells were cultured for 7 days without
changing the medium. Thereafter, the conditioned
medium was used to culture DPM microglia.
Primary cultures of neonatal cortical microglia were

prepared from the cerebral cortex of Sprague Dawley rat
pups at postnatal day 5 [19,20]. Briefly, 5-day-old pups
were anesthetized with ether and sacrificed by decapita-
tion. Primary mixed glial cells were prepared from the
cerebral cortex and maintained in DMEM/F12 medium
containing 10% FBS for 5 days. The medium was re-
placed with fresh culture medium and incubated for 1
day. PAM was isolated from mixed glial cultures by
shaking at 75 rpm overnight on an orbital shaker. There-
after, cells were cultured in Neurobasal medium/B27
supplement for 1 day. Otherwise, PAM were proliferated
in DMEM containing 10% FBS and 20% LADMAC-
conditioned medium for 5 days, and then the cells were
stripped and cultured in Neurobasal medium/B27 sup-
plement for 1 day (i.e., DPM).
Primary cultures of neonatal cortical neurons were pre-

pared from the cerebral cortex of Sprague Dawley rat pups
at postnatal day 1 [42]. Briefly, pups were anesthetized
with ether and sacrificed by decapitation. The cortex was
digested in 0.5 mg/ml papain at 37°C for 15 min and dis-
sociated in Hibernate A medium (containing B27 supple-
ment) by trituration. Cells were plated (5 × 104 cells/cm2)
onto poly-L-lysine-coated plates and maintained in Neu-
robasal medium containing B27 supplement, 10 units/ml
penicillin, 10 μg/ml streptomycin, and 0.5 μg/ml glutam-
ine (5% CO2/95% O2) for 3 days. Cells were then exposed
to cytosine-β-D arabinofuranoside (5 μM) for 1 day to
eliminate the proliferation of non-neuronal cells.
Immunocytochemistry
Treated cells were fixed with 4% paraformaldehyde
(in PBS) at room temperature for 15 min and perme-
abilized with 0.5% Triton X-100 (in PBS) for 10 min.
Cells were blocked with 10% normal donkey serum
(in PBS containing 0.5% BSA) at room temperature for 2
h. Cells were treated to detect microglia using goat anti-
Iba-1, rabbit anti-CD11b, and mouse anti-CD68 anti-
body. Cortical neuron morphology was assessed using
mouse anti-microtubule associated protein 2 (MAP2)
antibody and goat anti-tau antibody. Donkey anti-rabbit
IgG or anti-goat IgG conjugated with cy5 and donkey
anti-mouse IgG conjugated with fluorescein were used
as secondary antibodies. For the study of Aβ phagocyt-
osis, anti-Aβ1-40 polyclonal antibody and donkey anti-
rabbit IgG antibody conjugated with fluorescein were
used as primary and secondary antibodies, respectively.
Measurement of nitrite and cytokines
Nitrite content (nitric oxide release) was measured by
incubating culture medium with an equal volume of
Griess reagent (0.05% N-(1-naphthyl)-ethylene-diamine
dihydrochloride, 0.5% sulfanilamide, and 1.25% phos-
phoric acid). After incubation, the optical density was
detected at a wavelength of 540 nm using a microplate
reader with NaNO2 as standard. IL-1β and TNF-α re-
lease were measured with ELISA kits according to the
manufacturer’s instructions.

Co-culture, no contact co-culture of cortical neurons and
microglia, and conditioned medium transferring
experiment
Cortical neurons were cultured on poly-L-lysine-coated
24-well plates. For the co-culture experiment, neurons
were co-cultured with microglia at a cell ratio of 5/1 in
Neurobasal medium/B27 supplement after washing with
Neurobasal medium/B27 supplement. Cells were incu-
bated for 24 h to verify the direct effect of microglia on
cortical neuron viability. For the no contact co-culture
experiment, microglia was grown adherent on a cover-
slip. After wash, the coverslip was up-side down covered
on the neuron culture leaving a space/gap between the
cells by cushioning three coverslips (2 mm diameter) at
the side and then incubated in Neurobasal medium/B27
supplement. To verify the effect of microglia on Aβ-
mediated neurotoxicity, the co-culture of neurons and
microglia was treated with fAβ25-35 for 24 h. In the
conditioned medium transferring experiment, the condi-
tioned neurobasal medium of Aβ-treated microglia was
transferred to the neuron culture, in which two cells are
not contact or close to each other like that in the “no
contact co-culture”.

Statistic analysis
The results are expressed as the mean ± standard devi-
ation (S.D.) and were analyzed by analysis of variance
(ANOVA) with post hoc multiple comparisons corrected
with Bonferroni tests.

Results
Characterization of microglia phenotype and their
inflammatory responses following oAβ1-42 and fAβ25-35
treatment
To confirm the conformation of the prepared Aβs, the
biochemical and morphological nature of fAβ, and oAβ
were studied by atomic force microscope (Figure 1).
The mixed glial culture was cultured for 7 and 16 days

and the morphology of microglia were determined by
Iba-1 immunostaining. The result showed that amoeboid
and ramified microglia was observed at 7 and 16 days
in vitro (DIV), respectively (Figure 2A, B a, b). After
oAβ treatment, the processes of ramified microglia



Figure 1 The structure of the Aβ peptides used in this study. Aβ25-35 (a, fAβ25-35), oligomeric Aβ1-42 (b, oAβ) and fibrillary Aβ1-42
(c, fAβ) were spotted on mica and the nano-morphology were observed using atomic force microscopy. The representing images are showed.
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(16 DIV) shortened (Figure 2B c), and internalized Aβ
was located in the phagocytic vesicles (Figure 2B d). The
results suggested that ramified microglia acquired by
prolonged incubation were morphologically transformed
to an amoeboid phenotype by oAβ.
For the functional study of specific microglia pheno-

types, the proliferating amoeboid microglia (PAM) was
isolated from the mixed glia at 7 DIV (Figure 2A). PAM
possess small cell bodies (diameter: 20–30 μm) with large
amounts of phagocytic vacuoles, and some cells have short
processes (Figure 2C a, b). To obtain the differentiated
microglia, PAM were cultured in medium containing 20%
LADMAC-conditioned medium with a high concentration
of M-CSF for 5 days to differentiate PAM into process-
bearing microglia (DPM). DPM displayed rod-like morph-
ologies and mostly had long processes with branches and
spines at one end (Figure 2C c, d). The activation markers
CD11b and CD68 were examined to verify their activation
states (Figure 2D). The result showed that PAM expressed
more CD11b and CD68 than DPM did, indicating
that PAM have more phagocytotic activity than DPM.
Furthermore, the phagocytic ability of PAM is higher than
DPM in response to both fAβ25-35 and oAβ (Figure 2E).

DPM induce neurotoxicity in co-culture with neurons
The survival of rat cortical neurons in the presence of
PAM or DPM without exogenous stimulation was evalu-
ated using a calcein-AM assay. The co-culture of DPM,
but not PAM, with cortical neurons caused neuronal death
(Figure 3A). The numbers of axons and dendrites were sig-
nificantly decreased in cortical neurons co-cultured with
DPM, but not PAM, as shown by the immunostaining of
tau and MAP-2 to examine the intact of axon and den-
drite, respectively (Figure 3B). The results suggested that
DPM, but not PAM, injured the co-cultured neurons.

Aβ-mediated neurotoxicity was diminished by PAM and
aggravated by DPM
Next question we ask is whether PAM can protect
neurons against Aβ toxicity. The co-culture experiment
permitted contact of microglia and neurons (Figure 4A).
The nuclear condensation and apoptosis shown by DAPI
staining and TUNEL assays indicate that the fAβ25-35
was neurotoxic, and the co-culture with PAM attenuated
both phenomena. The quantification of nuclear conden-
sation and TUNEL-positive signals indicated that fAβ25-
35-induced nuclear condensation and apoptosis in
cortical neurons were significantly attenuated by co-
culturing with PAM (Figure 4B). Furthermore, PAM
significantly decreases the number of beaded neurites in-
duced by fAβ suggesting that PAM may also rescue the
Aβ-mediated injury of neurites (Figure 4C).
Since DPM could not be used in the co-culture experi-

ment because of the neurotoxicity may derived from the
direct contact with neurons. Therefore, the no contact
co-culture experiment was performed (Figure 5A). As
the coverslip was not seeded with microglia, fAβ25-35 at
5 and 20 μM induced the cell death by 17.8±9.9% and
43.0±7.9%, respectively. The cell death was reduced only
by the coverslip seeding PAM to 25.3±9.5% as the cells
treated with 20 μM fAβ25-35.
Aβ activated microglia may secrete some beneficial

or destructive factors. Therefore, the effects of the con-
ditioned medium of Aβ-treated PAM and DPM on
Aβ-mediated neurotoxicity were examined. The neuro-
toxicity mediated by Aβ was not reduced by the condi-
tioned medium of Aβ-treated PAM (Figure 5B). The
result suggests that the concentration of the PAM de-
rived neurotrophic factor in the conditioned medium
may be not high enough to protect neurons against
Aβ-mediated neurotoxicity. On the contrary, the con-
centration of neuron accessible microglia-derived neuro-
trophic factor is high enough in co-culture or no contact
co-culture experiments. The conditioned medium of
fAβ-treated DPM significantly induced the neurotox-
icity, since the direct neurotoxicity mediated by fAβ
alone was marginal (Figure 5B). The results indicated
that DPM not only induced the contact neurotoxicity
but also mediated the inflammatory neurotoxicity in-
duced by fAβ.



Figure 2 Microglial culture protocol and Aβ-mediated activation of two phenotypic microglia. A. The diagram represents the culture
protocol for mixed glia and purified microglia. Mixed glia were cultured to DIV 7 and 16. Amoeboid microglia were detached from the mixed
glial culture at DIV 7 and cultured in Neurobasal medium (NB) for 24 h (PAM). PAM was further incubated in medium containing the LADMAC-
conditioned medium for 6 days and then cultured in NB for 24 h to produce DPM. B. Mixed glial cells at DIV 7 and DIV16 (a,b), and mixed glial
cells at DIV16 were treated with 5 μM oAβ1-42 for 24 h (c, d). Microglia were immunostained with anti-Iba-1 (red in a, b), anti-CD11b (red in c, d)
and anti-Aβ antibodies (green in c, d). Nuclei were stained using Hoechst33258 (blue). C. The morphology of PAM (a) and DPM (c) were observed
with phase-contrast microscopy. PAM and the spiny processes of DPM indicated in the marked areas were magnified (b, d). D. The activation
states of PAM (a) and DPM (c) were examined with anti-CD11b (red) and anti-CD68 (green) antibodies. The phase contrast images of each
florescent image are presented (b, d). E. The representative images show internalized fibrillar Aβ25-35 (a, c) and FITC-conjugated oAβ1-42 (b, d)
in both PAM and DPM. Internalized Aβ25-35 was detected with anti-Aβ antibody (green). Each experiment was performed in triplicate.
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The pro-inflammatory activation of DPM was more potent
than that of PAM
The mechanism that DPM aggravating Aβ-mediated
neurotoxicity was then studied by determining the re-
lease of IL-1β, TNFα and nitric oxide by fAβ25-35-,
oAβ-, and fAβ-activated PAM or DPM (Figure 6A).
fAβ25-35 induced release of 11.51 ± 3.16 and 26.36 ±
1.07 ng/ml IL-1β in PAM and DPM, respectively. In
contrast, oAβ and fAβ did not significantly induce IL-1β
release in PAM or DPM. Three Aβs induce TNF-α re-
lease by DPM, but not by PAM, and fail to induce nitric
oxide release by both DPM and PAM. The results sug-
gest that Aβs were more potent inflammatory stimuli to
DPM than that to PAM.



Figure 3 DPM, but not PAM, is neurotoxic to neuron/microglia co-cultures. Cortical neurons were cultured alone or with PAM or DPM for
24 h. A. The cells were loaded with calcein-AM. The results are shown in representative fluorescence images (a, c, e) and phase contrast images
(b, d, f). B. Neuronal process integrity was verified with immunostaining for MAP-2 and tau in cortical neurons alone (a-c) or co-cultured with
PAM (d-f) or DPM (g-i).
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Furthermore, LPS and IFN-γ were employed as the
other inflammatory stimulus to examine the inflamma-
tory potency of DPM and PAM. LPS induced release of
35.74 ± 1.71 and 8.18 ± 2.14 ng/ml IL-1β in DPM and
PAM, respectively. Moreover, LPS induced release of
36.33 ± 3.44 and 25.91 ± 0.33 ng/ml TNF-α in DPM and
PAM, respectively. IFN-γ, however, did not induce
release of IL-1β and TNFα in both PAM and DPM
(Figure 6B). Furthermore, LPS induced release of 45.8 ±
2.9 and 21.6 ± 7.2 nmol/ml nitric oxide in DPM and
PAM, respectively. IFN-γ induced 47.7 ± 2.1 nmol/ml
and marginal amount nitric oxide release in DPM and
PAM, respectively. The results indicate that DPM are
more potent inflammatory mediator than PAM as acti-
vated by Aβ, LPS, or IFN-γ.

Discussion
The increased cell density of microglia due to recruit-
ment and proliferation is common to AD and other
neurodegenerative diseases. However, the role of prolif-
erating and differentiated microglia in AD remains
unclear. In the present study, we demonstrated that
microglia may stay in different activating phenotypes.
The proliferating amoeboid microglia (PAM) possesses
low inflammatory potency and protects neuron against
Aβ-mediated toxicity by phagocytosis and the released
neurotrophic factors. DPM is more pro-inflammatory
than PAM, and is toxic to the co-cultured neurons dir-
ectly or indirectly through DPM-secreted toxic factors
induced by stimuli, like fAβ. These results provide
critical evidence that microglia directly contribute to
promoting or opposing neuronal survival in AD.
Microglia have been suggested to help restore normal

brain homeostasis by participating in repair and reso-
lution processes after injury [29,43-45]. Part of the reso-
lution process involves the promotion of phagocytosis,
reduction of pro-inflammatory mediators, and increased
production and release of anti-inflammatory cytokines
and cytoactive factors involved in repairing the damaged
brain [16]. Nevertheless, few studies have been con-
ducted on the functional characterization of newborn
microglia differentiated from proliferating amoeboid
microglia in response to Aβ and to determine the roles
of microglia in the vicinity of senile plaques. An
age-dependent switch of microglial phenotype from
phagocytic to classic cytotoxic was observed in APP/PS1
transgenic mice at 18 months old [46]. TNF-α- and
iNOS-positive microglia infiltrated into senile plaques in
the hippocampus. The authors proposed that oAβ trig-
gers phenotypic switch in cultured microglia. Based on
our study of neurotoxicity elicited by DPM derived from
proliferating microglia, we proposed that inflammatory
microglia phenotypes near AD neuritic plaques may
arise from the differentiation of newly proliferating
microglia.
Although microglia with amoeboid and ramified

morphology (lectin+/CD68+ and lectin+/CD68-) have
been identified in the human embryonic brain, the func-
tions of these two types of microglia remain unclear
[47]. To specifically characterize the functional role of



Figure 4 (See legend on next page.)
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(See figure on previous page.)
Figure 4 Aβ-mediated neurotoxicity was attenuated by PAM. A. Cortical neurons alone or co-cultured with PAM were treated with vehicle
or 20 μM Aβ25-35 for 24 h. The nucleus is stained with DAPI (blue) and TUNEL assay (red), and the co-localization of nuclei and TUNEL-positive
staining is found in apoptotic cells. B. The percentage of apoptosis as determined by DAPI staining (the % of cells with nuclear condensation)
and TUNEL assay in cortical neurons alone (closed columns) and co-cultured with PAM (open columns). The results are the mean ± S.D. from
four independent experiments. Significant differences between neurons without and with PAM under the same treatments are indicated by #,
P < 0.05. Significant differences between vehicle-treated neurons and PAM-co-cultured neurons are indicated by *, P < 0.05. C. After treatment
with vehicle or Aβ25-35 for 24 h, the cells were loaded with calcein-AM and confocal images were taken with a confocal fluorescence
microscope. The experiment was performed four times. The graph shows the number of beaded neurites per 16 μm2 area in neurons alone
(closed columns) and neurons co-cultured with PAM (opened columns). The results are the mean ± S.D. from four independent experiments.
Significant differences between vehicle-treated cells and Aβ-treated cells co-cultured with microglia are indicated by *, P < 0.05. Significant
differences between cortical neurons with and without PAM are indicated by #, P < 0.05.
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proliferating amoeboid and differentiated ramified micro-
glia, we employed PAM and differentiated DPM using
LADMAC-conditioned medium to culture aged microglia
that were isolated in this study [48]. Naïve PAM were
characterized by the presence of vacuolated cytoplasm
and circular shape as earlier reported [19,40]. In contrast,
naïve DPM bear long and spiny processes extending a dis-
tance greater than three times the cell body diameter [19].
Kuwabara et al. have cultured immature and mature

microglia and characterized their response to LPS, in-
cluding the expressions of iNOS, IL-6, and TNF-α [49].
However, the neuroprotective or neurotoxicity of
immature and mature microglia was not assessed in
their study. To answer this question, we co-cultured
Figure 5 No contact PAM protects neurons against Aβ25-35-mediated
Aβ-mediated neurotoxicity. The protocol of no contact co-culture experi
in the Methods section and illustrated in the upper panel of A and B, resp
coverslip and was not seeded with microglia (black columns), seeded with
were treated with 5 μM or 20 μM fibril Aβ25-35 for 24 h. The coverslip was re
reduction assay. Results are means ± S.D. from four independent experiments
seeded and not seeded with microglia are indicated by **, P < 0.01. B. Cortica
medium from Aβ-treated PAM (gray columns) or Aβ-treated DPM (white colu
were used. Neuronal viability was assessed using an MTT reduction assay. The
Significant differences between neurons and neurons incubated with microgl
microglia and cortical neurons to demonstrate that
DPM directly caused neurotoxicity. Conversely, PAM
attenuated fAβ25-35-induced apoptosis and neuritic
bead formation. PAM was less able than DPM to pro-
duce nitric oxide, IL-1β, and TNF-α in response to in-
flammatory stimuli. IFN-γ-induced nitric oxide release
and Aβ-mediated TNF-α release in DPM were markedly
elevated compared to PAM. Different maturation stages
for pro-inflammatory activation by various endogenous
and exogenous stimuli may contribute to the contrasting
outcomes in neuron co-cultures. These results reveal
that proliferating PAM and differentiated DPM have dif-
ferential neuroprotective and neurotoxic functions, in
spite of their shared cell lineage.
toxicity and the condition medium of DPM aggravated
ment and conditioned medium transferring experiment are described
ectively. A. Cortical neurons were co-cultured but not contacted to the
PAM (gray columns), or seeded with DPM (white column). The cultures
moved and then the viability of neurons was detected using MTT
. Significant differences between neurons co-cultured with coverslip
l neurons were cultured in normal medium (black columns), conditioned
mns). Three different species of Aβ including fAβ25-35, oAβ, and fAβ
results are the mean ± S.D. from four independent experiments.
ial condition medium are indicated by *, P < 0.05.



Figure 6 DPM is more pro-inflammatory than PAM after activated by Aβ, LPS, and IFN-γ. A. PAM and DPM were treated with vehicle,
20 μM Aβ25-35, 1 μM oAβ or 1 μM fAβ for 24 h. After incubation, cultured medium was collected to determine the level of IL-1β
(black columns), TNF-α (striped columns) and NO (white columns). B. PAM and DPM were treated with vehicle, 20 ng/ml LPS or 5 ng/ml IFN-γ for
24 h. After incubation, cultured medium was collected to determine the level of IL-1β (black columns), TNF-α (striped columns) and NO (white
columns). The results are the mean ± S.D. from six independent experiments. Significant differences between vehicle-treated cells and Aβ-treated
cells are indicated by *, P < 0.05. Significant differences between PAM and DPM under the same treatments are indicated by #, P < 0.05.
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Substantial evidence has demonstrated that Aβ may have
indirect neurotoxic effects via microglial activation [3,22].
Microglia may also be beneficial in certain circumstances,
such as Aβ clearance and neurotrophic factor secretion
[37,50-52]. In the present study, DPM had a direct toxic ef-
fect on cortical neurons in co-culture experiments in the
absence of stimuli. This in vitro neurotoxicity of PBM may
be due to the postulate disadvantages of PBM culturing
[53]. First, PBM is derived from the neonatal brain, which
missing the in vivo maturation process. Second, PBM are
grown in serum- and M-CSF-containing medium, whereas
in vivo microglia normally never comes in contact with
serum components. Third, in vivo microglia is kept under
constant restraint by variety inhibitory inputs [54] which
are not included in the culturing of PBM. Some previous
study also indicated the microglia-mediated neurotoxicity
in the microglia-neuron co-culture [55,56]. fAβ-mediated
neurotoxicity was exacerbated in DPM-conditioned me-
dium. In contrast, PAM attenuated fAβ25-35-mediated
neurotoxicity through Aβ phagocytosis and producing
neurotrophic factors by the microglia closed enough to the
damaged neurons. That was confirmed by the microglia
exerting neuroprotective activity in no contact co-culture
experiment, but the microglial conditioned medium did
protect neurons against Aβ-mediated neurotoxicity. DPM
induced pronounced production and release of IL-1β and
TNF-α in response to fAβ25-35. The fAβ25-35-mediated
production of pro-inflammatory cytokines may reduce the
phagocytic response in DPM. Therefore, the elimination of
phagocytic capacity during development from neonatal to
adult and increased levels of pro-inflammatory cytokines in
pathological brain may provide an explanation for why ac-
tivated microglia are unable to effectively phagocytose fAβ
deposits in the AD brain and AD animal models.

Conclusions
PAM and DPM were cultured to specifically characterize
the functional roles of proliferating and differentiated
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microglia. PAM can be activated and may abrogate Aβ-
mediated neurotoxicity by phagocytosing Aβ and the re-
leased neurotrophic factors. DPM is a pro-inflammatory
phenotype that can mediate neurotoxicity if activated to
the classic activation state by LPS, IFN-γ, Aβ or neur-
onal debris. These results raise the possibility that activa-
tion of microglia with a neuroprotective phenotype may
have therapeutic potential for treating AD as well as
other neurodegenerative conditions.
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