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Abstract 

Background  We investigated the presence of heteroresistance against both tigecycline and colistin in Acinetobacter 
baumannii and then evaluated the effectiveness of combined antibiotic treatment given the existence of discrete 
tigecycline- and colistin-resistant subpopulations.

Methods  We performed population analysis profiling (PAP) to evaluate the degree of composite heteroresistance in 
A. baumannii isolates, with the extent of this resistance quantified using subsequent antibiotic susceptibility testing. 
We then evaluated the amino acid sequence of PmrBAC and the relative mRNA expression levels of pmrB. Finally, we 
investigated the combined antibiotic efficacy of tigecycline and colistin in multiple-heteroresistant isolates using dual 
PAP and in vitro time-killing assays.

Results  All tigecycline-heteroresistant A. baumannii isolates, with the exception of one colistin-resistant isolate, were 
also heteroresistant to colistin. Evaluations of the colistin-resistant subpopulations revealed amino acid alterations 
in PmrA and PmrB and increased expression of pmrB. All tigecycline-resistant subpopulations were susceptible to 
colistin, and all colistin-resistant subpopulations were susceptible to tigecycline. Dual PAP analysis using tigecycline 
and colistin showed no heteroresistance, and in vitro time-killing assays revealed that a combination of these two 
antibiotics effectively eliminated the bacterial cells.

Conclusion  Our results suggest that multiple heteroresistance to tigecycline and colistin is highly prevalent among 
A. baumannii clinical isolates and that these resistant subpopulations exist independently in single multiple heterore-
sistant isolates. Therefore, our findings may explain the success of combined antibiotic therapies in these infections.
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Introduction
Acinetobacter baumannii is a major pathogen known to 
cause a wide range of serious nosocomial infections pre-
senting as pneumonia, bacteremia, urinary tract infec-
tions, meningitis, and surgical wound infections [1]. As a 
member of the ESKAPE group, A. baumannii infections 
are characterized by increasing resistance to commonly 
used antibiotics, including the carbapenems [2]. Given 
their high degree of resistance, these isolates are classified 
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as “priority one” pathogens by the World Health Organi-
zation, making them a priority for the development of 
novel or more effective antibiotic treatments [3].

Antibiotic heteroresistance is a term used to describe 
microbial populations presenting with a smaller antibi-
otic-resistant subpopulation within a larger single anti-
biotic-susceptible bacterial isolate [4]. Although more 
evidence is still needed to understand the development 
of these populations, it is widely accepted that heterore-
sistance is a common mechanism facilitating treatment 
failure due to the selection of these resistant subpopula-
tions after antibiotic treatment [5]. Recent studies have 
increasingly reported that heteroresistance to diverse 
antibiotics is frequently detected in A. baumannii clinical 
isolates [6], with many of these studies describing a high 
degree of colistin heteroresistance among these isolates 
[7]. In addition, we recently demonstrated that there is 
also a high proportion of tigecycline heteroresistance in 
A. baumannii clinical isolates [8].

Although tigecycline and colistin are considered last-
resort antibiotics for treating multidrug-resistant A. bau-
mannii infections [9], their rates of resistance remain of 
critical interest to the field. In addition, although multi-
ple heteroresistance to tigecycline and colistin has not 
been previously investigated in A. baumannii, the pres-
ence of carbapenem-resistant Enterobacteriaceae clinical 
isolates exhibiting heteroresistance to multiple antibiot-
ics has been previously reported [10, 11]. Therefore, it is 
expected that single antibiotic therapies using tigecycline 
or colistin are unlikely to be effective against infections 
by heteroresistant isolates.

In the current study, we report the common presence 
of multiple heteroresistance exhibiting resistance to both 
tigecycline and colistin in A. baumannii clinical iso-
lates. Our evaluations also revealed that these resistant 

subpopulations are completely independent and that the 
combined application of both tigecycline and colistin 
would be effective during the eradication of multi-anti-
microbial heteroresistant A. baumannii isolates.

Materials and methods
Bacterial isolates and antibiotic susceptibility testing
Eight clinical A. baumannii isolates known for their tige-
cycline heteroresistance in our previous study [8], were 
used in this study. Tigecycline-resistant subpopulations 
(FA#-TIG-RP or F-#-TIG-RP) were investigated in our 
previous study [8] and colistin-resistant subpopulations 
(FA#-COL-RP or F-#-COL-RP) were obtained from 
the seven A. baumannii isolates (Table  1) after popula-
tion analysis profiling (PAP). Only FA154-COL-RP could 
not be available as original isolate FA154 was shown to 
be resistant to colistin. Genotyping was then performed 
on each of the parental isolates and their tigecycline- 
and colistin-resistant subpopulations using multilocus 
sequence typing (MLST) based on Oxford database [12].

We also measured the minimal inhibitory concentra-
tions (MICs) for clinical A. baumannii isolates and their 
tigecycline- and colistin-resistant subpopulations using 
the standard broth microdilution method, as outlined 
in the guidelines provided by the Clinical and Labora-
tory Standards Institute (CLSI) [13]. Escherichia coli 
strain ATCC 25922 was used as a reference for MIC 
quality control, and the MIC breakpoint for colistin was 
classified as described by the CLSI; resistant, ≥ 4  mg/L. 
However, we applied the latest FDA-Identified Interpre-
tive Criteria for Enterobacteriaceae when evaluating the 
tigecycline MIC breakpoints as there is no established 
breakpoint for tigecycline in Acinetobacter spp. [14]; an 
MIC of ≤ 2 mg/L as susceptible, 4 mg/L as intermediate, 
and ≥ 8 mg/L as resistant.

Table 1  Genotypes and minimal inhibitory concentrations (MICs) for tigecycline and colistin in eight A. baumannii parental isolates 
and their respective tigecycline- (TIG-RP) and colistin-resistant subpopulations (COL-RP)

MIC, minimal inhibitory concentration; TIG, tigecycline; COL, colistin; RP, resistant subpopulation; NA, not applicable (because the parental isolate is colistin-resistant)

Isolate number Sequence type MIC (mg/L)

Parental TIG-RP COL-RP

TIG COL TIG COL TIG COL

FA56 191 2 2 16 2 2  > 64

FA83 191 2 2 16 2 2  > 64

FA154 191 2 > 64 16 2 NA NA

FA1318 357 2 2 16 2 2  > 64

FA1323 357 2 2 16 2 2  > 64

F-1757 357 2 2 16 2 2  > 64

F-2420 357 2 2 16 2 2  > 64

FA72 191 4 2 32 2 2  > 64
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Population analysis profiling (PAP)
Colistin heteroresistance of the seven previously identi-
fied tigecycline-heteroresistant and colistin-susceptible 
isolates was evaluated using PAP. The PAP was conducted 
as previously described with some modifications [15]. 
Briefly, overnight cultures of each isolate grown at 37 °C 
and 220  rpm were serially diluted tenfold in phosphate 
buffered saline and then spotted as 10 μL suspensions 
onto Mueller–Hinton (MH) II agar plates with vary-
ing concentrations of colistin, with these plates creating 
a twofold gradient between 1 to 16  mg/L. These plates 
were then incubated at 37 °C for 24 h and their CFU/mL 
were then calculated. The proportion of colistin-resistant 
subpopulations were measured based on the number of 
surviving cells on any MH agar containing more than 
4 mg/L colistin. Antibiotic heteroresistance was defined 
as the occurrence of resistant subpopulations at eight-
fold or greater MIC, when compared to their respective 
parental strain at a frequency of 10–7 to 10–6 [4]. Colistin-
resistant subpopulations were then isolated from these 
colonies, grown on agar plates with the highest concen-
trations of colistin evaluated in the PAP and stored as 
frozen stock.

We also performed PAP using two antibiotics (dual 
PAP) using a similar approach to that described using 
plates supplemented with both tigecycline and colistin on 
the same concentration gradient as described in the sin-
gle PAP experiments. Viable cells at each concentration 
were then calculated using the spotting test method.

Genetic evaluations
Genetic alterations within the coding genes of the PmrAB 
two-component regulatory system, pmrAB and their 
effector protein-coding gene, pmrC, within the colistin-
resistant subpopulations were identified by PCR and 
sequencing (Additional file  1: Table  S1). Genomic DNA 
was extracted from each isolate using a G-spin™ Genomic 
DNA Extraction kit for bacteria (iNtRON Biotechnology, 
Seongnam, Korea); any and all mutations in these colis-
tin-resistant subpopulations were analyzed based on their 
respective parental strains using SnapGene version 4.1.9 
(GSL Biotech LLC, Greater Chicago Area, Great Lakes, 
Midwestern US) and described as amino acid alterations.

Gene expression analysis
The relative mRNA expression levels of pmrB from both 
the parental isolates and colistin-resistant subpopulations 
were compared using quantitative reverse transcription 
polymerase chain reaction (qRT-PCR). Total RNA was 
extracted from mid-log cultures of each strain using the 
RNeasy Mini kit (Qiagen, Hilden, Germany) and cDNA 
was synthesized using HiSenScript™ RH[-] RT PreMix 

kit (iNtRON Biotechnology, Seongnam, Korea). The 
qRT-PCR was then carried out using TB Green Premix 
Ex Taq™ (TaKaRa, Kyoto, Japan) and a QuantStudio™ 7 
Flex Real-Time PCR System (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA). The relative mRNA 
expression levels of each of the target genes were normal-
ized to the expression level of housekeeping gene rpoB 
using the ΔΔCT method. All evaluations were completed 
in triplicate.

In vitro time‑killing assay
Next, we investigated the efficacy of combined antibiotic 
treatment using an in  vitro time-killing assay based on 
the protocol outlined in the CLSI recommendations [16]. 
Briefly, overnight cultures of each of the seven multiple 
heteroresistant isolates (F-1757 and F-2420) were diluted 
1:100 in MH II broth and exposed to 2 × MICs of tigecy-
cline, colistin, and a combination of the two antibiotics. 
Cultures were incubated at 37 °C with shaking at 220 rpm 
for 24 h and viable cell counts were determined at 0, 3, 6, 
9, 12, and 24 h using the spotting test as described above.

In addition, the other five multiple heteroresistant A. 
baumannii isolates were also evaluated using an in vitro 
killing efficacy assay which combined these antibiotics 
and exposed cells to 2 × MICs. Surviving cells were enu-
merated only after 24  h of incubation by spotting test 
using MH II agar plates.

Statistical analysis
Statistical analyses were completed using a Student’s 
t-test as administered by Prism version 8.3.0, software for 
Windows (GraphPad Software), and significance was set 
at p < 0.05 (*p < 0.05; **p < 0.01; ***p < 0.001).

Results
Identification of colistin heteroresistance 
among tigecycline‑heteroresistant A. baumannii isolates
Of the eight tigecycline-heteroresistant A. bauman-
nii isolates, seven were susceptible to colistin (Table  1). 
These seven isolates were then subjected to PAP using 
colistin which revealed that all of these colistin-suscep-
tible isolates were also heteroresistant to this antibiotic 
(Fig.  1). Thus, all seven of these A. baumannii isolates 
were susceptible to both tigecycline and colistin and 
simultaneously heteroresistant to both antibiotics, defin-
ing this characteristic as multiple heteroresistance. In 
addition, while the proportion of tigecycline-resistant 
subpopulations in these seven tigecycline-susceptible 
isolates ranged from 1.2 × 10–7 to 5.2 × 10–5 [8], the colis-
tin-resistant subpopulations in the same isolates ranged 
from 2.3 × 10–6 to 1.2 × 10–5.
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Colistin-resistant subpopulations obtained during PAP 
exhibited a very high level of colistin resistance, exhibit-
ing a more than 32-fold increase in MIC when compared 
to their respective parental strain (Table 1). In addition, 
all tigecycline-resistant subpopulations were susceptible 
to colistin, and all colistin-resistant subpopulations were 
susceptible to tigecycline (Table 1). Finally, MLST analy-
sis revealed that all of the sequence types (STs) for all of 
the resistant subpopulations were consistent with the STs 
of their respective parental strain (Table 1).

Profile of the antibiotic resistance mechanisms 
in the colistin‑resistant subpopulations
A total of six of the colistin-resistant subpopulations 
exhibited amino acid alterations in PmrB; three (G260D, 
F222Y, and R263H) in histidine kinas A (HisKA) domain, 
two (E301K and G315C) in nonfunctional domain, and 
one (L208F) in HAMP domain (Table  2). One amino 
acid was found in receiver domain of PmrA in FA1318-
COL-RP. Amino acid substitutions in HisKA and HAMP 
domains of PmrB and receiver domain of PmrA have 
been reported to be responsible for increase of colis-
tin MIC associated in A. baumannii [17–19]. Different 
amino acid alterations in the seven colistin-resistant sub-
populations suggest that each developed independently. 
None of these strains displayed changes in the PmrC. 
qRT-PCR-based evaluation of pmrB revealed its sig-
nificant upregulation in all of the resistant isolates when 
compared to their parental strain (Fig.  2). This suggests 
that the colistin resistance described in our heterore-
sistant isolates was mediated by an upregulation of the 

PmrAB two-component regulatory system which was 
facilitated by several well-known amino acid alterations 
[20, 21].

Efficacy of combined antibiotic treatment in multiple 
heteroresistant isolates
We further performed the dual PAP against all seven 
multiple heteroresistant isolates as explained in Fig.  1. 
While multiple heteroresistant isolates showed heterore-
sistant phenotypes for tigecycline and colistin, they did 
not exhibit a heteroresistance phenotype when tigecy-
cline and colistin were combined, as evidenced by a lack 
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Fig. 1  Population analysis profiling (PAP). Colistin heteroresistance in seven tigecycline-heteroresistant, colistin-susceptible A. baumannii isolates 
were identified using PAP analysis using single regimen. The results of dual PAP using tigecycline and colistin in multiple heteroresistant A. 
baumannii isolates did not exhibit heteroresistance phenotype

Table 2  Summary of the amino acid alterations in the PmrAB 
two-component regulatory system in colistin-resistant 
subpopulations (COL-RP)

a Amino acid alternations in nonfunctional domain of PmrB
b Amino acid alterations in histidine kinase A (HisKA) domain of PmrB
c Amino acid alteration in HAMP domain of PmrB

Isolate number Colistin MIC 
(mg/L)

Amino acid alterations

PmrA PmrB PmrC

FA56-COL-RP > 64 – E301Ka –

FA83-COL-RP > 64 – G260Db –

FA1318-COL-RP > 64 D82N – –

FA1323-COL-RP > 64 – F222Yb –

F-1757-COL-RP > 64 – R263Hb –

F-2420-COL-RP > 64 – G315Ca –

FA72-COL-RP > 64 – L208Fc –
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of any cells in media enriched with more than 4 mg/L of 
both antibiotic during dual PAP.

In vitro time-killing assays also demonstrated the effec-
tiveness of this combined treatment in multiple heterore-
sistant isolates (Fig.  3). Despite treatment at 2 × MICs, 
tigecycline or colistin alone failed to inhibit the growth 
of either resistant subpopulation. However, combined 
administration of both tigecycline and colistin eliminated 
any surviving cells, inhibiting the regrowth of either 
resistant subpopulation.

Discussion
Previously, we reported the high prevalence of tigecy-
cline-heteroresistant A. baumannii isolates and revealed 
that this heteroresistance facilitates increased treatment 
failure via the selection of resistant populations upon 

exposure to a moderate concentration of tigecycline [8]. 
In addition, previous our evaluations suggested that this 
resistance was largely facilitated by the upregulation of 
the AdeABC efflux pumps following an ISAba1 insertion 
into adeS [8]. Herein, we determined if these tigecycline-
heteroresistant isolates were also heteroresistant to colis-
tin, another last line antibiotic used in the treatment of A. 
baumannii infections.

Our investigations revealed that of the eight tigecy-
cline-heteroresistant A. baumannii isolates identified in 
our previous study, only one was colistin-resistant. The 
other seven isolates presented with a colistin heterore-
sistance phenotype when evaluated by PAP. This finding 
implies that there is a high prevalence of multiple het-
eroresistance to tigecycline and colistin in A. bauman-
nii, which is similar to the recent findings described for 
Klebsiella pneumoniae [11]. In these evaluations several 
tigecycline- and polymyxin B-susceptible K. pneumoniae 
isolates from China were shown to be heteroresistant to 
both antibiotics, with this resistance appearing in nearly 
80% of their isolates. In addition, when these observa-
tions are combined with our results, these findings sug-
gest that multiple heteroresistance may be reasonably 
prevalent in several gram-negative pathogens.

The results of the in vitro antibiotic susceptibility test-
ing of the resistant colonies obtained during our PAP 
demonstrated that all of the tigecycline-resistant sub-
populations were susceptible to colistin, and all of the 
colistin-resistant subpopulations were susceptible to 
tigecycline. Thus, no two subpopulations were shown to 
be simultaneously resistant to both antibiotics suggest-
ing that each resistant subpopulation exists as a distinct 
event.
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Fig. 3  Survival analysis. The results of the in vitro time-killing assay of both monotherapy and combination treatment of tigecycline and colistin in 
multiple heteroresistant A. baumannii isolates. Both tigecycline and colistin were 2 × MIC (4 or 8 mg/L)
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The independent existence of tigecycline- and colistin-
heteroresistant subpopulations suggests an experimental 
basis for evaluating the efficacy of combination antimi-
crobial treatment. As expected, single use of tigecycline 
or colistin did not reduce the growth of the multiple het-
eroresistant isolates due to the selection of resistant sub-
populations. However, a combination of tigecycline and 
colistin eradicated almost all of the A. baumannii isolates 
when administered at 2 × MICs of both antibiotics. These 
evaluations revealed total eradication at 4  mg/L for all 
but one isolate (tigecycline for FA72, 8 mg/L). Dual PAP 
confirmed the absence of a combined heteroresistance 
pattern, suggesting that effective eradication of multiple 
heteroresistant A. baumannii isolates can be achieved 
using a combination of therapies as the tigecycline and 
colistin heteroresistance exist in different subpopulations 
with different resistance patterns within the same isolate.

Our study have some limitations. First is that only 
in  vitro studies were conducted. Second, we did not 
investigate the distribution of multiple heteroresistant A. 
baumannii strains in the clinical settings. Further stud-
ies through systematic collection of clinical isolates and 
in vivo assays are guaranteed.

Conclusions
Many studies have shown the limitations of colistin or 
tigecycline monotherapy and the success of combining 
these antibiotics [22–25]. However, few studies have elu-
cidated the underlying mechanism. Our study revealed 
that prevalent heteroresistance is likely a significant fac-
tor in the failures of antibiotic monotherapy and suggests 
that combined antibiotic therapies may facilitate better 
clinical outcomes via their independent eradication of 
heteroresistant subpopulations.
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