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Mammalian microRNA: an important
modulator of host-pathogen interactions in
human viral infections
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Abstract

MicroRNAs (miRNAs), which are small non-coding RNAs expressed by almost all metazoans, have key roles in the
regulation of cell differentiation, organism development and gene expression. Thousands of miRNAs regulating
approximately 60 % of the total human genome have been identified. They regulate genetic expression either by
direct cleavage or by translational repression of the target mRNAs recognized through partial complementary base
pairing. The active and functional unit of miRNA is its complex with Argonaute proteins known as the microRNA-
induced silencing complex (miRISC). De-regulated miRNA expression in the human cell may contribute to a diverse
group of disorders including cancer, cardiovascular dysfunctions, liver damage, immunological dysfunction,
metabolic syndromes and pathogenic infections. Current day studies have revealed that miRNAs are indeed a
pivotal component of host-pathogen interactions and host immune responses toward microorganisms. miRNA is
emerging as a tool for genetic study, therapeutic development and diagnosis for human pathogenic infections
caused by viruses, bacteria, parasites and fungi. Many pathogens can exploit the host miRNA system for their own
benefit such as surviving inside the host cell, replication, pathogenesis and bypassing some host immune barriers,
while some express pathogen-encoded miRNA inside the host contributing to their replication, survival and/or
latency. In this review, we discuss the role and significance of miRNA in relation to some pathogenic viruses.
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Background
Recent advancements in genomics and proteomics have
shown that out of roughly half of the human genome
which is transcribed into RNA transcripts, about 2 % is
translated into the corresponding amino acid sequences
[1]. The remaining 98 % of RNA transcripts are collect-
ively known as non-coding RNAs (ncRNA) which may
be divided into small non-coding RNA (sncRNA) or
long non-coding RNA (lncRNA) [1, 2]. MicroRNAs
(miRNAs) are endogenous small non-coding RNAs
regulating gene expression in almost all metazoans [3].
In spite of coding for any proteins, miRNAs carry differ-
ent information and execute different functions [4].
They regulate gene expression either by complete cleav-
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age or by translational repression of the target
mRNAs [3, 5, 6] It has been speculated that approxi-
mately 30–60 % of the human coding genome is regu-
lated by thousands of miRNAs with diverse targets [7, 8].
The exciting avenue of miRNA was unraveled in 1993

by the finding that Lin-4, a heterochronic gene previ-
ously recognized for its role in regulating the temporal
sequence of events involved in Caenorhabditis elegans
(C. elegans) larval development to adult form, regulates
the process by synthesizing a pair of small RNAs rather
than coding for a protein [9]. Two small Lin-4 RNA
transcripts containing complementary sequences to a
repeating sequence element within the 3′-untranslated
region (3′ UTR) of another mRNA (Lin-14) were identi-
fied in C. elegans [10]. The finding led to the prediction
of a type of RNA-RNA binding and interaction which
down-regulates the translation of the target mRNA [4].
Subsequently, the second miRNA (Let-7) with a similar
function in the late development of larva was discovered
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in the same organism [11]. The names for miRNAs are
assigned by using the prefix “miR” preceding a unique
identification numeric (e.g., miR-1, miR-2 etc.). To make
species specific, few letters from the name of the organ-
ism are added before miR (e.g.; hsa for Homo sapiens,
mmu for mus musculus, rno from Rattus norvegicus, ath
for Arabidopsis plant etc.) [12]. The genes coding for
miRNAs are named by capitalization (e.g., MIR-), hyphen-
ation and italicization (e.g., mir-) in accordance with the
conventions for the particular organism [12, 13]. Currently,
35,828 total and 2588 human encoded mature miRNAs are
registered in miRNA database (http://www.mirbase.org/)
[14, 15].
With the expanding body of research on miRNAs in

relation to important biological processes, their crucial
role as regulators of cell differentiation, proliferation and
growth, intracellular dynamics, and apoptosis has been
established [3, 9]. De-regulated miRNA expression leads
to human pathologies including cancer, cardiovascular
disease, liver disorders, immunological dysfunction, and
metabolic syndromes [5, 9]. There are a growing number
of reviews on miRNAs and their role in the aforemen-
tioned disorders and some individual pathogenic infec-
tions. With this review we present the current
understanding of miRNAs and their role in some viral
pathogens.

Biosynthesis and mode of action of miRNA
Genes encoding several identical or similar miRNAs are
generally located as a cluster in the genome, where they
might be expressed simultaneously [16] or individually
depending on the tissue types [17]. In mammals, RNA
polymerase II transcribes the gene into a long transcript
known as a primary miRNA (pri-miRNA) consisting of
single or multiple hairpin structures (Fig. 1) [13, 18–21].
Pri-miRNA is trimmed into an approximately 70 nucleo-
tide long hairpin structure known as pre-miRNA by
Drosha complex [22, 23]. The resulting pre-miRNA with
a 5′ phosphate overhang and a 2 nucleotide 3′ overhang
is recognized by exportin-5 [24] and is transported out
of the nucleus [18, 25, 26]. Once released in the cyto-
plasm, a specialized multi-domain ribonuclease III en-
zyme known as Dicer excises the pre-miRNA to remove
the loop structure leaving the remaining miRNA duplex
with a 2 nucleotide 3′ overhang [18, 27, 28]. Some func-
tional miRNA such as miRtrons and Simtrons do not
undergo the canonical process for their maturations [29, 30].
In miRtron biogenesis, Drosha cleavage is substituted by
splicing of intronic hairpin structures, which is followed by
maturation through dicing [31]. Simtron is synthesized by a
pathway that involves only Drosha but does not require
DGCR8, Dicer, Ago2 or XPO5 for its further processing
[32]. After Dicer cleavage and unwinding of the two strands
of miR-miR duplex, one strand (anti-sense strand) of the
resulting miRNA-miRNA duplex is loaded onto Argonaute
proteins and miRNA-induced silencing complex (miRISC) is
generated [3, 33].
miRNA regulates gene expression typically targeting

and binding to the seed map site in 3′-untranslated re-
gion (3′-UTR) of protein coding target messenger RNA
(mRNA) leading to degradation or translational repres-
sion of the gene [18, 34]. However, miRNAs can also tar-
get to the sites other than 3′UTR, such as 5′UTR and
the coding regions of mRNA and lead to translational
repression [35, 36]. In mammal, perfect complimentary
affects the stability and triggers tailing and 3′-to-5′ trim-
ming of miRNA [37]. It has been reported that some
miRNAs can also mediate up-regulation of genes and
that the genetic down-regulation mediated by miRNA
can be reversible [38]. The upregulating miRNAs most
likely direct the association of regulatory proteins
complexes (Argonaute protein and fragile X mental
retardation-related protein 1 (FXR1)) with AU-rich ele-
ments (AREs) in the 3′UTR of the mRNA, leading to
activation of AREs as a translation signal [39]. Moreover,
interaction of miRNA at 5′UTR can also trigger activa-
tion of translation [35].

Role of miRNA in viral infections
miRNAs play a crucial role in mounting an immune re-
sponse against microbial infections caused by viruses,
bacteria, parasites and fungi [40]. Nevertheless, many
microorganisms have been shown to modulate the ex-
pression of several host miRNAs either to facilitate their
own replication, survival and pathogenesis or for some
unknown functions [30, 41–43]. Restriction of viral rep-
lication by RNA interference (RNAi) either by miRNA
or siRNA in human cells is still a controversial issue
[44]. Most of the human viruses when in their acute and
replicative stages are thought to be resistant to endogen-
ous RNAi mediated by miRNAs [44]. However, strong
evidences to prove the role of miRNAs in restricting or
promoting the replication and human pathology of
viruses such as Hepatitis B and C as well as other viruses
have been found [45, 46] Many of the cellular miRNAs
affect viral replication either directly by binding to the
viral genome or indirectly by targeting host factors
related to replication [8].
Virus-encoded miRNAs (vmiRNA) identified in virus-

infected human cells and other mammalian hosts signifi-
cantly influence viral replication and disease progression
by modulating viral as well as host cellular mRNA
[41, 47]. The first vmiRNA identified in humans was that
encoded by the Epstein-Barr virus and subsequently,
other members of herpesvirus, polyomavirus and adeno-
virus families were found to express vmiRNAs [41].
More than 200 vmiRNAs have been reported so far [47].
Although vmiRNAs encoded by RNA viruses are very rare,
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Fig. 1 Biosynthesis, processing and effector action of miRNA. miRNA gene is transcribed by RNA polymerase II into a long transcript known as
primary miRNA (pri-miRNA) which is further trimmed by microprocessor complex (Drosha and DGCR8) into an approximately 70 nucleotide- long
hairpin structure known as pre-miRNA. Subsequently, Exportin-5 binds to the pre-miRNA and to a GTP-Ran, forming a heterotrimeric complex
which passes through the nuclear membrane. After translocation to the cytoplasm, the GTPase activity of Ran catalyzes the hydrolysis of GTP into
GDP to facilitate the release of pre-miRNA from exportin-5. Exportin-5 then returns to the nucleus and available for another round of pre-miRNA
transport. Once released in the cytoplasm, a specialized multi-domain ribonuclease III enzyme known as Dicer further processes the pre-miRNAs
to form a miRNA-miRNA duplex. One strand (anti-sense strand) of the resulting miRNA-miRNA duplex is loaded onto Argonaute proteins leading
to the formation of miRNA-induced silencing complex (miRISC). Partial complementary base pairing occurs between the seed region (2 to 8
nucleotides from the 5′-proximal region) of the miRNA and the seed map site (complementary to the seed region) of the target mRNA. The
ultimate effect may be either endo-nucleolytic cleavage or translational repression of the target mRNA
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recently bovine leukemia virus has been found to encode a
cluster of miRNAs transcribed by RNA Polymerase III,
which is identical to human miR-29 [48]. Virus encoded
miRNAs are also reported in culture cells as well as in
cattle infected with bovine foamy virus (BFV), a member of
retrovirus family and spumavirus subfamily [49]. Avian
leukosis virus subgroup J (ALV-J), a member of avian retro-
virus, also encodes a novel miRNA via canonical vmiRNA
biosynthesis pathway. The vmiRNA has been designated
as E (XSR) miRNA, since it is encoded by an virus
specific region named exogenous element or XSR [50].
Similarly, Torque teno viruses (TTVs) a member of Anel-
lovirus family also encodes miRNA, which inhibits the
IFN signaling [51]. While studies of HIV-1 and Hepatitis
B virus showed no direct evidence for vmiRNAs expres-
sion, computational analysis has predicted five pre-
miRNAs in HIV-1 and one pre-miRNA in by Hepatitis
B virus [52].
miRNA modulating Hepatitis C virus infection
Considerable evidences suggesting the role of miRNAs
in modulating Hepatitis C virus (HCV) life cycle, infect-
ivity and host defense mechanisms have opened a novel
avenue for innovative therapeutic approaches for HCV
infection. miR-122, which is abundantly expressed in
liver cells, interacts with HCV genomic RNA and facili-
tates its replication in infected cells [45, 53]. The inter-
action is mediated through binding of two copies of
miR-122 to their respective seed map sites located
within the 5′ UTR of the HCV genome [43, 45] The
stable heterotrimeric interaction enhances HCV transla-
tion by promoting its association with ribosomes during
the early initiation stage of translation [43]. Furthermore,
miR-122 associated Argonaute proteins attached to the
5′ end of HCV genomic RNA protects the RNA from 5′
exonuclease activity, specifically of the 5′ to 3′ exoribo-
nuclease 1 (Xrn1) [54, 55]. Interestingly, miR-122
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interaction with the 5′ UTR of HCV RNA produces a 3′
overhang and masks the 5′ UTR, circumventing recog-
nition by RNA helicase and ultimately reducing RNA
decay [56]. Thus, miR-122 has a crucial role in enhan-
cing HCV replication either by 5′ UTR masking or other
mechanisms [57]. Targeting miR-122 could be a novel
approach for developing a therapy against chronic HCV
infections and the miRNA can be employed as a bio-
marker of hepatic damage by the virus. The most prom-
ising example for miRNA based therapeutic approach is
miravirsen, an oligonucleotide which has been demon-
strated to inhibit the function of miR-122 [43].
Conversely, miR-199a, Let-7b, miR-448 and miR-196

are all implicated in suppressing HCV RNA replication
[58–60]. miR-199a counteracts the action of miR-122
and represses HCV replication by binding to the seed
map site within the 5′ UTR of the HCV genome just
downstream of the second miR-122 binding site [58].
Let-7b, expressed in various tissues including liver and
spleen, binds to the HCV RNA genome at various posi-
tions including the 5′ UTR and NS5B coding region
leading to repression of HCV replication, possibly indu-
cing conformational changes in the viral RNA genome
[59]. miR-196 and miR-448 are also capable of directly
binding to and interacting with the HCV RNA genome
and exerting inhibitory effects on HCV replication [60].
Recently, miR-181c was reported to bind to the E1 and
NS5A regions of the HCV genome and have a down-
regulating role in viral replication (Fig. 2) [8]. So, the
alternative therapeutic approach could be upregulation
of these miRNAs to suppress HCV replication.
Hepatitis C virus

Human 
Immunodeficiency 
Virus-1

Fig. 2 Some important miRNAs directly targeting the genomes of HCV, HB
In addition to the direct interaction with HCV RNA,
some cellular miRNAs affect the HCV replication indirectly
modulating replication-related pathways like Interferon
(IFN)-mediated viral defense, Nuclear Factor-Kappa B (NF-
κB), Hemeoxygenase 1 (HMOX1) and lipid metabolism
(Table 1) [43]. Interestingly, HCV infection up-regulates
miR-21 and miR-130a expression, both of which negatively
regulate their target genes known to trigger viral replication
in cells, by decreasing HCV-mediated IFN type I (IFN-I)
production and disrupting the process of viral entry,
respectively [61, 62]. Up-regulation of miR- 21, and some
other miRNAs like miR-134, miR-320c, and miR-483-5p
has been shown to inhibit the NF-κB and PI3K-Akt path-
ways thereby suppressing anti-viral effect in HCV-infected
patients [63, 64]. Also, miR-196 suppresses the anti-
viral effect on HCV by suppressing HMOX1 and miR-
279 inhibits HCV replication through regulation of
lipid metabolism [43].
In addition, some miRNAs are implicated in complica-

tions related to HCV infection although their target and
exact mechanism of action is still not clear. Up-
regulation of miR-276 promotes liver stenosis whereas
down-regulation of miR-449a and miR-107, as well as
up-regulation of miR-200c, supports hepatic fibrosis
[43, 65]. Similarly, up-regulation of miR-155 and miR-
141, as well as down-regulation of miR-152 and miR-491
(which are tumor suppressors), promotes hepatocellular
carcinoma in HCV infection [43, 65]. miR-155, an indica-
tor of hepatitis-induced hepatic damage, is over-expressed
in the circulation of patients with chronic HCV infection
[65]. Over-expression of miR-155 may inhibit apoptosis of
Hepatitis B virus

V and HIV-1 and their action



Table 1 Summary of some important miRNAs modulating Hepatitis C and B and HIV-1 infection by targeting host factors

miRNAs Targets Actions

Hepatitis C virus

miR-21 IFN1 Suppress viral replication

miR-130a HCV entry

miR-21/miR-134/miR-320c/miR-483-5p NFkB and PI3K-Akt Inhibit NFkB and PI3K-Akt signaling pathway

miR-196 HMOX1 Increase replication

miR-279 Lipid metabolism Inhibit replication

miR-155 wnt signaling Immune defense against the virus

Hepatitis B virus

miR-122 upregulation of HMOX1 Decrease virus level in cell

miR-501 HBxIP

miR-372/373 NFIB Promotes replication

miR-155 IFN1 Suppress HBV disease pathogenesis

Human Immunodeficiency Virus type 1

miR-27b Cyclin T1 Prevent the activation of CD4+ cells

miR-155 TLR3/Lymphocytes/DC Reduces HIV-1 infection

3′ UTR of HDFs; LEDGF/p75, ADAM10, NUP 153 Decrease HIV replication

miR-146a CXCR4 Prevents HIV-1 entry

miR-132 MeCP-2 Enhances HIV-1 infection

miR-217 and miR-34a SIRT1 Enhances HIV-1 tat-mediated trans-activation

miR-182 NAMPT Enhances HIV-1 tat-mediated trans-activation

miR-34a PNUTS Promotes HIV-1 transcription

miR-17/92 cluster and miR-20a PCAF Decrease susceptibility to HIV-1 infection

DC dendritic cells, SIRT1 Sirtuin 1, NAMPT Nicotinamide phosphoribosyltransferase, LEDGF Lens Epithelium-derived Growth factor, ADAM10 a disintegrin and
metalloprotease, MeCP2methyl CpG binding protein 2, HDF HIV dependency factors, nup153 Nuclear pore complex protein Nup153, HBx interacting protein, NFkB
nuclear factor kappa B. IFNI Interferon I, HMOX1 Heme oxygenase 1, PNUTS phosphatase 1 nuclear-targeting subunit, PCAF p300-CREB binding protein associated factor
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hepatocytes and promote cell proliferation by activating
Wnt signaling leading to progression to hepatocellular
carcinoma [65, 66]. Conversely, the suppression of miR-
155 may lead to cell cycle arrest in the G0 or G1 phase
suggesting the positive role of miR-155 in immune defense
against HCV infection [65]. Therefore, balanced expres-
sion of miR-155 is essential to retard the development of
hepatocellular carcinoma and at the same time promote
adequate cell cycle.

miRNA modulating Hepatitis B virus infection
Several cellular miRNAs modulate Hepatitis B virus
(HBV) replication directly by binding to its transcripts
(Fig. 2) or indirectly by targeting cellular factors, genes
and signaling pathways related to HBV replication and
pathogenesis (Table 1) [67]. The miRNAs shown to
reduce HBV replication and the expression of HBV sur-
face antigen (HBsAg) are miR-199a-3p, miR-210 and
miR-125a-5p. Among them, miR-199a-3p targets HBsAg
coding region and the pre-S region of the HBV genome,
whereas miR-125a-5p binds to HBsAg mRNA leading to
inhibition of its translation [46, 68]. miR-122 which
enhances HCV replication, has opposite effect on HBV,
where it upregulates HMOX1 to reduce HBV levels
in cells. miR-122 also has cyclin G1-modulated anti-
HBV activity and directly affect the viral DNA poly-
merase [46]. These findings imply that Miravirsen
targeting miR-122 will have opposite effect if used as
therapeutics and other candidate miRNAs need to be
considered.
Conversely, HBV can trigger changes in the expression

of cellular miRNAs targeting negative regulators of HBV
replication [69]. miR-501 which targets HBx interacting
protein (HBxIP) and miR-372/373 which targets nuclear
factor I B (NF-IB) of the host to promote viral replication
are upregulated by HBV [70, 71]. HBx protein of HBV
supports cellular proliferation by downregulating let-7a,
which negatively regulates cellular proliferation partly
through targeting signal transducer and activator of tran-
scription 3 (STAT3) [69]. Furthermore, some miRNAs are
involved in induction and suppression of HBV-related
complications like hepatocellular carcinoma and cirrhosis.
miR-155 by up-regulation of IFN-inducible genes
suppresses HBV disease progression, whereas miR-548 by
down-regulation of the host anti-viral response promotes
HBV progression [46].
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miRNA modulating Human Immunodeficiency Virus
infection
Cellular miRNAs have been shown to restrict Human
immunodeficiency virus type 1 (HIV-1) infection either
by direct binding to the viral RNA or by indirect modu-
lation of HIV Dependency Factors (HDFs) (reveiwed in
ref [72]). CD4+ T-cells have been found to express some
miRNAs which target mRNA of the viral genes (Fig. 2);
negative regulatory factor (nef ), viral protein s(vpr), viral
infectivity factor (vif ) and viral protein U (vpu); and
regulate host factors like Cyclin T1 protein and recep-
tors or co-receptors needed for HIV entry [73–76]. Simi-
larly other cells involved in the spread of HIV-1 within
the body are also reported to express some miRNAs that
defend against the virus [30].
The miRNAs that directly bind to the 3′UTR of HIV-1

RNA (Fig. 2) include miR-28, miR-125b, miR-150, miR-
223 and miR-382, which are highly expressed in resting
CD4+T cells [73]. Activation of resting CD4+ T-cells
(which results in more HIV replication) leads to down-
regulation of these miRNAs, which can be correlated with
enhanced susceptibility to HIV-1 infection [73]. Other
miRNAs target host factors and indirectly modulate HIV-
1 replication, susceptibility and latency in different cells
(Table 1). miR-27b has been reported to inhibit the ex-
pression of Cyclin T1 in resting CD4+ T-cells. Activation
of CD4+ T-cells has been shown to down-regulate miR-
27b, subsequently up-regulating Cyclin T1. Up-regulation
of Cyclin T1 results in enhanced HIV-1 susceptibility of
CD4+ T-cells [77]. Also, miR-155 has been shown to regu-
late immune responses to HIV-1 infection by altering
lymphocyte responses, inhibiting dendritic cell binding to
HIV-1 and modulating TLR3 stimulation in macrophages
leading to anti-HIV-1 effects [65]. miR-155 has been
reported to target the 3′ UTR of mRNAs of the HDFs; the
lens epithelium-derived growth factor (LEDGF)/p75,
ADAM10 (a disintegrin and metalloprotease 10) and
nucleoporin (NUP153), and down-regulate their protein
expression in primary macrophages [26]. Opposing the
findings described above, Cullin et al. reported that HIV-1
neither encodes viral miRNAs nor strongly modulates
cellular miRNA expression possibly due to extensive RNA
secondary structures that block potential miRNA binding
sites [78].
The miR-17/92 cluster and miR-20a are reported to tar-

get p300-CREB binding protein associated factor (PCAF)
and make the cell less susceptible to HIV-1 infection,
because PCAF has a role in tat acetylation (acetylated tat
is transcriptionally more active) [79]. On the other hand,
HIV-1 tends to suppress these miRNAs to upregulate
PCAF expression and possibly increasing viral infectivity
[80]. It has -been reported that expression of purine-rich
element binding protein alpha (Pur-α), which facilitates
HIV-1 transcription by binding tat protein and the TAR
element, was significantly lower in monocytes than in
monocyte-derived dendritic cells (DCs) [81]. Several of
the cellular miRNAs (miR-15a, miR-15b, miR-16, miR-
20a, miR-93 and miR-106b) which target pur-α mRNA
were overexpressed in monocytes. The correlation be-
tween low expression of pur-α and overexpression of these
miRNAs indicates their role in decreasing susceptibility to
HIV-1 infection [80, 82].
The interaction between HIV-1 RNA and proteins in-

volved in the biogenesis of cellular miRNAs has also been
reported. Silencing the genes for Drosha and Dicer showed
increased viral replication in HIV-1-infected mononuclear
cells even with latent infection [80]. Furthermore, HIV-1
gene expression was found to be negatively regulated by
Argonaute or other miRNA related proteins by restricting
the association of viral mRNA with polysomes [30]. Inter-
estingly, silencing of Dicer has led to virus re-activation in
peripheral blood mononuclear cells (PBMCs) isolated from
HIV-1-infected patients undergoing suppressive combin-
ational antiretroviral therapy (cART) [30].
On the other hand, some cellular miRNAs enhance

HIV-1 replication by various mechanism. Over-expression
of miR-132 down-regulates methyl CpG binding protein 2
(MeCP2) leading to enhancement of HIV-1 infection [76].
In addition, miR-217 and miR-34a, which have been
reported to be up-regulated by tat exposure, bind to the
3′ UTR of Sirtuin 1 (SIRT1) mRNA inhibiting its expres-
sion. Inhibition of SIRT1 which de-acetylates tat protein
and regulates HIV-1 transcription, enhances HIV-1 tat-
mediated transactivation [83, 84]. Furthermore, a recent
study revealed that down-regulation of nicotinamide
phosphoribosyl transferase (NAMPT) by miR-182 led to
decreased SIRT1 expression levels, which in turn
enhanced HIV-1 Tat trans-activation [30, 72]. HIV-1 in-
duces the expression of miR-34a, which promotes HIV-1
replication in CD4+ T cells. The other target of miR-34a is
phosphatase 1 nuclear-targeting subunit (PNUTS), which
negatively regulates HIV-1 transcription by inhibiting the
assembly of cyclin T1 and CDK9 to block the transcrip-
tion elongation [85].

Role of miRNA in Dengue virus infection
A group of researchers has reported that Dengue virus
(DENV) infection down regulates host cellular miRNA
elements, notably Dicer, Drosha, Ago1 and Ago2, to
facilitate its replication. They found that the downregu-
lation was mediated by interferon independent activity
of the viral protein NS4B which interferes the dicing of
precursor miRNA [86]. DENV infection significantly
induces the expression of miR-146a, which facilitates
viral replication by targeting TNF Receptor Associated
Factor 6 (TRAF6) and dampening Interferon β (IFN-β)
production [87]. All four subtypes of DENV downregu-
late the miRNA-133a which suppresses viral replication
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possibly via interference with polypyrimidine tract bind-
ing protein (PTB) expression [88]. Yet, another miRNA
namely miR-548g-3p also regulates the replication of
DENV by targeting stem loop A (SLA) promoter elem-
ent within the 5′UTR of DENV genome [89]. miRNA
expression profiling followed by qRT-PCR validation has
revealed that 4 miRNAs were upregulated and 2 were
downregulated in dengue patients. miR-21-5p and miR-
146a-5p, which were functionally involved in inflamma-
tion and cell proliferation, were significantly different
from the control groups indicating their high sensitivity
and specificity as indicators of dengue infection. Further,
these two miRNAs were correlated with number of leuco-
cytes and neutrophils. These findings have suggested that
miRNAs can also be employed as a diagnostic marker for
DENV infection [90]. On the other hand, small viral RNA
resembling miRNA found in mosquitos infected with
DENV type 2 is reported to specifically target a viral gene
and auto-regulates viral replication [91]. Incorporation of
the miRNA recognition element (MRE) of miR-122 into
the viral mRNA might have inhibitory effect on suscepti-
bility to DENV infection in hepatic cells, rendering the
virus safer for vaccine preparation [92].

Role of miRNA in Herpes virus infections
Most of the miRNAs encoded by Herpes simplex virus-1
(HSV-1) and Herpes simplex virus-2 (HSV-2) are
expressed in latency and bind to latency-associated tran-
scripts, underscoring their role in the development of
latency during Herpes virus infection. The principal target
for the latency-inducing miRNAs (e.g. miR-138) is the
infected cell polypeptide 0 protein (ICP0), which induces
lytic genes in neuron [93]. Similarly, host cell miR-155,
miR-146a and miR-21 are up-regulated in B-cells when
latently infected by Epstein Bar Virus (EBV) [94]. miR-155
mediated attenuation of NF-κB signaling in B lymphocytes
by EBV is pivotal for the stable maintenance of EBV gen-
ome and immortalization of B lymphocytes during latency
[95]. Conversely, EBV latent membrane protein 1 (LMP1)
upregulates miR-155 expression by activation of NF-kB
pathway [96]. So, the complex interaction among miR-
155, LMP1 and NF-kB signaling seems to control the
immortalization and latency in EBV infection. Cyto-
megalovirus (CMV) infection has been reported to repress
the expression of miR-100 and miR-101, which are linked
to apoptosis [97]. Some oncogenic herpesviruses encode
viral miRNA that mimic and exploit miR-155-mediated
regulatory pathways for their own benefit. Kshv-miR-K12-
11, the viral functional ortholog of miR-155 encoded
by Kaposi sarcoma-associated herpesvirus (KSHV),
mimics miR-155 and utilizes its regulatory pathway to
immortalize infected lymphocytes. KSHV-miR-12-11
attenuates TGF-β via downregulation of SMAD5 [98].
The other miR-155 functional ortholog, miR-M4 encoded
by Marek’s disease chicken virus (MDV), may also be
responsible for contributing to viral oncogenicity by
down-regulating its target latent TGF-β-binding protein-1
(LTBP1), leading to reduced secretion of TGF-β1. The
resulting suppression of TGF-β signaling might contribute
to the activation of the oncogene c-Myc [65].
Viral RNAi suppressors
Viral RNAi suppressors (VSRs) are the virus encoded
proteins that counteract against the RNA interference
mediated by miRNA or other small RNA. Extensive
research has been carried out in plant and insect VSRs,
but only a few of them from mammalian viruses have
been identified [99]. Some of the examples for mamma-
lian VSRs are nucleocapsid protein (N protein) of
Corona viruses, VP35 protein from Ebola virus, tat pro-
tein of HIV, Core protein (C) of HCV, nonstructural
protein 1 (NS1) from Human influenza virus and B2
protein of Nodamura virus [100–104]. N protein of
Corona viruses, via its double-stranded RNA binding
activity, suppresses the short hairpin RNAs (shRNAs) or
siRNAs from mammalian cells [100]. Similarly, VP35
protein from Ebola virus, which is an antagonist of IFN,
suppresses RNAi interference by binding to dsRNA in
human cells [101]. Whereas, HIV-1 tat and HCV core
protein counteract the RNAi in human cell lines by
downregulating the expression or activity of Dicer, which
processes precursor hairpin structures [102, 103]. Func-
tion of tat as a suppressor of RNAi by suppressing the
common pathway in small RNA maturation is conserved
across plants as well as animals including human [105].
A novel viral motif, arginine rich motif (ARM) in the
HIV-1 tat and rev has been shown to counteract the
RNA interference mediated by Dicer [106].
Similarly, HIV-1 vpr has also been reported to alter the

expression of Dicer. Trans-activating response element
(TAR) of the HIV-1 transcript and miRNA were reported
to be packaged in exosomes released from HIV-1-infected
cells. The miRNA taken together with TAR might modu-
late uninfected cells, perhaps to increase their susceptibil-
ity to infection [30]. Contrastingly, HIV-1 tat, HTLV-1
Tax and BFV Tas are not capable of suppressing the RNA
interference either by siRNA or miRNA in human cells
[107]. NS1 protein, one of the virulent factor of Influenza
virus A, has also demonstrated its RNAi suppressor activ-
ity in plants and animal cells [108]. In Nodamura virus, a
small virus infecting mammalian as well as insect host, B2
protein binds to Dicer and prevent post Dicer activity of
RNAi [109]. Yet another mammalian virus, Porcine Repro-
ductive and Respiratory Syndrome Virus (PRRSV), has also
been reported to suppress shRNA, dsRNA and miRNA
mediated RNA interference. Furthermore, this virus also
down regulates the expression of Ago-2 [104].
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Epigenetic control of miRNA by pathogens
Many of the miRNA such as miR-9, miR-34, miR-137,
miR-148, miR-124; are found to be controlled by epigenetic
mechanism like DNA methylation and histone acetylation
[110]. Conversely, some of the miRNAs modulate the
epigenetics by controlling the epigenetic regulators such as
methyl transferase, histone deacetylases and polycomb
group genes [111]. Epigenetic changes of miRNA or tumor
suppressor genes can be induced by pathogenic micro-
organism, leading to carcinogenesis. Aberrant methylation
of miRNA genes (hsa-miR-124) in cervical cancer cell line
caused by Human papilloma virus (HPV) has also been
reported [112, 113]. On the other hand, Cryptosporidium
parvum, a protozoal parasite, hijacks the histone deacety-
lase and NF-κB signaling pathway to suppress two host
miRNA namely miR-424 and miR-503 in the epithelial cells
[111]. Two of the miRNA namely miR-1 and miR-152 are
reported to be involved in HBV pathogenesis via epigenetic
control [114, 115]. miR-1 upregulates HBV transcription by
enhancing farnesoid X receptor α expression but downre-
gulates host cell cycle and cell proliferation by targeting
histone deacetylase 4 and E2F transcription factor 5 [114].
Whereas, miR-152 reduces the levels of DNA methyltrans-
ferase 1 (DNMT1) in HBV induced Hepatocellular carcin-
oma by targeting 3′UTR of DNMT1 [115].
Conclusion and perspectives
Cellular miRNAs are important components of the host
defense mechanism against viral infections. Many viruses
are able to modulate cellular miRNA expression in host
cells mostly in order to facilitate their survival, replication
and pathogenesis. But, the overexpression of miRNA trig-
gered by pathogens is not always correlated with their sur-
vival or pathogenesis and is sometimes cell or tissue
specific. The exact mechanism(s) of modulation of host
cellular miRNA by viruses and specific virulence factors is
still unclear. Unraveling the molecular mechanism(s) of
miRNA modulation by viral infections and vice versa will
give direction to novel therapeutic approaches. Manipula-
tion of miRNA, either by miRNA analogs or by inhibitors,
could be a novel approach for developing therapies and
prophylactic vaccines for various life-threatening viral
infections. In addition, miRNAs may be exploited as
biomarkers for laboratory diagnosis and prognosis. Some
of the important cellular miRNA implicated in some viral
infections are summarized in Table 1.
Some viruses encode for virus-specific miRNAs which

are expressed in the host cell to subvert host defense and
allow intracellular persistence. Understanding the specific
functions of viral- miRNAs in the host-pathogen relation-
ship will be another important step for targeting these
miRNAs. All in all, miRNA may be a tool for diagnostic
and therapeutic innovations against viral infections.
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