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Cardiac inflammation is considered by many as the main driving force in prolonging the pathological condition in the
heart after myocardial infarction. Immediately after cardiac ischemic injury, neutrophils are the first innate immune cells
recruited to the ischemic myocardium within the first 24 h. Once they have infiltrated the injured myocardium,
neutrophils would then secret proteases that promote cardiac remodeling and chemokines that enhance the recruitment
of monocytes from the spleen, in which the recruitment peaks at 72 h after myocardial infarction. Monocytes would
transdifferentiate into macrophages after transmigrating into the infarct area. Both neutrophils and monocytes-derived
macrophages are known to release proteases and cytokines that are detrimental to the surviving cardiomyocytes.
Paradoxically, these inflammatory cells also play critical roles in repairing the injured myocardium. Depletion of either
neutrophils or monocytes do not improve overall cardiac function after myocardial infarction. Instead, the left ventricular
function is further impaired and cardiac fibrosis persists. Moreover, the inflammatory microenvironment created by the
infiltrated neutrophils and monocytes-derived macrophages is essential for the recruitment of cardiac progenitor cells.
Recent studies also suggest that treatment with anti-inflammatory drugs may cause cardiac dysfunction after injury.
Indeed, clinical studies have shown that traditional ant-inflammatory strategies are ineffective to improve cardiac function
after infarction. Thus, the focus should be on how to harness these inflammatory events to either improve the efficacy of
the delivered drugs or to favor the recruitment of cardiac progenitor cells.

Background

Myocardial infarction (MI) continues to be a major cause
of morbidity and mortality in many countries. In the
United States, MI is responsible for more deaths than
cancer and traffic accidents combined [1]. Although
significant advances have been made in identifying
potential drug targets, there is still no specific treatment
that targets myocardial injury in patients with MI [2, 3].
An enormous body of evidence indicates that the inflam-
matory responses that occur after MI play critical roles in
the overall cardiac output of the infarcted heart. Thus,
recent efforts by the scientific community and industry
have focused on understanding how the inflammatory
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activities exerted by the recruited immune cells influence
the microenvironment of the infarcted heart in order to
achieve the desired clinical outcome.

Clinically, MI can be characterized into two main
phases, cardiac ischemia and reperfusion [4]. In cardiac
ischemia, patients usually first experience onset of chest
pain at the moment that an occlusion has happened in
one of the coronary arteries. Subsequently, upon arrival
in hospital, patients receive thrombolytic therapy or
percutaneous coronary intervention to allow cardiac
reperfusion to happen. Even after oxygenation is re-
stored during reperfusion, cardiomyocytes still experi-
ence cell apoptosis due to profound inflammation. Since
the adult mammalian heart has very little regenerative
capacity, the healing process of the infarcted myocar-
dium is dependent on the immune cells that are re-
cruited to the infarcted heart, which eventually lead to
the formation of a collagen-based scar. The main role of
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the scar is to replace the dead cardiomyocytes thereby
preserving the structural integrity of the left ventricles.
However, recent studies have shown that the recruited
immune cells, particularly monocytes and their deriva-
tive, macrophages, release cytokines and proteases that
induce apoptosis in healthy cardiomyocytes. Thus, as
more cardiomyocytes undergo cell apoptosis, the size of
scar tissue increases, which is the cause of cardiac fibro-
sis that is characterized by loss of cardiac muscle elasti-
city and eventually heart failure.

Previously, anti-inflammatory therapeutics that target
the recruited monocytes have been considered as a
suitable therapy to prevent further weakening of the
myocardium after MI. In recent clinical trials, however,
many of the anti-inflammatory drugs such as Darapladib
failed to reach primary end-point [5]. In addition, small
molecules like metformin were shown to induce un-
desired side-effects in patients [6]. Apart from poor drug
retention in the heart, it is becoming clear that the im-
mune cells also have reparative roles in heart healing.
Recent studies on lower vertebra, zebra fish and the neo-
natal heart of mouse, have revealed that inflammation,
particularly caused by macrophages, is an essential com-
ponent of tissue regeneration [7, 8]. Depletion of mono-
cytes in neonatal mice before heart injury abolishes
subsequent organ regeneration, resulting in excessive
scarring and compromised cardiac function typical of an
adult response [9]. Therefore, cardiac inflammation has
more complex roles than previously thought post-MI. In
this review, we focus on the roles of key immune cells
that participate in the early stage of healing after MI, as
well as novel strategies that utilize existing inflammatory
responses with an eye to achieving desired clinical out-
comes in patients with MI.

Neutrophils

Immediately after cardiac ischemic injury, neutrophils
are the first innate immune cells recruited to the ische-
mic myocardium within the first 24 h post-MI, especially
after reoxygenation is achieved. From a classic immuno-
logical perspective, neutrophils are known to play critical
roles in preventing bacterial infection during the wound
healing process. Patients that have low neutrophil counts
or lack functional neutrophils often suffer from severe
bacterial and fungal infections after a non-sterile injury
has taken place [10]. Physiologically, neutrophils are
programmed to undergo apoptosis after infiltrating into
the injured myocardium, in which the apoptotic neutro-
phils attract macrophage recruitment and promote the
clearance of apoptotic cells in the injured tissue [11].
Therefore, in principle, these apoptotic neutrophils are
negative regulators of cardiac inflammation as macro-
phages may remove cell debris by releasing anti-
inflammatory factors such as IL-10 [12]. In clinical
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situations, however, the lifespan of neutrophils at the in-
farct area is prolonged due to the effect of tumor necrosis
factor (TNF)-a and interleukin (IL)-1f [13]. These ‘surviv-
ing’ neutrophils then secrete proteases such as comple-
ment component C5a that promote cardiac remodeling
and chemokines that further potentiate leukocyte recruit-
ments. Moreover, the infiltrated neutrophils can also in-
duce apoptosis in healthy cardiomyocytes through the
release of reactive oxygen species (ROS).

Initially, neutrophils are guided to the injured myocar-
dium by the gradient of the released mitochondrial
damage-associated molecular patterns (DAMPs). Upon
the ischemic and reperfusion injury, ruptured cells re-
lease all their cellular contents, including mitochondria
into the circulation. Since mitochondria and mitochon-
drial DNA are structurally similar to their bacterial coun-
terparts, their presence in circulation is immediately
detected by neutrophils. Two of the neutrophil membrane
receptors, formyl peptide receptor 1 (FR1) and Toll-like
receptor 9 (TLRY) can recognize the presence of the for-
mylated peptide component of the mitochondrial mem-
brane and mitochondrial DNA, respectively [14]. The
binding of the released mitochondrial components to neu-
trophil receptors triggers neutrophil activation and pro-
motes cell extravasation into the injured myocardium.
Additionally, the mitochondrial DAMPs and other re-
leased cellular components create a signaling gradient,
allowing the nearby neutrophils to precisely home to the
targeted site [15]. DAMPs released by ruptured cardio-
myocytes also induce cardiac mast cell degranulation,
resulting in the release of contents such as histamine,
TNE-a, and IL-1P. These factors activate cardiac endothe-
lial cells, and induce the upregulation of membrane
surface receptors that facilitate neutrophil extravasation
through the endothelium to reach the targeted site.

Although neutrophils seem to have no direct role in
cardioprotection, lack of neutrophils results in worse
cardiac function and increased fibrosis and their deple-
tion does not accelerate heart healing after MI [16]. It is
well-established that post-MI inflammation resolution is
characterized by the local conversion of pro-inflammatory
M1 macrophages into reparative M2 macrophages. Trad-
itionally, it has been thought that the M1/M2 stereotype
macrophages are influenced by the different ratio of cyto-
kines present in the myocardial microenvironment [17]. A
more recent study, however, demonstrated that neutrophils
have a direct influence on the polarization of macrophages
after MI [18]. In neutrophil-deficient mice with MI, it was
noticed that there was significantly fewer splenic Ly6C™e"
monocytes in the heart compared to the wild-type mice
with MI. Although there were more reparative M2 macro-
phages in the heart of neutrophil-deficient mice compared
to wild-type mice, these macrophages had reduced
expression of phagocytosis receptor myeloid-epithelial-
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reproductive tyrosine kinase (MertK) [18]. MertK is a
marker of reparative M2 macrophages, which mediate
clearance of apoptotic cells. Thus, the low expression of
MertK in neutrophil-deficient mice results in insufficient
clearance of apoptotic cells by the reparative M2 macro-
phages, which leads to delayed inflammation resolution
after ML Interestingly, circadian oscillations of neutrophil
recruitment to the heart also determine infarct size, healing,
and cardiac function after MI [19]. The study revealed that
MI that happens during sleep-to-wake transition leads to
excessive cardiac neutrophil recruitment, larger infarct size,
and worsened heart function.

Monocytes and macrophages

Traditionally, it was thought that monocyte recruitment
happened immediately after neutrophils had infiltrated
the injured myocardium. However, intravital microscopy
of the beating mouse heart has shown that monocytes
are detected within 30 min after MI [20]. Unlike neutro-
phils, however, the number of monocytes being recruited
to the heart does not peak within the first 24 h post-MIL.
Instead, immunohistological staining of heart tissue sec-
tions of deceased patients revealed the maximum num-
ber of monocytes being recruited to the heart happens
at 72 h post-MI [21]. Moreover, the extravasation of
monocytes begins at the remote area, where healthy
myocardial tissue is present. Subsequently, the mono-
cytes migrate through the border zone and accumulate
at the infarct area. Such a migration pattern explains
why the targeting resolution of inflammation is a viable
therapeutic strategy in heart healing, since monocytes
are known to secret inflammatory cytokines and prote-
ases that are detrimental to cardiomyocytes [22]. Thus,
if inflammation is prolonged, which is commonly seen
among patients with MI, the secreted factors will not
only further damage the surviving cardiomyocytes in the
infarct area, they will also harm the healthy cardiomyo-
cytes at the remote and border zones.

In the context of MI, monocytes recruited to the heart
in patients with MI can be divided into two subpopula-
tions, Ly6C™" and Ly6C'*". The Ly6C™&" monocytes
are commonly known as pro-inflammatory monocytes,
whereas the Ly6C®" monocytes are sometimes known
as resident monocytes because of their capacity to accu-
mulate regardless of inflammation [23]. Currently, it is
not clear which monocyte subset infiltrates the heart im-
mediately post-MI. However, it is well-established that
chemokine monocyte chemotactic protein (MCP)-1
drives the recruitment of Ly6C"" monocytes to the
heart within the first 24 h post-MI [24]. Days later, once
the inflammation is starting to resolve, the number of
Ly6C™€" monocytes in the heart or blood decreases,
whereas the number of Ly6C®" monocytes increases
[25]. This conversion corresponds to the presence of
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proinflammatory M1 macrophages in the heart early
after injury, and reparative M2 macrophages at the later
stage of heart healing [25]. It is not certain whether M2
macrophages are trans-differentiated directly from M1
macrophages, or whether the trans-differentiation re-
quires the conversion from Ly6C"" to Ly6C'®" mono-
cytes. However, there is strong evidence that both the
Ly6C"8" and Ly6C'" monocytes arise from the same
progenitor cells [26], and that through a nuclear recep-
tor subfamily 4 group A member 1 (NR4A1)-dependent
transcriptional program, Ly6C™&" monocytes differenti-
ate into Ly6C'®™ monocytes [27].

In humans, cardiac monocytes are also classified into
two subsets based on the expression level of CD14 and
CD16. The CD14* CD16™ and CD14" CD16* monocytes
are the human analogues of mouse Ly6C"8" and
Ly6C'® monocytes, respectively. Clinical data indicate
that at the early stage of MI in human patients, ~85% of
the monocytes detected in the heart are CD14" CD16~
monocytes which exhibit pro-inflammatory activity [28].
Similar to the time course seen in the murine model of
M], as the inflammation resolves the monocyte popula-
tion starts to shift towards the CD14" CD16" subset
[28]. It was demonstrated that at 5-7 days post-MI, 60%
of CD14" CD16™ and 40% of CD14" CD16" are accumu-
lated in the infarct area [21].

Cardiac resident macrophages

Previously, it was thought that the profound inflamma-
tion that happens in the heart after MI is heavily influ-
enced by the recruited monocyte-derived macrophages.
However, recent studies have demonstrated the existence
of cardiac macrophages derived from embryonic precur-
sors that are termed resident macrophages [29]. Unlike
the monocyte-derived macrophages, cardiac resident
macrophages are established in the heart during embry-
onic development and are easily detected at E10.5 [29].
Furthermore, these resident macrophages are yolk sac-
derived since they are detected in the heart prior to fetal
liver hematopoiesis [30]. Similar to other embryonic yolk
sac macrophages in other tissues, cardiac resident mac-
rophages have the expression pattern MHC-II'Y,
CX3CR1M8", F4/80™¢", and CD11b"". Studies on the
healthy heart of CX3CR1%"*"* mice reveal a large num-
ber of macrophages are in direct contact with myocytes
and endothelial cells [31]. Under non-pathological
conditions, cardiac resident macrophages are considered
non-inflammatory. The cells have low expression level of
Ly6C markers and have a set of 22 upregulated genes
(including Mrcl, CD163, and Lyve-1) that are character-
istics of activated M2 macrophages [31]. Interestingly,
cardiac resident macrophages are also found to express
some inflammatory genes, including IL-1f, which high-
lights the limitations of the M1/M2 classification [32].
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The function of cardiac resident macrophages in healthy
heart is still under investigation, although it has been
speculated that these cells may be involved in preventing
bacterial infection, regulating angiogenesis, and matrix
protein turnover [32].

The resident macrophages within the heterogeneous
population of macrophages in the infarcted heart can be
distinguished by the expression level of the surface
marker CCR2 [32]. Unlike the monocyte-derived macro-
phages, cardiac resident macrophages have very low
level of expression of CCR2. The chemokine receptor,
CCR?2, also known as CD192, is a key receptor that facil-
itates monocyte extravasation through the recognition of
MCP-1 [33]. Studies of the proliferation marker Ki-67
revealed that cardiac resident macrophages undergo
rapid proliferation to increase their numbers in the heart
after MI, whereas no proliferative activity is detected in
the recruited monocytes after they differentiate into
macrophages [29]. Although monocyte-derived macro-
phages play important roles in coordinating cardiac
inflammation, their roles in antigen sampling and effero-
cytosis are less critical than the resident macrophages
[34]. Mice that lack circulating monocytes are found to
have fewer inflammatory activities associated with car-
diac pathology after injury [35], suggesting that excessive
expansion of macrophage populations can have a detri-
mental effect on heart healing. Additionally, the loss of
Ly6C"€" monocytes also prevents hypertension-induced
cardiac fibrosis and improves left ventricle function after
MI [36]. Indeed, it has been found that cardiac resident
macrophages are more efficient at removing apoptotic
cardiomyocytes, thus promoting the resolution of car-
diac inflammation [37]. Like the reparative M2 macro-
phages, the resident macrophages also have a high
expression level of MertK, and the loss of this receptor
leads to increased neutrophil persistence and decreased
level of IL-10 in the myocardium [37]. Thus, a good
anti-inflammatory strategy for treating patients with MI
in the future would be to selectively target the recruited
monocytes, without affecting the activity of resident
macrophages.

Macrophages and endogenous stem cells

Since adult mammalian hearts have poor regenerative
capability, the ultimate goal of any cardioprotective treat-
ment is to achieve a substantial level of cardiac muscle re-
generation. Genetic fate-mapping study of adult murine
hearts demonstrates that there are stem cells or precursor
cells present in the heart that contribute to the replace-
ment of adult mammalian cardiomyocytes after myocar-
dial infarction [38]. As also highlighted above, two
populations of macrophages, M1 and M2, participate in
creating the phase 1 (day 1-3 after MI) and phase 2 (day
4-7 after MI) inflammatory microenvironments in the
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infarct area respectively [39-41]. The M1 macrophages
that are dominant in phase 1 of MI phagocytose cell deb-
ris in the infarct zone and secrete pro-inflammatory cyto-
kines, such as TNFa, IL1B, IL6 and IL10 [41]. In contrast,
M2 macrophages, the major macrophages in phase 2 of
M, promote collagen deposition and angiogenesis to the
infarct area [40]. The inflammatory microenvironments
not only activate cardiofibroblasts for myocardium re-
modelling, but also activate endogenous stem cells for
heart regeneration, either by cell fusion or transdifferentia-
tion [42—44]. Despite that the endogenous cardiac pro-
genitor cells (CPCs) are activated in response to heart
damage [42, 43], nevertheless an as yet unclear interaction
between CPCs and macrophages in the infarct area re-
mains to be elucidated. One key factor that bridges CPCs
and macrophages in the injured heart is prostaglandin E,
(PGE,), whose release from the injured heart regulates
macrophage populations and exerts a salutary effect on
the myocardium [45-47].

PGE, in the injured site binds to the G protein-
coupled receptor E prostanoid 2 (EP2) on monocytes to
suppress the maturation of these monocytes to M1 mac-
rophages through activating the downstream cyclic AMP
(cAMP)/protein kinase A (PKA) signalling [48]. PGE,
also activates EP2/EP4 receptors, which induce upregu-
lation of cAMP and its downstream cAMP responsive
element binding (CREB)/transcriptional coactivators 2
and 3 (CRTC2/3)-mediated induction of Krupple like
factor 4 (KLF4) to promote polarization of M2 macro-
phages [47]. Therefore, strategies modulating the balance
of M1/M2 macrophages such as by PGE2 treatment may
create a favourable inflammatory microenvironment in
the infarct zone to promote heart repair and regener-
ation after MI [40, 49].

Harnessing early cardiac inflammation

Despite its poor clinical outcome in recent trials in
patients with MI, anti-inflammatory therapeutic strategy
is still considered to be a viable option for controlling the
size of the infarcted area. From the recent advances in
understanding the roles that the innate immunity plays in
post-M], it is increasingly clear that downregulating the
inflammatory activity exerted by recruited monocyte-
derived macrophages would promote better cardiac out-
put in patients with MI [34]. Since macrophages have dif-
ferent roles at different time points after MI, future
therapeutic strategies should focus on minimising the in-
flammatory effects rather than completely inhibiting the
entire inflammatory activities. Thus, an ideal treatment
should be able to assist the recruited immune cells to
create an inflammatory microenvironment that is favourable
for cardiac regeneration but with minimal interfer-
ences to their inflammatory activities at a specific
time point. Here, we present two therapeutic strategies
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that harness the inflammatory events that happen after
MI to achieve cardioprotection and to improve cardiac
regeneration.

Biomimicking platelet-monocyte interactions
Similar to other cardioprotective drugs, anti-inflammatory
therapeutics that are designed for cardioprotection in the
heart have poor targeting for the organ itself. Although
these drugs have high specificity for their designed targets,
they have poor retention in the heart after MI. Conse-
quently, poor targeting has been a key reason that explains
why some of these drugs could not be translated into clin-
ical practice [50]. The issue of poor targeted drug delivery
for infarcted hearts is evident by a recent clinical trial of
cyclosporine in patients with MI [51]. Despite the drugs
were encapsulated in PEGylated liposomes, the results
from the trial revealed that most of the administered
cyclosporine was distributed in other organs rather than
in the heart. Poor drug targeting not only cannot improve
overall cardiac output, but also can induce undesired side-
effect in other organs [52]. Thus, there is an urgent need
to develop a novel delivery strategy that can maximize the
overall efficacy of the delivered drugs for cardioprotection.
It has recently been proposed that platelet-like proteo-
liposomes (PLPs) that can biomimic platelet interactions
in circulating monocytes act as a novel way of delivering
anti-inflammatory drugs to the infarcted heart [53].
Clinically, platelets are found to interact with surfaces of
the recruited monocytes in patients with MI to form
platelet-monocyte aggregates, which have been used as
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an early detection biomarker and for monitoring the
progression of the disease [54]. The biological signifi-
cance of the binding between platelets and monocytes is
still not known, but it has been suggested to facilitate
monocyte extravasation into tissue [55]. Similar to circu-
lating platelets, PLPs show strong binding affinity for
monocytic cell lines, but not for endothelial cells. More
importantly, PLPs are able to infiltrate into the infarct area
in large number by anchoring on the surfaces of the re-
cruited monocytes. Therefore, in this monocyte-mediated
delivery strategy, the host monocytes are used as “shuttle
buses” to carry the PLPs and their cargoes directly to the
heart (Fig. 1). Such a delivery strategy is more effective
than the current delivery strategy which relies on the
presence of an enhanced permeability and retention (EPR)
effect [53]. A recent study on nanoparticle distribution in
the murine model of I/R has revealed that EPR effect
starts to diminish after 24 h post-infarction [56], which ex-
plains why so many cardioprotective drugs have poor re-
tention in the heart. Therefore, unlike in cancer, EPR
effect only exists for a short duration after MI, which is in-
sufficient for meaningful cardioprotection and preventing
remodelling, which takes place over days to weeks.
Another advantage of the monocyte-mediated strategy
is the selectivity for the recruited monocyte-derived mac-
rophages. Since PLPs could only infiltrate the infarcted
heart through interactions with recruited monocytes, the
particles themselves are immediately phagocytized by the
recruited monocyte-derived macrophages upon entering
the myocardium. Consequently, PLPs have less chance to

Fig. 1 Platelet-like proteoliposomes enhance the targeting specificity for infarcted heart through biomimicking platelet interactions with circulating
monocytes. (1) Platelets adhere to the surface of recruited monocytes during the development of M. (2) Accordingly, platelet-monocyte aggregates
will undergo extravasation. (3) It is hypothesized that platelet-like proteoliposomes (PLPs) will interact with monocytes in a similar way to platelets. (4)
Once crossing the endothelium, the PLPs are expected to be phagocytized by monocyte-derived macrophages
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contact with the cardiac resident macrophages after
MI, allowing the encapsulated drugs to release within
the recruited monocyte-derived macrophages only.
This monocyte-mediated strategy has opened up a
new paradigm in drug delivery, as it is the first re-
ported case of EPR-independent drug delivery to the
heart, and that the delivery vehicle specifically targets
the recruited monocytes.
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PGE, and M2 macrophage polarization

Traditionally, PGE, is considered a proinflammatory
molecule. However, it has recently been suggested that
PGE, may modulate the inflammatory microenviron-
ment for tissue regeneration through regulating macro-
phage subtypes [57]. Intraperitoneal injection of PGE, in
a murine model of MI has been shown to promote re-
plenishment of cardiomyocytes from endogenous CPCs
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by down-regulation of TGF-f signalling in cardiomyocytes
[49]. The effect of PGE2 on CPCs is mediated through
interaction with the EP2 receptor [49]. However, the mo-
lecular mechanism underpinning the TGF-B-mediated salu-
tary effect of PGE, on CPCs is unclear. One possible
mechanism is through inhibition of the TGF-B/TGE-p type
2 receptor (TPR2)/TGE-p-activated kinase 1 (TAK1) signal-
ling in cardiomyocytes, which leads to upregulation of bone
morphogenetic protein 7 (BMP7) and thus suppresses fi-
brosis in injured hearts [58]. Another possible mechanism
may be attributed to the production and release of protect-
ive cardiokines from the cardiomyocytes to enhance the
survival of cardiomyocytes after injury. The evidence comes
from the mice with cardiomyocyte-specific knockdown of
TGEFPR1, which show dramatic elevation of protective
cardiokine IL-33, growth and differentiation factor 15
(GDF-15) and thrombospondin 4 (Thbs 4) after MI [59].
The elevation of these protective cardiokines reduces the
apoptosis of cardiomyocytes in the infarct area and im-
proves the survival of mice after MI. The advancing effect
of PGE, on cardiomyocyte replenishment may also be re-
lated to the function of PGE, in promoting proliferation of
adult stem cells [60, 61]. Administration of PGE, to human
mesenchymal stem cells maintains proliferation and self-
renewal of these cells via the EP2 receptor which then en-
hances the production and autocrine effect of PGE, itself
[61]. Moreover, human cardiomyocytes stimulated with
thrombin triggers the production of PGE,, which in turn
promotes cardiomyocyte proliferation via EP2 receptors
[60]. Whether PGE, exerts the same proliferative effects on
CPCs in the ischemic hearts requires further investigation.
The function of PGE2 during inflammation and cardiac re-
generation is illustrated in Fig. 2.

Conclusions

Cardiac inflammation continues to be a viable drug target
for future development of therapeutics for cardioprotec-
tion. Paradoxically, the inflammatory events that happen
after MI can either induce undesired inflammatory re-
sponses that cause long term weakening of myocardium
or remodel the microenvironment that is favourable for
cardiac repair. Accordingly, traditional anti-inflammatory
strategy is no longer feasible to achieve desired clinical
outcome. Future therapeutic approaches should focus on
harnessing the inflammatory events to achieve better drug
efficacy, as well as modulating the inflammatory micro-
environment favourable for cardiomyocyte replenishment.
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