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Abstract

A 'smart tissue interface' is a host tissue-biomaterial interface capable of triggering favourable biochemical events
inspired by stimuli responsive mechanisms. In other words, biomaterial surface is instrumental in dictating the interface
functionality. This review aims to investigate the fundamental and favourable requirements of a ‘smart tissue interface’
that can positively influence the degree of healing and promote bone tissue regeneration. A biomaterial surface when
interacts synergistically with the dynamic extracellular matrix, the healing process become accelerated through
development of a smart interface. The interface functionality relies equally on bound functional groups and conjugated
molecules belonging to the biomaterial and the biological milieu it interacts with. The essential conditions for such a
special biomimetic environment are discussed. We highlight the impending prospects of smart interfaces and trying to

reference to bone tissue regeneration.

engineering

relate the design approaches as well as critical factors that determine species-specific functionality with special
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Background

Biomineralized structures represent one of the classic
strategies of evolution success. While their fabulous
shapes mesmerized scientists, the complexity associated
with them remained as a source of inspiration for en-
gineering several organic-inorganic hybrid structures.
Biomineralized structures have been considered unique
with respect to their superior hierarchy, species-specific
properties like uniform particle size, complex morph-
ology, preferential crystallographic orientation etc. [1].
‘Biomimetics, a term coined by Otto Schmitt in 1950s
[2, 3] has been recognized as a budding branch of sci-
ence that explores technological beauty of the nature.
The concept of biomimetics has been magnificently ex-
plored towards famous applications such as the design
of the ‘Eiffel Tower’ by getting inspired from the intri-
guing trabecular structure of bone (offering it the
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greatest strength); and the development of novel ‘dirt
and water repellent’ paints based on ‘lotus effect’.

‘Biomimetics’ when interacts to biomineralization,
leads to incredible inventions in the biomedical field. In
fact, the prospects of biomimetically engineered prod-
ucts could be significantly superior to any of its other al-
ternatives. Designing biomimetic constructs requires a
greater understanding of nature’s reckoning potential.
As a result of this comprehension, the growth of bio-
mimetic approaches has offered valuable insights to
many of the present challenges in tissue engineering.
Dimasi et al., have shown the unique organization of
polymorphs of calcium carbonate in the form of calcite
and aragonite in a shell, and how it helps the organism
to achieve excellent mechanical properties for its pro-
tective covering [4].

The organic-inorganic hybrid materials are multifa-
ceted in their properties and hence offer prolific applica-
tions in diverse fields by bridging superior links in a
synergistic way. A proper understanding of the fre-
quency of interaction involved in the organic-inorganic
interface leads to the recognition of the exceptional
potentials of these hybrid materials. Investigations on
this topic opened a brighter world of intelligent
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designing of materials for advanced applications. The
organic-inorganic interfaces possess very special proper-
ties, and if designed properly; could be explored for ad-
dressing many of the presently existing biomedical
challenges. The pioneering contributions of Langer and
Vacanti [5] paved the way to versatile approaches of
bone tissue engineering. The fundamental concept
underlying is to design scaffolds with sufficiently inter-
connected pores of appropriate size to facilitate vascular-
isation and simultaneously modulating the material
surface to hold the potentials to invoke and enhance cel-
lular adhesion and proliferation so that the resulting
product could be transformed as a ‘tissue engineered
construct’. This further requires knowledge of growth
factors and cytokines and their release kinetics [6] and
the information regarding local signal transduction that
regulate the optimal tissue regeneration pathways [7],
growth factor assisted signal transduction [8]. Hence, it
could be envisaged that successful orthopaedic tissue re-
generation approaches needs to formulate a combin-
ational knowledge consisting of scaffold materials,
growth factors and their release kinetics, tissue as well
as unit cell properties and more importantly the cross-
interaction between these different components in the
biological environment.

In addition, orthopaedic regenerative options have rec-
ognized bigger challenges due to the inevitable involve-
ment of synchronized interactions of multiple tissues as
part of musculoskeletal movement [9]. The degree of clin-
ical translation of a biomaterial directly depends on its
biocompatibility and functional integration [10]. It could
be seen that in the past few decades there was significant
progress in developing such optimally functioning bone
graft materials. However, there exists a huge demand for
biomaterials capable of integrative repair [11-13]. Com-
bined functioning of growth factors and cells may be
thought as a better option for designing functional bio-
materials for in vivo tissue engineering and has already
been explored for biomimetic design of bone, cartilage,
ligament, tendon etc. [14—18]. Recent emphasis is focused
on integrated 3D scaffolds and stem cell approaches that
simultaneously explore technological advancements and
novel design strategies for designing better functional
bone grafts [19-22]. A key point which has to be taken
care with significant importance is creating a better inter-
face that can invoke desired biological responses and fas-
ter healing via osseointegration [23-25].

Functional interfaces

It is well-known that materials interact with surroundings
through their surfaces. The communications involved in
such interactions are determined by the material surface
properties under specific environments. It is noteworthy
to mention that specific interactions (e.g.: ligand-cellular
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receptor interactions or biomolecule immobilization on a
biomaterial surface could be controlled better compared
to non-specific interactions (like partial negative charge
on the surface of a biomaterial). Hence, considerable
efforts have been undertaken by several investigators to
impart preferred biofunctionality by introducing biofunc-
tional groups or immobilization of biomolecules onto
polymer surface for clinical applications [26—30]. Despite
all these efforts, the clinical use of biomimetic materials
are in the developmental phase [31]. The surface pro-
perties such as surface energy, surface charge and surface
roughness play critical roles in determining the cell-
material interaction at the interface [32—-36]. Surface prop-
erties being highly influential in the designing of functional
biomaterials, it could be envisaged that an attempt to
engineer a successful biomaterial interface and thereby es-
tablish a positive interaction in the biological milieu re-
quires a multilateral approach involving knowledge of
surface science, material properties and a comprehensive
understanding of cellular and molecular biology.

The organic-inorganic interface

A biomaterial can induce multiplicity of protein medi-
ated cell responses based on its surface characteristics
[37-39]. The surface characteristics of a biomaterial thus
determine the primary biomolecular response in the bio-
logical medium and thereby decide the attachment/orien-
tation of biomolecules on the surface and proliferation/
differentiation of cells [33, 40, 41]. An organic-inorganic
interface is characterized by its unique chemical sensitivity
and inherent species-specific organization potential. The
organic-inorganic interface is a highly energy driven re-
gime where the induction of biomimetic mineralization
and formation of self-assembled/hierarchical structures
could be directed by appropriate designing [42, 43].

Biofunctionality of the interface and influential factors

‘Biofunctionality’ is a remarkable phenomenon associ-
ated with a sequence of favourable events occurring as a
result of the interaction between the interface and the
host environment. The primary step towards imparting
functionality to the interface would be to minimize the
unfavourable interactions with biological elements such
as proteins and blood cells [44, 45]. There are several
basic aspects involved in the fabrication of tailor made
biomimetic surfaces with biospecific properties that can
elicit a positive interaction between the interface and the
host tissue. One of the major approaches followed is
through RGD peptide sequences [46—51]. The cell sur-
face possesses diverse types of receptors to facilitate
binding with specific proteins present in the extracellular
matrix (ECM); which is a complex mixture of glycopro-
teins and proteoglycans. The RGD peptide sequence me-
diate the attachment of cells by plasma and ECM
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proteins, including fibronectin, vitronectin, type I colla-
gen, osteopontin and bone sialoprotein (BSP) [51, 52].
However, the functionality and the cell spreading pattern
are directly proportional to the surface density of the
peptide [47, 49].

Although there is a significant amount of complexity
associated with characterizing the organic-inorganic
interface, certain key elements could be considered while
fabricating them towards specific applications. Techno-
logical design of smart interfaces requires a unique
balance of tuning hydrophilic/hydrophobic properties,
selection of functional groups or biological molecules to
be immobilized and the kinetic control of biomimetic
mineralization. Ultimately, this offers exciting opportun-
ities for the researchers to formulate species-specific
substrates of their choice. Considering the growth strat-
egy of a biomineral, the functional groups become piv-
otal [53-55]. With respect to the cell adhesion pattern,
the spacer groups/biomolecules attached on the surface
play key role [56]. While relating to the stability of the
interface in the biological milieu, the cohesive energy of
the substrate is an important parameter [57]. The dy-
namic interaction of the interface with the surrounding
medium requires a high accessibility of the surface func-
tional groups. The initial transient interaction between
the functional interface and the cellular environment
further progresses to an enduring cell-substrate bonding
through an appropriate signal transduction pathway.
This hypothetical approach when conceived properly
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could be easily transformed into advanced functional
biomaterials. Figure 1 schematically illustrates the fac-
tors involved and the molecular cues associated with
cell-material interaction.

The ‘Smart’ interface: from concept to clinical
applications

There exists a potential demand for clinically significant
bone implants with superior biofunctionality [58—60].
Engineering such functional implants requires a proper
understanding of the cell-substrate interaction as well as
the fundamental properties of the organic-inorganic
interface. Even though several alternatives are presently
available for bone augmentation, ranging from biocera-
mics to polymer-bioceramic composites or bioceramic
coated metal components [61-63], attempts towards de-
velopment of ideal bone graft materials remains as one
of the prevailing research topics.

‘Smart’ interface: the concept

A ‘smart interface’ could be defined as an interface
capable of triggering favourable biochemical events
based on stimuli responsive mechanism. A smart
interface is capable of responding towards external
stimuli and hence organizing by itself by dynamically
regulating biological functions. This unprecedented
biomimicking property could be imparted to the
interface through one or more of intelligent design-
ing approaches like biomolecular immobilization,
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Fig. 1 Schematic illustration of the factors involved and molecular cues associated with cell-material interaction
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superior functionalization, stimuli responsive spacer
groups etc. [64—66]. The transduction of a bio-
recognition event occurs as a result of a biospecific
interaction between the functional interface and the
cellular environment. Among the various phenomena
associated with the cell-material interaction, the first
step associated with most of the cell types is adhe-
sion, followed by growth, proliferation and adoption
of phenotypic expression [67]. The signature of the
mechanism associated with a smart interface with
reference to bone tissue regeneration is the ability to
elicit a positive interaction between the substrate
surface and the cellular environment that simultan-
eously invokes biomineralization and specific cell
binding. The concept of smart interface is schemat-
ically illustrated in Fig. 2.

Signal transduction

It has been understood that cells make direct contact with
the surface of an implant through biological signals [33,
68]. The biological signals are generated through primary
interaction of the substrate with proteins present in the
blood as soon as they come into contact with each other.
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Moreover, the self-assembly of water molecules on a bio-
material surface has a critical role in determining adsorp-
tion/repulsion of proteins or formation of thrombus and
thereby the biological response towards it [69]. These
extracellular cues are translated into cellular responses by
the nucleus to all those cell-material adhesion sites known
as focal contacts [70, 71].

The initial cell adherence and spreading pattern are
determined by surface characteristics of the material
which further directs cellular growth and differenti-
ation as a function of intracellular interactions with
extracellular matrix through transmembrane proteins,
known as integrins [72-74]. The signal transduction
to the cytoskeleton is through bridging focal adhesion
proteins i.e., tallin, paxillin and vinculin, which ultim-
ately leads to a positive feedback for the production
of ECM by the cell itself [72, 73]. Subsequent activa-
tion of focal adhesion (FAK) pathway and mitogen-
activated protein kinase (MAPK) cascades further
modulate the degree of attachment influenced by the
received signals [75]. Integrins also play crucial role
in intracellular trafficking and hence, multiple cell
functions [76].
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Designing a smart interface for bone tissue regeneration
The worldwide demand for bone grafts is significantly
high because of the impending need for functional bone
graft materials arising from congenital or acquired bone
defects, developmental defects, trauma, presence of
tumours etc. [77]. The integration of a bone graft occurs
basically through the process of interdigitation [78] a
multi-step cascade which involves accumulation of inflam-
matory cells towards a bone graft as the primary response
[79, 80]. This is followed by a chemotaxis of host mesen-
chymal cells towards the graft site and the primitive host
cells differentiate into chondroblasts and osteoblasts. The
configuration and chemistry of the biomaterial plays a piv-
otal role in dictating attachment of the cells and defining
its morphology, which finally directs bone formation from
the osteoblasts that remodels onto the three dimensional
framework of the graft [81, 82].

Bone formation is a result of by collective actions
of numerous factors that includes proliferation and
differentiation of osteoprogenitor cells, production of
collagen, mineralization and its regulation and expres-
sion of functional proteins (Alkaline phosphatase and
osteocalcin) [83—-85]. The type of bone in various part
of the skeleton are unique with respect to
vascularization, mineral density, porosity and the
growth potential and hence the success of long term
survival and regeneration of a bone implant is a mat-
ter of utmost importance and challenge. Considering
the basic difficulties in harvesting the autografts and
the lack of true osteoinduction capacities of many of
the synthetic materials, there is a huge demand for
developing biomimetic materials that can help an in-
creased adherence of osteoblasts onto the biomaterial
surface that could promote bone bonding and help
osteoinduction [86—88].

An ideal bone graft should provide both the necessary
elements for integration and new bone formation cas-
cade and lend structural support during this process.
There are many characteristics an ideal bone graft
should satisfy. Among these requirements, osseointegra-
tion is the most important prerequisite characteristic
[89, 90]. The concept of ‘osseointegration’ was presented
at the Toronto conference in May 1982 [91]. Even
though osseointegration can be defined multiple levels
(anatomically, clinically, histologically and ultra structur-
ally), the clinical definition is more relevant in the
present context. According to Branemark, ‘osseointegra-
tion’ is the direct structural and functional connection
between ordered, living bone and the surface of a load
carrying implant’. The fracture healing potential of a
newly implanted site depends on the well-defined cas-
cade of cellular responses including the foreign body re-
action [92]. The remodelling phase primarily depends on
the implant-host tissue interaction.
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It is possible to formulate strategies for functional de-
signing of interfaces with selective binding sites for bone
tissue engineering applications. Biofunctional substrates
with active surface capable of specific binding and simul-
taneously eliciting biomimetic mineralization would be
highly superior in their performance in vivo. Molecular
modelling of such organic-inorganic interface with
enhanced efficiency should also satisfy geometric, ste-
reochemical and electrostatic requirements in addition
to the biospecific interaction. In the case of bone im-
plants, surface functionalities that facilitate biomimetic
mineralization are greatly favoured due to the significant
amount of the inorganic content inherently associated
with it. The biomimetic approaches/substrates studied
and the key information gathered are collectively pre-
sented in Table 1.

Biomimetic mineralization

A ‘biocompatible material’ invokes an appropriate host
tissue responses, upon specific applications and surface
modification is recognized as a successful approach to
modulate cellular interactions and can be formulated to
meet the requirements without altering inherent bulk
functional properties [93]. Preferred biological responses
and functionalities can be therefore accomplished by
smart modifications of polymers by physico-chemical or
biochemical ways [94—97]. ‘Biomimetic mineralization’ a
process of ‘mimicking biomineralization conditions
under laboratory conditions by synthetic approaches is
usually accomplished with the aid of organic templates
like macromolecular frameworks, cell walls or lipid
membranes through specific or selective interaction be-
tween the organic moieties and the precursors of the
biomineral. Approaches that facilitate biomimetic hy-
droxyapatite formation are extensively investigated in
the last couple of decades [98-100].

Calcium phosphate coatings

Hard tissues formation, remineralization and dissolution
are complex processes involving multiple calcium phos-
phate phases [101] and several biological mineralization
processes are associated with the formation of meta-
stable intermediates which undergo subsequent trans-
formation into better stable thermodynamic phases
[102]. Kinetic studies exemplify formation of calcium
phosphate precursor phases such as dicalcium phos-
phate dihydrate and octacalcium phosphate which even-
tually transforms into stable hydroxyapatite [103].
Furthermore, the nature of phases formed depends upon
the pH and the type of mineralization (normal or patho-
logical) [104]. In addition, presence of extra-lattice ions
or external molecules in the system also distinctly influ-
ences the rate of mineralization and demineralization.
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Table 1 Biomimetic approaches for biomineralization/osseointegration and key information gathered

Biomimetic Substrate/Approaches for Key information Reference

biomineralization and osseointegration/

osteogenesis

1 Synthetic hydroxyapatite (HA) and its » Electrostatic interaction of the HAP surface with the calcium and the phosphate ions [105]
composites

2 Bioglass and Bioglass-calcium phosphate = Carbonate apatite layer formation [124-126]
composites = Good osteointegration both in vitro and in vivo

3 U HMWPE, Biodegradable starch/ethylene = Formation of continuous and adherent Ca-P [110]

vinyl alcohol blend, PU foams * layer on the surface

= Needle-like crystals formed cauliflower like morphology

4 Surface functionalization by
phosphorylation
= Bamboo [117]
= Chitosan [118]
= Poly (HEMA-co-MMA) [119]
= PVA [121]
* Regenerated Cellulose [122]

5 = Surface modification Polyethersulphone
* PMMA (ATP coupling) Electrospun PCL -
gelatin

6 RGD and BMP integrated polymer
matrices

6 Biodegradable Polymer Composites
= Viscose cellulose sponge
= Starch/ethylene vinyl alcohol blend
(SEVA-Q)
= Gelatin-poly(acrylic acid) matrix
= poly(lactide-co-glycolide)

7 = Titanium metal
= Polished and gritted Titanium (Ti6AI4V)

8 Stem Cell based approaches

= increased number of nuclear sites and apatite formation 117

= Nucleation and porous HAP coating [118]

= Direct bone bonding and elicited new bone formation [119]

= promotes in vitro biomineralization and in vitro cell adhesion [121]

= Increased surface roughness and leads to better binding of Calcium ions [122]

= Promotes nucleation and growth of calcium phosphate [111,112]

= Uniform apatite layer formation upto 20 um thickness [120]
[140, 141]

= Structural integrity modulation and aligned biomineralization [65]

* Enhance bone specific marker protein expression and thereby mineralization [127]

= Compatible for tissue in-growth [143-146]

= Attractive as scaffold for bone tissue engineering

= Promotes cell adhesion

= Feasibility of orientation by stretching

* NaOH and heat treatment generates amorphous sodium titanate on the metal and [114,115]

induces bonelike apatite layer

= In vivo osteogenesis [132-136]

= Promising source for bone tissue engineering [142]

Kim et al. proposed that formation of bone-like apatite
or calcium-rich amorphous calcium phosphate (ACP) in
the in vitro environment occurs via formation of calcium-
poor ACP in the early soaking period [105]. The synthe-
sis/post-synthesis factors have detrimental roles on the
functional properties of biomimetic apatites formed [106]
and hence knowledge on the cellular and molecular inter-
actions with bioceramic surfaces of impart information on
the strategic design of better functioning bioceramic ma-
terials by minimizing unwanted biological effects like pro-
longed macrophage activation [107]. Organoapatites, that
integrally incorporate amino acids like poly(L-lysine),
poly(L-sodium glutamate), poly(sodium acrylate) or poly(L-
lysine) have exhibited apposition of bone after 35 weeks of
implantation in canine and cortical bone [108, 109].

Bone being an organic-inorganic hybrid tissue with
58 % mineralized part as hydroxyapatite, significant
research investigations were performed to understand
prominent influence of surface modification that facilitate
biomimetic mineralization of calcium phosphate by graft
copolymerization, plasma gas discharge, ionizing radiation,
chemical derivatization, photochemical grafting, chemical

modification [110-116]. Among these, surface phosphoryl-
ation has been identified as an effective method for surface
functionalization [117-119]. Varma et al. demonstrated for-
mation of calcium phosphate coating on chitosan by direct
phosphorylation while PMMA required surface functionali-
zation by coupling with ATP molecule elicit HAP coating
[120]. Surface phosphorylated poly(vinyl alcohol), PVA ex-
hibited enhanced cytocompatibility in vitro in addition to
substantial apatite coating [121]. Instead of urea-
phosphoric acid method, Li et al. [117] employed sodium
hydroxide-phosphoric acid for phosphorylating bamboo
while Granja et al. [122] phosphorylated regenerated cellu-
lose with the aid of phosphoric acid and triethyl phos-
phate. In another study, the authors presented an
alternative way for surface phosphorylation illustrated
with poly (hydroxyl ethyl methacrylate-co methyl meth-
acrylate) for biomimetic growth of calcium phosphate
[119], and the functionalized material was demonstrated
to direct bone bonding and elicited new bone formation
[118]. Diverse growth morphology could be accomplished
for the biomimetically grown hydroxyapatite as shown in
Fig. 3(a-d). Figure 3e illustrates flower-like morphology of
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Fig. 3 Biomimetic apatite coating formed on surface functionalized polymeric substrates (a): poly(methyl methacrylate) (ref: 121, with permission
from Elsevier); (b):chitosan (ref: 120; with permission from Elsevier); (c): poly(vinyl alcohol) with permission from Elsevier (ref: 122); (d): poly(hydroxy
ethyl methacrylate-co-methyl methacrylate); (e): high magnification image of (d)

hydroxyapatite crystals grown biomimetically on the sur-
face of phosphorylated poly(HEMA-co-MMA). (Biomim-
etic mineralization conditions are provided in the
‘Materials and Methods’ section).

Bio-glass coating

Bioactive glass coating, another accepted method to estab-
lish calcium phosphate coating is primarily driven by the
increase in the ionic product of apatite in the surrounding
body fluid caused by the dissolution of Ca ** ions from
the bioactive glass, which is already supersaturated with
respect to apatite. The mechanism of this process is il-
lustrated by Kokubo in several of his pioneering works
[123-126]. Several investigations testify the prominent
role of bioglass in favouring bone-like apatite formation

elicited by large number of apatite nuclei is generated on
the surfaces of bioactive glasses, triggered by the hydrated
silica formed on the bioglass.

Biomineralization through bioactive molecules

Immobilization of biomacromolecules on organic sub-
strates by spacer groups both temporary and permanent
ways has been also recognized as a bio-inspired inspiring
approach as it offers greater steric freedom and hence
better specific activity. Surface functional groups like
-COOH, -PO,, -NH,, —OH induce site-directed or tem-
plate directed nucleation and growth of hydroxyapatite.
Surface functionalized biomaterial substrates with react-
ive anionic functional groups like -OH,-NH,, ~-COOH
and -PO,; can persuade interactions with mineral
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precursor ions and thereby induce nucleation of the cal-
cium phosphate phase under physiological as well as
simulated physiological conditions. In addition to bioin-
spired mineralization, surface functionalization also im-
parts properties such as hydrophilicity, biomolecular
recognition and enhanced cytocompatibility. The growth
rate of apatite crystals on functionalized self-assembled
monolayers on gold surface decreased in the order
PO,>COOH »>>CONH,>OH>NH, >>CH; [112].
Lowering of the activation energy is the driving force for
the nucleation inorganic crystallization on organic sur-
face. Concave surface accumulates an increased spatial
charge concentration of the functional groups when
compared to convex or planar surfaces and hence as-
sumed as surface charge concentrated pockets leading to
accelerated crystal nucleation [1].

Specific control of nucleation and growth of hydroxy-
apatite and better cell adhesion has been achieved by
Arg-Gly-Asp (RGD) terminated self-assembled surfac-
tant architecture comprising cystenic amino acids and
phosphoserine molecule, a highly phosphorylated inter-
face, which promoted HAP nucleation while RGD units
enhanced cell adhesion [65]. Lu et al. demonstrated
mineralization of rabbit skeletal muscle and increased
bone marker expression with the aid of BMP-7 delivered
from PLGA matrix [127].

Contemporary strategies in bone tissue
engineering

Bone is unique with respect to its organic-inorganic hy-
brid structure (Ca;o(PO4)s(OH), as the inorganic phase),
superior hierarchy and continuous remodelling potential
[128, 129]. The composition of organic matrix of bone
tissue is basically 95 % type I collagen, 5 % proteogly-
cans, the high molecular weight complexes of proteins
and polysaccharides (e.g.: glycosaminoglycan) and non-
collageneous proteins [129]. Based on the packing
density, bone tissue is classified as compact (dense) and
cancellous or spongy (trabecular) and continuous re-
modelling of bone is sequential coordinated by activities
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of osteoclasts, osteo-progenitor cells, osteoblasts and
finally osteocytes [65]. Bone tissue engineering acquires
its significance particularly due to the remodelling
potential of bone. A clinically successful bone implant
needs to achieve a stable interface with host tissue at the
same time a good matching of the mechanical properties
between the implant and the host tissue [130]. The main
objective associated with bioengineering of functional
bone implants is to stimulate a positive cell-material
interaction followed by preferential adhesion of bone cells,
synthesis of extracellular matrix and its mineralization.
This biomimetic concept is achieved through biomolecu-
lar or surface functional group recognition, by surface or
bulk modification of biomaterials. An osteoinductive im-
plant promotes bone formation by causing the cells to dif-
ferentiate into chondrocytes and osteoblasts. The surface
of an implant can affect the cell phenotype, since a small
variation in the surface charge itself can influence the cell
spreading pattern.

The chemical and biochemical stimuli responsive sur-
faces present intriguing possibilities towards develop-
ment of novel functional implant material. Biomimietic
principles could be explored for regulating molecular
recognition at the organic-inorganic interfaces by proper
regulation of the transport processes from the extracel-
lular fluids to the biomaterial surface. Development of
multifunctional scaffolds has been widely accepted as
one of the successful techniques for functional tissue en-
gineering. Direct bonding between the implant and the
host bone can be achieved through reactive surface func-
tional groups that could ultimately facilitate biomimetic
mineralization and bone regeneration in vivo. The sur-
face phosphorylated poly(HEMA-co-MMA) promoted
formation of new bone in vivo when implanted in rab-
bits for 12 weeks [118]. Figure 4 demonstrates that sur-
face phosphorylated poly(HEMA-co-MMA) could elicit
significant bone regeneration after 12 weeks of implant-
ation in rabbits. (Details of implantation procedure
followed are provided in the ‘Materials and Methods’
section).

Fig. 4 a: The new bone formation at surface phosphorylated poly(HEMA-co-MMA)-host bone interface (implanted in rabbit for 12 weeks)
(b): poly methyl methacrylate-host bone interface (control) (poly(methyl methacrylate) dissolves in its monomer during embedding process)

control
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In the last couple of decades, stem cells have been rec-
ognized to play potential role towards in vivo bone re-
generation [131-133] though the mechanism associated
with stem cell based healing and the atrophic factors as-
sociated with the profound interaction between the im-
planted cell type and the in vivo environment [134].
Recent attempts for regenerative orthopaedic treatment
modalities propose significance of stem cell based
approaches [135, 136] as well as nanotechnological
approaches [137] particularly through the combination
of specific cell sources, biomimetically modified scaf-
folds, by designing suitable bioreactor and incorporating
the ideal growth factors. It is also important to mention
that though there is a potential growth in the diverse yet
symbiotic tissue engineering approaches, the clinical
translation of these innovative approaches are relatively
slower than expected.

Clinical success of bone grafts requires realization of the
concept presented in “Diamond theory” of Giannoudis:
that is osteogenic cells and vascularization, mechan-
ical stability, growth factors, osteoconductive scaffolds
(in combination with growths factors) [138]. The sig-
nificant challenges in developing clinically successful bone
tissue engineering graft is unavailability porous scaffolds
that are mechanically strong enough with good
vascularization potential. Contemporary grafts are limited
to peripheral tissue in-growth and are also limited with
currently used animal models in addition to long-time ex-
pensive validation protocols for alternative grafts [139].

Intriguing views on biomineralized porous scaffolds
with 3D interconnected structures throw lights on the
less explored, but highly imperative options. Porous scaf-
folds possessing sufficiently good mechanical properties
that undergo slow degradation kinetics have a predomin-
ant role as tissue engineering constructs [140—142]. Even
though resource substrates employed for this purpose
are inherently biocompatible and biodegradable, most of
them lack intrinsic bioactivity, typical example is cellu-
lose [143—148]. These constructs can be transformed into
effective osteocondictive platform by appropriate surface
functionalization to invoke biomimetic mineralization of
hydroxyapatite so that they will serve as better alternatives
for consistent bone regeneration due to inherited bone-
bonding potential and also function a good support for
cells and exogenous factors.

Understanding the diversity of biomineraization process
presents opportunities for better designing of advanced
functional architectures with hierarchical porosity and
organization profile that mimic the ubiquitous properties in
the biological milieu. Recent developments in bioinspired bio-
mineralization in template architectures designed with metal
organic frameworks (MOF)s is a very promising and effective
advancement in this area [149, 150]. Bisphosphonates and
zoledronate (Zol), a third-generation bisphosphonate are
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evolved as pharmacology agents to treat bone disorders like
osteoclast-mediated bone loss due to osteoporosis, Paget’s dis-
ease of bone, metastasis to the bone, and malignancy-
associated hypercalcemia.

It is worth anticipating that the stem cell interaction
with the extracellular matrix could be explored as a
favourable element to initiate the desired response at the
biomaterial-host tissue interface even though the specific
regulatory mechanisms are only partially understood. In
addition, challenges like long term immunological threats
are to be addressed properly. However it could be ex-
pected that these present limiting factors will be resolved
in the nearby future and implants for clinical augmenta-
tion could be derived through the multifaceted bio-
inspired approaches and well designed combinations.

Conclusions

Advances in the knowledge on cell-material interaction
has imparted revolutionary ideas in designing novel
smart interfaces that can facilitate the preferred signal-
ling cascades between living cells and the implants. Pre-
cision synthesis of such advanced biomaterials with
highly specific spatial distribution of bioactive sites and
desired topographical architecture to invoke distinct cel-
lular response could be made based on the comprehen-
sive awareness of interface properties and intercellular
signalling sequences. Advanced strategies employing
such receptor mediated cellular responses with intrinsic
biospecificity are greatly awaited by the scientific com-
munity for long-term functioning of biomimetic im-
plants. Clinical success of these new generation smart
biomaterials, despite of having all the positive advances
are anticipated milestones in the near future. More
quantitative approaches are welcomed for close mimick-
ing of the advanced biofunctional implants having better
clinical success. It is expected that better understanding
of organic-inorganic interface will pave the way to suc-
cess in this endeavour.

Materials and methods

Hydroxyethyl methacrylate (HEMA) assay: 98 %, methyl
methacrylate (MMA) assay: 99 %, and phosphorous pent-
oxide (assay: 98 %) were procured from Sigma-Aldrich Co.
Inc. ethylene glycol dimethacrylate (assay: 98 %) from Fluka
AG (Buchs, Switzerland), benzoyl peroxide (assay: 98 %)
from S.D. Fine India Ltd. (Mumbai, India). All other ch-
emicals were purchased from Ranbaxy India Pvt. Ltd.
(Mumbai, India). MMA was made free of inhibitor by treat-
ing with 4 % sodium hydroxide solution for three times,
followed by washing with DI water, dried by placing over
anhydrous magnesium sulfate. HEMA was made free of in-
hibitor by passing through an inhibitor remover column
(Sigma-Aldrich Co. Inc.).
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Biomimetic mineralization of surface phosphorylated
Poly (HEMA-co-MMA) was performed in accordance to
our previously reported procedures Ref [118-120].
Short-term bone implantation was performed as per ISO
10993-6; 1994 (E) Test for local effects after implant-
ation, clause 6.0: Test method for implantation in bone
in adult Albino rabbits, from the institute animal house,
Sree Chitra Tirunal Institute for Medical Sciences and
Technology, Thiruvananthapuram. All implantation pro-
cedures were carried out following the rules of the Ani-
mal Ethics Committee of the institute and ISO protocol
[Reference number: B-2072005 V]. The results pre-
sented in Figs. 3e and 4 are not published before.
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