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Abstract 

Background  The microvascular endothelium inherently controls nutrient delivery, oxygen supply, and immune 
surveillance of malignant tumors, thus representing both biological prerequisite and therapeutic vulnerability in can-
cer. Recently, cellular senescence emerged as a fundamental characteristic of solid malignancies. In particular, tumor 
endothelial cells have been reported to acquire a senescence-associated secretory phenotype, which is character-
ized by a pro-inflammatory transcriptional program, eventually promoting tumor growth and formation of distant 
metastases. We therefore hypothesize that senescence of tumor endothelial cells (TEC) represents a promising target 
for survival prognostication and prediction of immunotherapy efficacy in precision oncology.

Methods  Published single-cell RNA sequencing datasets of different cancer entities were analyzed for cell-specific 
senescence, before generating a pan-cancer endothelial senescence-related transcriptomic signature termed EC.
SENESCENCE.SIG. Utilizing this signature, machine learning algorithms were employed to construct survival prognos-
tication and immunotherapy response prediction models. Machine learning-based feature selection algorithms were 
applied to select key genes as prognostic biomarkers.

Results  Our analyses in published transcriptomic datasets indicate that in a variety of cancers, endothelial cells 
exhibit the highest cellular senescence as compared to tumor cells or other cells in the vascular compartment of 
malignant tumors. Based on these findings, we developed a TEC-associated, senescence-related transcriptomic 
signature (EC.SENESCENCE.SIG) that positively correlates with pro-tumorigenic signaling, tumor-promoting dysbalance 
of immune cell responses, and impaired patient survival across multiple cancer entities. Combining clinical patient 
data with a risk score computed from EC.SENESCENCE.SIG, a nomogram model was constructed that enhanced the 
accuracy of clinical survival prognostication. Towards clinical application, we identified three genes as pan-cancer 
biomarkers for survival probability estimation. As therapeutic perspective, a machine learning model constructed on 
EC.SENESCENCE.SIG provided superior pan-cancer prediction for immunotherapy response than previously published 
transcriptomic models.

Conclusions  We here established a pan-cancer transcriptomic signature for survival prognostication and prediction 
of immunotherapy response based on endothelial senescence.
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Introduction
Cellular senescence has recently been included in the 
‘hallmarks of cancer’ [1, 2] as a fundamental characteris-
tic of malignant tumors [3]. This term describes an irre-
versible state of cell cycle arrest, which is thought to be 
evolved as a protective biological mechanism facilitating 
the clearance of diseased or dysfunctional cells. Cellular 
senescence commonly arises in ageing organisms but 
can also be induced by more specific conditions such as 
lack of nutrient supply or direct cell damage. As a result, 
senescent cells typically show alterations in cell morphol-
ogy or metabolism and demonstrate a ‘senescence-asso-
ciated secretory phenotype’ (SASP), which is associated 
with the release of a broad range of bioactive substances 
into the extracellular space [4, 5]. Whereas cellular senes-
cence in cancer has initially been regarded as beneficial 
[6], there is accumulating evidence that this cellular state 
elicits pro-tumorigenic effects including stimulation of 
tumor cell proliferation, invasion, and metastasis, pro-
motion of tumor angiogenesis, as well as interference 
with tumor immunity [7–9]. Importantly, tumor cells are 
able to adopt transitory and reversible senescent states 
that critically contribute to therapy resistance [10, 11].

The microvascular endothelium regulates nutrition 
and oxygen supply to cancer cells and controls immune 
surveillance, thus representing an integral component of 
the tumor environment. In contrast to healthy tissues, 
however, the tumor microvasculature is disorganized and 
consists of immature vessels with disrupted endothelial 
junctions, incomplete basement membrane coverage, and 
lacking pericyte sheath. Consequently, vessels of growing 
tumors are progressively low perfused and highly per-
meable, which causes tumor hypoxia, supports cancer 
cell dissemination, and promotes inadequate immune 
responses. From a therapeutical perspective, this favors 
resistance to different modalities of cancer treatment 
including radio- and cytostatic therapy, and, in particu-
lar, immunotherapy [12]. In this context, it is interesting 
that besides cancer cells, other cell populations in the 
tumor environment including microvascular endothelial 
cells undergo senescence [13–15]—a process potentially 
linked to the cancer hallmarks ‘inducing angiogenesis’, 
‘activating invasion and metastases’, and ‘tumor-promot-
ing inflammation’.

Individual survival prognostication and prediction 
of response to therapy are critical for the development 
of personalized treatment concepts in precision oncol-
ogy. With respect to the fundamental role of the micro-
vascular endothelium in cancer (immuno)biology and 

treatment resistance, we hypothesize that senescence 
of tumor endothelial cells (TEC) substantially partici-
pates in tumor progression and immunotherapy efficacy 
in solid cancers, hence serving as a promising target for 
survival prognostication and immunotherapy response 
prediction.

Methods
Pan‑cancer scRNAseq datasets and processing
To develop a TEC-specific senescence-related transcrip-
tomic signature (EC.SENESCENCE.SIG), we collected 
18 scRNAseq datasets containing tumor, stromal, and 
immune cell data. These 18 scRNAseq datasets included 
15 types of cancer, including ovarian cancer (OV), 
pancreatic cancer (PAAD), prostate cancer (PRAD), 
melanoma (SKCM), stomach cancer (STAD), ocular 
melanomas (UVM), basal-cell carcinoma (BCC), bladder 
cancer (BLCA), breast cancer (BRCA), colorectal can-
cer (CRC), head and neck cancer (HNSC), kidney clear 
cell carcinoma (KIRC), lower grade glioma (LGG), liver 
cancer (LIHC), and lung adenocarcinoma (LUAD). Raw 
data were downloaded from Gene Expression Omnibus 
(GEO, https://​www.​ncbi.​nlm.​nih.​gov/​geo/), The Euro-
pean Genome-phenome Archive (EGA, https://​ega-​archi​
ve.​org/), and Array Express (https://​www.​ebi.​ac.​uk/​array​
expre​ss/). ScRNAseq data processing was performed 
using the R ‘Seurat’ package (https://​satij​alab.​org/​seu-
rat/) as described in the package tutorial. In brief, cells 
with gene expression < 300 genes or > 6500 genes and 
mitochondrial gene expression > 10% were excluded, 
hence including the vast majority of cells in the employed 
datasets. We further applied the SCTransform function 
(https://​satij​alab.​org/​seurat/​artic​les/​sctra​nsform_​vigne​
tte.​html) to normalize and scale raw counts followed by 
principal component analysis (PCA). The R ‘Harmony’ 
package (https://​porta​ls.​broad​insti​tute.​org/​harmo​ny/​
artic​les/​quick​start.​html) was used to remove batch 
effects across dissociated scRNAseq raw data if required. 
Employing unsupervised cluster analysis and unified 
manifold approximation and projection (UMAP), we 
identified discrete cell clusters in each of the scRNAseq 
datasets. We then annotated each cell cluster based on 
known cell type marker genes or annotation that come 
with the downloaded datasets. Furthermore, the differ-
ential genes of each cell type were identified using the 
‘FindAllMarkers’ function in R ‘Seurat’ package and only 
genes that were enriched and expressed in at least 25% 
of the cells of at least one cell type and with a log fold 

https://www.ncbi.nlm.nih.gov/geo/
https://ega-archive.org/
https://ega-archive.org/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://satijalab.org/seurat/
https://satijalab.org/seurat/
https://satijalab.org/seurat/articles/sctransform_vignette.html
https://satijalab.org/seurat/articles/sctransform_vignette.html
https://portals.broadinstitute.org/harmony/articles/quickstart.html
https://portals.broadinstitute.org/harmony/articles/quickstart.html


Page 3 of 19Wu et al. Journal of Biomedical Science           (2023) 30:21 	

change higher than 0.25 were retained (default values of 
this package).

Pathway activity and cell–cell communication analysis
For pathway activity analysis, normalized gene expression 
data from each cell cluster (scRNAseq) or patients (bulk-
seq) were implemented in R ‘GSVA’ package (https://​
github.​com/​rcast​elo/​GSVA) to evaluate the enrich-
ment of related gene sets. The gene sets used for Gene 
Set Variation Analysis (GSVA) were downloaded from 
the Molecular Signatures Database (MSigDB) website 
(https://​www.​gsea-​msigdb.​org/​gsea/​msigdb). Endothelial 
cells in scRNAseq datasets were divided into high- and 
low-senescent tumor endothelial cells (HS-TEC and 
LS-TEC, respectively) according to the GSVA score of 
a senescence-related transcriptional signature termed 
‘FRIDMAN. SENESCENCE.UP’ [16]. Cellchat (Version 
1.5.0, https://​github.​com/​sqjin/​CellC​hat) was applied 
to analyze cell–cell communication using the normal-
ized gene expression matrix. Interaction pairs between 
HS-TEC and other cell types with P-values less than 0.01 
were retained.

Pan‑cancer bulk‑seq datasets and immunotherapy treated 
cohort
The Cancer Genome Atlas (TCGA) transcriptome data 
for all cancer types were downloaded from UCSC XENA 
website (https://​xenab​rowser.​net/​datap​ages/) and only 
patients with available overall survival data were selected 
for further data analysis. The TCGA pan-cancer total 
mutation burden (TMB) data was obtained from the 
cBioPortal for Cancer Genomics (cBioPortal, https://​
www.​cbiop​ortal.​org). In addition, we also collected the 
clinical and transcriptomic data of CGGA (Chinese Gli-
oma Genome Atlas, n = 651, downloaded from CGGA 
website (http://​www.​cgga.​org.​cn/). The transcriptomic 
data and clinical features of METABRIC (Molecular 
Taxonomy of Breast Cancer International Consortium, 
n = 1868) and prad-su2c-2019 (prostate cancer, n = 444) 
were downloaded from cBioPortal (https://​www.​cbiop​
ortal.​org). Furthermore, clinical and transcriptome 
data of other cancer types were downloaded from Gene 
Expression Omnibus (GEO), including GSE13507 (blad-
der cancer, n = 165), GSE17538 (colorectal cancer, 
n = 238), GSE19423 (bladder cancer, n = 48), GSE30219 
(lung cancer, n = 278), GSE72094 (lung cancer, n = 398), 
GSE138866 (ovarian Cancer, n = 130). For anti-pro-
grammed death-1 (PD-1)/programmed cell death ligand 
1 (PD-L1) or anti-cytotoxic T-lymphocyte-associated 
Protein-4 (CTLA-4) immunotherapy-treated cohorts, 
we systematically retrieved and collected gene expres-
sion data and prognostic information of samples from 
13 anti-PD-1/PD-L1- or anti-CTLA-4-treated cohorts, 

and only treatment-naïve patients were retained for 
further analysis, including 7 melanoma cohorts (Hugo 
SKCM, Liu SKCM, Gide SKCM, Riaz SKCM, Van SKCM, 
PUCH SKCM, Auslander SKCM), 2 urothelial carcinoma 
cohorts (Mariathasan UC, Snyder UC), 1 glioma cohort 
(Zhao GBM), 1 gastric cancer cohort (Kim GC), 1 lung 
cancer cohort (Jung NSCLC), and 1 renal cell carcinoma 
cohort (Bruan RCC). All related processed data of immu-
notherapy cohorts were downloaded from GEO or online 
correspondingly published article (Additional file  1: 
Table S3).

Construction of machine learning model for predicting 
response of immune checkpoint blockade
To investigate the predictive power of EC.SENESCENCE.
SIG for response to anti-PD-L1/PD-1 or anti-CTLA-4 
immune checkpoint blockade, we systemically collected 
13 suitable cohorts with transcriptome sequencing data 
and clinical results of immunotherapy. First, seven immu-
notherapy datasets were combined into a merged dataset 
(n = 775), including Hugo SKCM (n = 26), Liu SKCM 
(n = 121), Gide SKCM (n = 73), Riaz SKCM (n = 49), Van 
SKCM (n = 36), Mariathasan UC (n = 298), and Bruan 
RCC (n = 172). The ‘ComBat’ algorithm in the R ‘sva’ 
package (https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​
bioc/​html/​sva.​html) was used for removing batch effects. 
Subsequently, the merged dataset was randomly split 
into training (n = 620, 80%) and validation sets (n = 155, 
20%). The endothelial cell senescence related gene sig-
nature was applied to construct a prediction model in 
the training set using ten machine learning algorithms, 
including support vector machine (SVM), Naïve Bayes 
(NB), random forest (RF), k-nearest neighbors (KKNN), 
AdaBoost Classification Trees (AdaBoost), boosted logis-
tic regressions (LogiBoost), Gradient Boosting Machines 
(GBM), Bagged CART, Nearest Shrunken Centroids 
(PAM), and Neural Network. All these ten classification 
algorithms were implemented using the R ‘Caret’ pack-
age (https://​topepo.​github.​io/​caret/) and each algorithm 
was validated using five times repeated tenfold cross vali-
dation. In order to improve the accuracy of the models, 
we repeated the optimization process five times with 
different random seeds. Subsequently, these ten mod-
els were implemented into validation sets to compare 
their performance. The model with the highest accuracy 
was selected as a final classification model. Further, the 
predictive ability of the final model was evaluated using 
six independent testing sets, including PUCH SKCM 
(n = 49), Auslander SKCM (n = 14), Snyder UC (n = 25), 
Zhao GBM (n = 17), Kim GC (n = 45), and Jung NSCLC 
(n = 27). To evaluate the predictive accuracy of our final 
model, we compared our model with six other published 
pan-cancer predictive models to evaluate the response to 
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immunotherapy in testing sets. All the codes and algo-
rithms for the above six models were derived from rel-
evant published articles.

Functional analysis of endothelial cell senescence related 
signature (EC.SENESCENCE.SIG)
EC.SENESCENCE.SIG was functionally annotated by 
assessing the enrichment of Gene Ontology (GO) terms 
(biological process, cellular component terms, molecular 
functions) and Reactome pathways. The R ‘clusterPro-
filer’ package was used to visualize the related GO terms 
or Reactome pathways with adjusted P value less than 
0.05.

Pan‑cancer analysis of Gene Set Enrichment Analysis 
(GSEA) and immune infiltration quantification
First, the GSVA EC.SENESCENCE.SIG score of every 
patient of the TCGA pan-cancer cohorts was calcu-
lated using R ‘GSVA’ package. The patients of each can-
cer type were further divided into two groups based on 
the median of GSVA EC.SENESCENCE.SIG score. Sub-
sequently, we used GSEA to analyze the enrichment of 
differentially expressed genes between two groups in 
selected tumor-promoting pathways that were down-
loaded from the msigDB website. For the quantification 
of immune cell infiltration, the Cell-type Identification 
by Estimating Relative Subsets of RNA Transcripts (CIB-
ERSORT) algorithm [17] and the LM22 signature matrix 
were applied to estimate immune infiltration according 
to the transcriptome data (TPM value) of TCGA pan-
cancer cohorts.

Construction and validation of the TEC‑related prognostic 
model
Among the 102 genes in EC.SENESCENCE.SIG, the Least 
Absolute Shrinkage and Selection Operator (LASSO) 
regularized regression with tenfold cross-validation was 
performed to select smaller features that are most asso-
ciated with overall survival of patients in TCGA pan-
cancer cohorts. We conducted the LASSO regularized 
regression using the R ‘glmnet’ package and 50 genes 
were screened out and inputted into further analysis. We 
therefore used the gene expression of these 50 genes to 
construct a multivariate Cox proportional hazard regres-
sion model with a stepwise method (combination of the 
forward and backward selection) for overall survival of 
TCGA pan-cancer training sets (n = 6746, 80%). Based 
on the multivariate Cox proportional hazard regression 
model, the EC.SENESCENCE.SIG-related risk score of 
each patient was calculated by the formula as follow: EC.
SENESCENCE.SIG-related risk score (EC sene score) = Σ 
(cox regression coefficient) × (normalized expression 
level of each gene). We obtained the risk score of every 

patient in the TCGA pan-cancer training sets, TCGA 
pan-cancer testing sets, and external validation sets using 
the above formula. Patients were dichotomized into a 
high-risk group and a low-risk group using the median 
risk score and subsequently analyzed for the difference of 
overall survival using R ‘survival’ package. Furthermore, 
the area under the curve (AUC) was calculated to evalu-
ate the sensitivity and specificity of the above prognostic 
model using R ‘timeRoc’’ package or R ‘pROC’ package. 
To visualize the related prognostic model, a nomogram 
and a forest plot were graphed using R ‘rms’ package and 
R ‘forestplot’ package. For feature selection, we used R 
package ‘randomForestSRC’ (random forest), R package 
‘XGBoost’, and R ‘glmnet’ package to quantify the impor-
tance of each gene in EC.SENESCENCE.SIG for patients’s 
overall survival in TCGA pan-cancer cohorts.

Meta‑analysis
To elucidate the combined prognostic value of the modi-
fied nomogram model in the ten different datasets, a 
prognostic meta-analysis was conducted using R ‘meta’ 
package. Subsequently, the pooled hazard ratio (HR) val-
ues were calculated using random effects and synergistic 
effects models.

Statistical analysis
All statistical analyses were performed using R v4.2.1 
(https://​www.r-​proje​ct.​org). Differences in survival 
between the two groups were assessed using Kaplan–
Meier curves and the log-rank test. Univariate and mul-
tivariate Cox regression analyses were used to determine 
prognostic factors. For correlation analysis, correlation 
coefficients were calculated using Pearson for normally 
distributed data and Spearman for non-normally distrib-
uted data. For analysis of differences between two groups 
of data, unpaired Student’s t-test and Mann–Whitney 
U-test were used for normally and non-normally dis-
tributed variables, respectively. To compare more than 
two groups, one-way analysis of variance (ANOVA) and 
Kruskal–Wallis’s tests were used as parametric and non-
parametric methods, respectively. The adjusted p-value 
(FDR) was calculated by the Benjamini–Hochberg cor-
rection method. The error bars represent the standard 
deviation of the mean. P < 0.05 was considered statisti-
cally significant unless mentioned otherwise.

Results
Senescence status of individual cell populations 
in the tumor environment
In the present study, we hypothesize that senescence-
related transcriptomic changes in TEC represent a 
potential target for survival prognostication and predic-
tion of immunotherapy response in cancer. To prove this 
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hypothesis, we implemented five published single-cell 
ribonucleic acid sequencing (scRNAseq) datasets of dif-
ferent cancer entities including lung cancer, liver cancer, 
colorectal cancer, prostate cancer, and bladder cancer. As 
a measure of cellular senescence, we used an established 
senescence-related gene set [16] (FRIDMAN.SENES-
CENCE.UP). In a first approach, we extracted and clus-
tered high-quality cells of all datasets, as presented by 
unified manifold approximation and projection (UMAP) 
plots (Fig.  1a–e). Subsequent gene-set variation analy-
ses (GSVA) in these cells based on FRIDMAN.SENES-
CENCE.UP revealed that TEC exhibit higher GSVA 
scores than tumor cells or other cell populations in the 
tumor environment including myeloid cells, T cell, and B 
cells, except cancer-associated fibroblasts (CAF; Fig. 1a–
e). Thus, TEC exhibit the highest cellular senescence lev-
els in the vascular compartment of malignant tumors.

Senescent cells are characterized by a phenotype that 
is associated with the secretion of bioactive substances 
capable of modulating the activation status of differ-
ent cells [5]. To further explore the overall communica-
tion between senescent TEC and other cell populations 
in the tumor environment, we divided TEC into high-
senescent (HS-TEC) and low-senescent cells (LS-TEC) 
based on the median of GSVA scores for FRIDMAN.
SENESCENCE.UP (Additional file  1: Table  S1) in three 
scRNAseq datasets (E-MTAB-6149, lung cancer), 
(GSE125449, liver cancer), and (GSE195832, head and 
neck cancer) containing large numbers of endothelial 
cells. As a measure of cell–cell interactions, we then eval-
uated communication networks of HS-TEC by network 
analysis and pattern recognition approaches [18]. Here, 
we demonstrate that HS-TEC establish a higher number 
of interactions in the tumor microenvironment as com-
pared to LS-TECs (Additional file 1: Fig. S1a–c), predom-
inantly communicating with immune cells (Additional 
file 1: Fig. S1a–c). For this purpose, HS-TEC release the 
cytokine macrophage migration inhibitory factor (MIF) 
and β-galactosid-binding lectins (galectin; Additional 
file  1: Fig. S2a–c), utilizing five pathways that include 
MIF-CD74/C-X-C motif chemokine receptor 4 (MIF-
CD74+CXCR4), MIF-CD74/CD44 (MIF-CD74+CD44), 
Galectin9-TIM3 (LGALS9-HAVCR2), Galectin9-CD45 
(LGALS9-CD45), and Galectin9-CD44 (LGALS9-CD44; 
Additional file  1: Fig. S2a–c). Hence, our data suggest 
that senescence of TEC particularly facilitates interac-
tions with immune cells by involving MIF- and galectin-
dependent pathways.

Development of a pan‑cancer transcriptomic signature 
based on endothelial senescence
In a next step, we aimed at generating a pan-cancer gene 
signature that specifically reflects the characteristics of 

senescent TEC (referred to as EC.SENESCENCE.SIG). 
To this end, eighteen scRNAseq datasets that include 
fifteen cancer entities were used for Spearman correla-
tion analyses on gene expression levels and GSVA scores 
(based on FRIDMAN.SENESCENCE.UP) of TEC. In 
these eighteen datasets, genes positively correlated with 
GSVA scores in TEC (Spearman R > 0 and FDR < 0.05) 
were considered as ‘Gx’, representing senescence related 
genes. Genes that were upregulated in endothelial cells 
(logFC ≥ 0.25 and FDR < 0.05) were considered as ‘Gy’, 
representing specific endothelial cell genes. To obtain 
specific endothelial senescence-regulated genes, ‘Gx’ and 
‘Gy’ were intersected to generate ‘Gn’ (n = 1–18) for each 
dataset (Fig.  2A). G1-G18 represent the intersection of 
the respective Gx and Gy in the 18 scRNA-Seq datasets. 
Subsequently, the geometric mean of the Spearman cor-
relation coefficients for each gene from ‘G1’ to ‘G18’ were 
calculated. Finally, only genes with a geometric mean of 
Spearman correlation coefficient value higher than 0.2 
were filtered into EC.SENESCENCE.SIG, which ulti-
mately contained 102 genes (Additional file 1: Table S2). 
To define the functional categories of EC.SENESCENCE.
SIG, we used two tools for gene annotation in the R ‘clus-
terProfiler’ package, termed as Gene Ontology (GO) 
terms and the reactome pathway database [19]. Here, 
we found that EC.SENESCENCE.SIG is mainly enriched 
by genes associated with cell adhesion- and interaction-
related pathways such as ‘integrin cell surface interac-
tions’, ‘laminin interactions’, ‘cell substrate adhesion’, 
‘adherens junction’, and ‘Integrin binding’ (Fig. 2B), which 
is consistent with the previously reported enhanced 
adhesive properties of senescent endothelial cells [20] 
and with increased cell–cell communication of HS-TEC 
with other non-malignant cells.

Pan‑cancer prognostication on signaling pathways, 
immune cell responses, and patient survival using EC.
SENESCENCE.SIG
To further explore the biological characteristics of EC.
SENESCENCE.SIG across different cancer entities, we 
applied the GSVA method to EC.SENESCENCE.SIG to 
calculate transcriptomic signature scores for each patient 
of The Cancer Genome Atlas (TCGA) across thirty-three 
cancer entities. In general, the results of our analyses indi-
cate that solid malignancies including kidney clear cell 
carcinoma (KIRC), pancreatic cancer (PAAD), or thy-
roid cancer (THCA) exhibit higher EC.SENESCENCE.
SIG scores, whereas hematological malignancies such as 
large B-cell lymphoma (DLBC) or acute myeloid leuke-
mia (LAML) show lower scores (Additional file 1: Fig. S3). 
Subdividing patients in TCGA pan-cancer cohorts into 
high and low GSVA scores (median value) based on EC.
SENESCENCE.SIG, the enrichment of previously reported 
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Fig. 1  Evaluating the senescence status of individual cell types in the tumor environment. Unified manifold approximation and projection (UMAP) 
plots show integrated datasets of clusters and cluster cell type annotations from 5 scRNAseq datasets of different tumor entities (A–E, left). Feature 
plots show the enrichment of senescence-related gene sets per cell in pseudocolors (A–E, middle). Ridge plots (A–E, right) show the distribution of 
the senescence score across cell clusters; CAF cancer-associated fibroblast, TEC tumor endothelial cells, HPC hepatic progenitor cells
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Fig. 2  Development of a tumor endothelial cell-specific senescence-related transcriptomic signature through pan‑cancer scRNAseq analysis. A The 
circus diagram shows the generation process of EC.SENESCENCE.SIG. B (left) Pathway enrichment analysis of EC.SENESCENCE.SIG genes. The top 10 
enriched GO terms and Reactome pathways are shown in the bar plot. B (right) The Cnet plot shows specific gene networks from these signaling 
pathways
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tumor-promoting pathways was explored by gene set 
enrichment analysis (GSEA) for each cancer type. Our 
results indicate that almost all analyzed pro-tumorigenic 
signaling pathways were enriched in malignant tumors 
with high GSVA scores based on EC.SENESCENCE.SIG 
across all cancer types using GSEA (Fig. 3a).

Next, we evaluated the relationship between GSVA score 
based on EC.SENESCENCE.SIG and patient survival in 
the TCGA cohorts. We found that high GSVA scores were 
significantly related to impaired overall survival (OS) in 
more than ten cancer types, including pancreatic cancer 
(PAAD), lung squamous cell carcinoma (LUSC), stom-
ach cancer (STAD), and kidney papillary cell carcinoma 
(KIRP). Only in thyroid carcinoma (THCA), patients with 
high GSVA scores exhibited improved OS as compared to 
low GSVA scores. In addition, high GSVA scores in eleven 
cancers correlated with shorter progression free survival 
(PFS), whereas only in kidney cancer (KIRC) a high GSVA 
score was associated with enhanced PFS (Fig. 3b). Finally, 
we used Cibersort [17] to evaluate the correlation of GSVA 
scores (based on EC.SENESCENCE.SIG) with the infiltra-
tion of twenty-two immune cell subsets across different 
cancer types in the TCGA cohorts. We found that high 
GSVA scores are related to distinctly altered tumor infil-
tration by immune cells. In particular, the GSVA scores 
in almost all cancer types positively correlated with (pro-
tumorigenic) M2 macrophage tumor infiltration and 
negatively correlated with (anti-tumorigenic) CD8+ T cell 
tumor infiltration (Fig. 3c). In summary, we established an 
endothelial-specific, senescence-related transcriptomic 
signature that serves as pan-cancer prognosticator of pro-
tumorigenic cell signaling, tumor-promoting dysbalance of 
immune cell responses, and impaired patient survival.

Prediction of anti‑PD‑L1/PD‑1 or anti‑CTLA‑4 immune 
checkpoint blockade response using EC.SENESCENCE.SIG
With respect to the correlation between high EC.SENES-
CENCE.SIG GSVA scores and a tumor-promoting dysbal-
ance of immune cell infiltration of the tumors, we further 
hypothesized that this transcriptomic signature also offers 
the possibility to predict response to anti-PD-L1/PD-1 or 
anti-CTLA-4 immune checkpoint inhibitor therapy. Tumor 
mutational burden (TMB) has previously been identified as 
a robust pan-cancer predictor of anti-PD-L1/PD-1 immu-
notherapy response [21]. Consequently, we first assessed 
the correlation between EC.SENESCENCE.SIG and TMB 

in TCGA cohorts. Here, we found that TMB negatively 
correlates with EC.SENESCENCE.SIG in most cancer types 
(BRCA, HNSC, CESC, LIHC, STAD, MESO, LUSC, KIRP, 
LUAD, UVM, PRAD, UCEC, and SKCM; Fig. 4a), strongly 
suggesting that this transcriptomic signature can predict 
immunotherapy response. Consequently, we investigated 
the enrichment of EC.SENESCENCE.SIG in immunother-
apy-responsive and -resistant patients using GSVA and 
GSEA in three bulk RNAseq datasets with reported clinical 
outcome of immunotherapy. Here, we found higher GSVA 
scores in patients resistant to immunotherapy as compared 
to immunotherapy-responsive patients (Additional file  1: 
Fig. S4a–c). In line with these results, EC.SENESCENCE.
SIG was significantly enriched in patients resistant to anti-
PD-L1/PD-1 or anti-CTLA-4 immunotherapy in GSEA 
analyses (Additional file 1: Fig. S4a–c).

In addition to these analyses in bulk RNAseq data, 
we explored GSVA scores (EC.SENESCENCE.SIG) in 
endothelial cells from two immunotherapy scRNAseq 
datasets that include renal cancer (PRJNA705464) and 
basal cell carcinoma (GSE123813) patients. In accord-
ance with our previous findings, endothelial cells derived 
from immunotherapy-resistant patients exhibited an 
enrichment of EC.SENESCENCE.SIG genes (Fig. 4b, c).

Moreover, we employed thirteen bulk RNAseq data-
sets containing outcomes of anti-PD-L1/PD-1 or anti-
CTLA-4 immunotherapy, of which only treatment-naïve 
patients were selected for further analyses. Among these 
thirteen cohorts, seven cohorts (n = 775, 80% for train-
ing set, 20% for validation set) were merged as a train-
ing cohort, whereas the other six cohorts were used to 
test the predictive power of the final model developed 
(Fig.  4d). To this end, we used ten different machine 
learning algorithms and optimized parameters for each 
model using five repetitions of tenfold cross-validation. 
Subsequently, we estimated the area under the curve 
(AUCs) values of these models in the validation cohort. 
As a result of these mathematical procedures, we finally 
choose the ‘KKNN’ machine learning algorithm model 
that delivered the highest AUC of 0.72 (Fig. 4e, f ). Test-
ing the prediction accuracy of this EC.SENESCENCE.
SIG model in six external cohorts, we show that AUC val-
ues in these cohorts range from 0.66 to 0.79 (Additional 
file 1: Fig. S5).

To estimate the overall value of EC.SENESCENCE.
SIG-dependent immunotherapy response prediction, we 

Fig. 3  Pan-cancer analysis of EC.SENESCENCE.SIG. A Enrichment analysis of several tumor-promoting pathways between tumor tissues with 
high and low EC.SENESCENCE.SIG scores across 33 cancer types in TCGA cohorts, NES normalized enrichment score in the GSEA algorithm, FDR 
false discovery rates. B Summary of the relationship between EC.SENESCENCE.SIG scores and OS/PFS of patients across 33 cancer types in TCGA 
pan-cancer cohorts. Expression of genes associated with poorer prognosis (yellow) or better prognosis (blue) are shown. C The correlation of 
EC.SENESCENCE.SIG scores and immune infiltration (Cibersort) across 33 cancer types in TCGA cohorts is shown, blue dots represent a negative 
correlation, red dots a positive correlation

(See figure on next page.)
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compared the performance of this transcriptomic sig-
nature with previously established pan-cancer models 
for anti-PD-L1/PD-1 or anti-CTLA-4 immunotherapy 
response prediction, including NLRP3.Sig [22], INFG.
Sig [23], PDL1.Sig [24], T.cell.inflamed.Sig [25], Cyto-
toxic.Sig [26], and LRRC15.CAF.Sig [27]. Whereas most 
of these pan-cancer prediction models reported good 
performance only in single datasets, EC.SENESCENCE.
SIG performed well across all cohorts covering five can-
cer types including SKCM, GBM, UC, GC, and NSCLC 
(Fig.  4g, h). In detail, AUC levels of T.cell.inflamed.
Sig and INFG.Sig were around 0.8 in Kim 2018 GC and 
PUCH 2021 SKCM, but they decreased to around 0.5 in 
Zhao 2019 GBM and Snyder 2017 UC. NLRP3.Sig per-
formed well in Zhao 2019 GBM, Jung 2019 NSCLC, and 
Auslander 2018 SKCM, whereas it showed poorer perfor-
mance in the other three cohorts. AUC of Cytotoxic.Sig 
was 0.71 in Kim 2018 GC and 0.75 in PUCH 2021 SKCM, 
but it went down to 0.54–0.58 in Zhao 2019 GBM and 
Snyder 2017 UC. AUC of PDL1.Sig reached 0.77 in Kim 
2018 GC and 0.76 in Jung 2019 NSCLC, but it decreased 
to 0.45–0.57 in the other four cohorts. LRRC15.CAF.
Sig showed limited predictive power in all six cohorts. 
In contrast to these previously published results, EC.
SENESCENCE.SIG performed well in all cohorts, exhib-
iting AUC of more than 0.66 in all six cohorts, includ-
ing five different types of solid cancers (glioblastoma, 
melanoma, urothelial carcinoma, gastric cancer, and 
lung cancer). Our results collectively suggest that EC.
SENESCENCE.SIG also serves as a reliable pan-cancer 
prediction model for anti-PD-L1/PD1 or anti-CTLA-4 
immunotherapy response.

Construction and validation of a ‘EC.SENESCENCE.
SIG’‑related pan‑cancer prognostic model
To optimize EC.SENESCENCE.SIG for pan-cancer sur-
vival prognostication, we used this transcriptomic sig-
nature to generate a LASSO penalized Cox proportional 
hazards regression (LASSO-Cox) model. First, the 102 
genes of EC.SENESCENCE.SIG were included into 
LASSO analysis with tenfold cross validation in the pan-
cancer TCGA cohorts, before fifty genes with non-zero 
coefficients were identified for further analysis (Addi-
tional file  1: Fig. S6a, b). We then employed these fifty 
genes to develop a Cox proportional hazards regression 

model using a stepwise parameter selection method in 
the TCGA pan-cancer training set (Additional file 1: Fig. 
S6c). The risk score for each patient was subsequently 
developed from the Cox coefficients and normalized 
expression levels of these thirty-seven genes. Finally, 
we classified the patients in the TCGA training test sets 
into two groups according to the median value of the 
risk score. Here, we found that patients with higher risk 
scores in both cohorts were associated with worse over-
all survival (Fig. 5a, b). Accordingly, patients with higher 
clinical stage had a significantly higher risk score (Fig. 5c). 
We subsequently calculated the correlation coefficients 
between EC.SENESCENCE.SIG-related risk score and 
GSVA score of several selected tumor-promoting signal-
ing pathways. Interestingly, our risk score positively cor-
related with all these pathways’ GSVA scores across all 
cancer types in the TCGA cohorts (Fig. 5d).

We also observed that the EC.SENESCENCE.SIG-
related risk score demonstrates strong prognostic power 
for overall survival of various other cancer types, includ-
ing BRCA (log rank test: P = 0.00064), cervical can-
cer (CESC, log rank test: P < 0.0001), HNSC (log-rank 
test: P < 0.0001), KIRC (log rank test: P < 0.0001), LIHC 
(log rank test: P = 0.0024), and PAAD (log rank test: 
P = 0.00092; Fig. 5e–j). To further confirm the prognostic 
value of this risk score, we calculated the risk score using 
the same formula in several external validation cohorts. 
These EC.SENESCENCE.SIG-related risk scores also 
show good performance in prognosticating patient sur-
vival in these datasets (Fig. 6a–i), indicating that our risk 
score is a reliable prognosticator in a variety of cancers.

Establishment of ‘EC.SENESCENCE.SIG’‑related risk 
score‑based nomogram for clinical prognostication 
of pan‑cancer survival
To further strengthen the prognostic power of the risk 
score developed above, we generated a nomogram score 
combining the clinical disease stage with the EC.SENES-
CENCE.SIG-related risk score in the TCGA pan-cancer 
cohorts (Fig.  7a). The calibration curves of disease-spe-
cific survival (DSS) in the first five years after cancer diag-
nosis showed that the prognosticated survival probability 
is highly consistent with actual survival, indicating the 
robustness of this nomogram in survival prognostication 
(Fig. 7b). Furthermore, univariate Cox analysis describing 

(See figure on next page.)
Fig. 4  Prediction of outcomes of anti-PD-L1/PD-1 immunotherapy using EC.SENESCENCE.SIG. A Correlation of EC.SENESCENCE.SIG score with TMB 
for each cancer entity in the pan‑cancer TCGA cohort. B, C Differences in EC.SENESCENCE.SIG scores of TEC derived from patients with different 
responses to anti-PD-L1/PD-1 immunotherapy, p values are shown. D Flow chart describing the construction of machine learning algorithms-based 
predictive models for immunotherapy response. E Multiple receiver operating characteristic (ROC) plot showing the performance of different 
machine learning algorithms in the validation set. F ROC plot presenting the performance of the final EC.SENESCENCE.SIG model in the validation 
set. G Heatmap and H circus plots show the comparison between the performance of the EC.SENESCENCE.SIG model and previously published 
pan-cancer models for response to anti-PD-L1/PD-1 immunotherapy on different testing sets
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the effect of the nomogram score on overall survival of 
TCGA pan-cancer cohorts demonstrated that the nomo-
gram score is associated with impaired survival in most 
types of cancer (Fig.  7c). Importantly, the time-depend-
ent AUC predicted by the nomogram score performed 
better than the EC.SENESCENCE.SIG-related risk score 
alone in both the TCGA training set and the test cohort 
(Fig. 7d and Additional file 1: Fig. S7a, b). Moreover, this 
nomogram score demonstrated promising prognostic 
performance in external validation datasets with different 
cancer entities (Fig. 7e). Finally, we conducted a prognos-
tic meta-analysis to examine the combined prognostic 
value of these ten training and validation sets. Here, the 
nomogram score serves as a significant risk factor for 
overall survival in cancer patients (combined HR = 2.61, 
P < 0.001; Fig. 7f ).

Prognostic feature selection of EC.SENESCENCE.SIG
To facilitate the clinical application of EC.SENES-
CENCE.SIG in the evaluation of survival prognosis, we 
used three machine learning-based algorithms includ-
ing Random Forest, extreme gradient boost (XGBoost), 
and LASSO feature selection to select the most impor-
tant signatures from all genes in EC.SENESCENCE.SIG. 
For the prognostication of overall survival in the TCGA 
pan-cancer cohorts, we identified fifty genes by LASSO, 
nine by random forest, and nine by XGBoost (Additional 
file 1: Fig. S8a, b). Subsequently, we took an intersection 
and obtained three common genes, including integrin 
subunit alpha 5 (ITGA5), transglutaminase 2 (TGM2), 
and fascin actin-bundling protein 1 (FSCN1) (Addi-
tional file 1: Fig. S8c). Next, we analyzed the differential 
expression of these three genes between tumors and 
normal tissues across twenty cancer types of the TCGA 
cohorts. Of these genes, FSCN1 was upregulated across 
all cancer types as compared to normal tissues, whereas 
ITGA5 and TGM2 were only upregulated in 70% of the 
tumors (Additional file  1: Fig. S8d). Finally, we focused 
on the association between these three genes and sur-
vival prognosis of patients across the thirty-three cancer 
types. Here, we found that high expression of FSCN1 and 
ITGA5 is associated with impaired survival in more than 
ten cancers, and high expression of TGM2 is also associ-
ated with poor prognosis in more than five cancers (Addi-
tional file 1: Fig. S8e). Altogether, our results suggest that 

these three hub genes from EC.SENESCENCE.SIG might 
serve as prognostic pan-cancer biomarkers.

Discussion
Individual prognostication of patient survival and predic-
tion of response to therapy are critical for the develop-
ment of personalized treatment strategies in precision 
oncology. Microvascular endothelial cells substantially 
participate in nutrient and oxygen delivery to malignant 
tumors as well as in immune surveillance [28]. Specifi-
cally, tumor-associated endothelial cells can produce 
molecular factors such as PD-L1 [29], Fas ligand (FasL) 
[30, 31], or vascular endothelial growth factor (VEGF) 
[32] that critically modulate immune responses in the 
tumor environment. Cellular senescence considerably 
modulates the functional properties of cells and has 
recently been attributed to the ‘hallmarks of cancer’ as a 
key feature of solid malignancies [3]. To this end, senes-
cent cancer cells recruit immunosuppressive immune 
cells by the release of diverse molecular factors [33–35]. 
Interestingly enough, senescence in cancer cells has also 
been reported to activate CD8+ T cells through release 
of alarmins, activation of interferon signaling, upregula-
tion of major histocompatibility complex (MHC) class 
I machinery, and presentation of senescence-associ-
ated self-peptides, ultimately promoting the elimina-
tion of tumor cells [36, 37]. These inconsistent findings 
highlight the multifaceted role of cellular senescence in 
cancer biology. Besides tumor cells, cells in the tumor 
microenvironment including fibroblasts, immune cells, 
and endothelial cells undergo senescence-related altera-
tions, which critically contributes to tumor progression: 
senescent cancer-associated fibroblasts support tumor 
growth and invasion through the secretion of cytokines 
and extracellular vesicles [15, 38–40]. Furthermore, it 
has been demonstrated that senescence in T cells sub-
stantially impairs their potential to eliminate cancer 
cells [41, 42]. In addition, previous studies have shown 
that senescent endothelial cells exhibit enhanced expres-
sion levels of intercellular adhesion molecule-1 (ICAM-
1) and vascular cell adhesion molecule-1 (VCAM-1) 
as well as reduced expression of vascular endothelial 
(VE)-cadherin, which leads to increased vascular per-
meability and facilitates the dissemination of cancer 
cells [43–45]. Moreover, chemotactic cytokines such as 
IL-6 or CXCL11 secreted by senescent endothelial cells 

Fig. 5  Prognostic performance of EC.SENESCENCE.SIG-related pan-cancer model in TCGA. A, B Kaplan–Meier analysis shows the association 
between risk score and OS of patients in TCGA pan-cancer training and testing sets. C Differences of EC.SENESCENCE.SIG-related risk scores between 
different tumor stages in the TCGA pan-cancer cohort are shown. D The correlation of EC.SENESCENCE.SIG-related risk score and enrichment of 
several tumor-promoting pathways across 33 cancer types in TCGA cohorts is shown. Blue dots represent a negative correlation, red dots a positive 
correlation. E–J The association between EC.SENESCENCE.SIG-related risk score and OS of patients in a variety of tumors is shown, BRCA​ breast 
invasive carcinoma, CESC cervical cancer, HNSC head and neck cancer, KIRC kidney clear cell carcinoma, LIHC liver cancer, PAAD pancreatic cancer

(See figure on next page.)
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can directly stimulate proliferation and aggressiveness 
of tumor cells [46]. Importantly, all these molecular fac-
tors in endothelial cells additionally bear the potential to 

recruit immune cells into the tumor microenvironment, 
which can exhibit both anti- and pro-tumorigenic prop-
erties [45, 47–49]. Finally, induction of endothelial cell 

Fig. 6  Prognostic performance of the EC.SENESCENCE.SIG-related pan-cancer model in external cohorts. A–I Kaplan–Meier analysis on the 
association between risk score and OS of patients in external cohorts, p values are given. CGGA​ Chinese Glioma Genome Atlas, METABRIC Molecular 
Taxonomy of Breast Cancer International Consortium, BLCA bladder cancer, CRC​ colon cancer, LUAD lung adenocarcinoma, LUSC lung squamous cell 
carcinoma, OV ovarian cancer, PRAD prostate cancer
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senescence by radiotherapy stimulated tumor cell pro-
liferation and cancer progression [45, 49]. Consequently, 
senescence of TEC might serve as a promising target 
for survival prognostication and prediction of immuno-
therapy response in cancer, and possibly as therapeutic 
target.

To address the prognostic and predictive capacity 
of senescence in TEC, we first conducted analyses in 
public scRNAseq cohorts evaluating the degree of cel-
lular senescence in individual cell populations of solid 
tumors across multiple cancer entities. For this purpose, 
we employed an established senescence-related gene 
signature [16] that—in contrast to other senescence-
related gene signatures [50, 51]—more universally covers 
senescence-related transcriptomic changes. Our tran-
scriptomic studies reveal that TEC exhibit the highest 
senescence levels among all cell populations in the vas-
cular compartment of malignant tumors. Since tumor 
microvessels are highly disorganized and show abnormal 
functional properties including aberrant immune cell 
interactions [31, 32], cellular senescence might particu-
larly contribute to these pathological TEC character-
istics. Using network analysis and pattern recognition 
approaches, we show that HS-TEC frequently establish 
interactions with different cell types, which are typically 
represented by immune cells, as opposed to TEC with 
low levels of cellular senesce. Interestingly, this interplay 
particularly involves immune cells with pro-tumorigenic 
properties such as myeloid cells. For this purpose, HS-
TEC were identified to secrete the cytokine MIF that 
is capable of inducing myeloid-derived suppressor cell 
(MDSC) proliferation [52], promoting M2 macrophage 
polarization [53], and impairing CD8+ T cell infiltra-
tion [54]. Furthermore, HS-TEC were found to release 
galectins, which represent carbohydrate-binding pro-
teins known to support immune cell migration [55–57]. 
Hence, our results suggest that TEC are prone to undergo 
cellular senescence, which promotes dysregulated 
immune surveillance in solid malignancies.

Based on these findings, we developed a novel, TEC-
specific transcriptomic signature containing 102 genes, 
which we have termed EC.SENESCENCE.SIG. Mecha-
nistically, these genes are mainly related to the regulation 
of cell adhesion (e.g., intercellular adhesion molecule-2, 
laminins). This is in accordance with previous reports, 

documenting that senescent endothelial cells exhibit 
enhanced adhesive properties mediated by increased 
expression of such adhesion and signaling molecules [20].

In a next step, we evaluated the relationship of our 
transcriptomic signature to the prevalence of specific 
signaling pathways, the occurrence of distinct immune 
cell responses, and patient survival. We found that EC.
SENESCENCE.SIG positively correlates with a variety of 
pro-tumorigenic signaling pathways in all cancer enti-
ties of the TCGA cohorts. Among these pro-tumorigenic 
signaling pathways, hypoxia and Notch signaling path-
ways have not only been shown to be associated with 
tumor progression, but also represent important regu-
lators of endothelial cell senescence [45, 58]. In addi-
tion, EC.SENESCENCE.SIG correlates with dysregulated 
tumor infiltration by CD8+ T cells and M2-polarized 
tumor-associated macrophages, which is considered a 
determinant of anti-PD-L1/PD-1 immunotherapy effi-
cacy [59, 60]. In line with these results, high EC.SENES-
CENCE.SIG GSVA scores were associated with impaired 
OS and PFS in more than ten different cancer entities.

With respect to the immunomodulatory potential of 
senescent TEC, our TEC-based, senescence-related gene 
signature might also predict response to cancer immuno-
therapy. Here, we demonstrate in the TCGA cohorts that 
EC.SENESCENCE.SIG negatively correlates with TMB, 
which to date represents one of the most robust predic-
tive biomarkers of response to anti-PD-L1/PD-1 immune 
checkpoint blockade [21]. Accordingly, EC.SENES-
CENCE.SIG predicts response to anti-PD-L1/PD-1 or 
anti-CTLA-4 immunotherapy in multiple cancer enti-
ties including lung cancer, gastric cancer, urothelial car-
cinoma, renal cell carcinoma, and basal-cell carcinoma. 
In this context, EC.SENESCENCE.SIG shows promising 
AUC values in different datasets, thus providing higher 
performance than previously published pan-cancer pre-
dictive models for immunotherapy efficacy which only 
reported sufficient performance in few datasets [22–27].

To strengthen the prognostic potential of our model, 
we additionally established a nomogram based on 
LASSO-Cox regression. Here, we found that high risk 
scores positively correlate with higher disease stage and 
with impaired OS in pan-cancer cohorts. This was asso-
ciated with an enrichment of pro-tumorigenic signal-
ing pathways in almost all cancer entities of the TCGA 

Fig. 7  Effectiveness assessment of EC.SENESCENCE.SIG-derived nomogram features in predicting pan-cancer prognosis. A Nomograms for 
predicting overall survival of patients in TCGA pan-cancer cohort are shown. B The calibration of our model to ensure consistency between 
predictions and real survival are shown, the 45-degree line represents perfect prediction. C The univariate Cox analysis of the nomogram score 
for different cancer types in pan-cancer TCGA training and testing sets. D Time-dependent ROC curves show the prognostic performance of 
the EC.SENESCENCE.SIG-related score and nomogram score in pan-cancer TCGA training and testing sets. E Time-dependent ROC curves show 
the prognostic performance of the EC.SENESCENCE.SIG-related score and nomogram score in external cohorts. F Meta-analysis of the prognostic 
performance of nomogram score in these ten cohorts

(See figure on next page.)
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cohorts. To further improve the accuracy of this prog-
nostic model, we combined the clinical disease stage with 
this EC.SENESCENCE.SIG-related risk score. Here, we 
show that survival prognostication based on this nomo-
gram score is highly consistent with the actual survival 
probability during a follow-up period of 5 years.

To facilitate the clinical application of EC.SENES-
CENCE.SIG, we identified the integrin ITGA5, transglu-
taminase TGM2, and the actin-binding protein FSCN1 
as key genes of EC.SENESCENCE.SIG for prognosticat-
ing OS. Interestingly, EC senescence along with ITGA5 
surface translocation can be induced by hemodynamic 
forces [20, 61], which are known to be profoundly altered 
in growing tumor vessels. Here, ITGA5 is able to pro-
mote tumor metastasis and drug resistance via acti-
vating extracellular signal-regulated kinases (Erk)1/2 
[62, 63]. In addition to EC, ITGA5 is over-expressed in 
numerous carcinoma entities and is an integral part of 
the pEMT signature of single malignant cells in HNSCC 
[64]. Therefore, ITGA5 might provide dual options to tar-
get senescent TEC as well as malignant carcinoma cells 
associated with the formation of lymph node metastases. 
Furthermore, TGM2 is involved in age-related kidney 
and cardiovascular diseases and upregulated in vascular 
endothelial cells in gastrointestinal cancer, which is asso-
ciated with poor patient survival via activating down-
stream NF-κB-dependent pathways [65, 66]. Finally, 
FSCN1 has been reported to be overexpressed in various 
cancer entities including lung and breast cancer and to 
promote metastasis formation in colon, prostate, and oral 
squamous cell carcinoma by mediating the formation of 
filopodia and membrane protrusions [67, 68].

Importantly, there are several limitations in our study. 
First, the results of our retrospective pan-cancer data 
analyses must be validated by multiple prospective trials 
to exclude potential selection or misclassification bias. 
In addition, this study exclusively relies on transcrip-
tomic data from published cohorts that do not neces-
sarily translate into protein functionality. Analyses of 
regulatory network formation using NetBid2 or of inter-
ference of protein activity using metaVIPER, however, 
are only possible in selected carcinoma entities. Moreo-
ver, large-scale pan-cancer cohorts with proteomic data 
are currently missing. Our studies should therefore be 
accordingly extended when access to such proteomic 
databases is available.

Conclusions
In summary, our studies provide novel insights into 
various molecular and cellular processes associated 
with cellular senescence in the vascular compartment 
of malignant tumors. As a translational perspective, 
the endothelial cell-associated, senescence-related 

pan-cancer gene signature EC.SENESCENCE.SIG 
established in the present study might be beneficial for 
survival prognostication and prediction of response to 
immunotherapy in precision oncology.
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Additional file 1: Table S1. Gene list of FRIDMAN_SENESCENCE_UP. A 
list of genes forming the FRIDMAN_SENESCENCE_UP signature is shown. 
Table S2. Gene list of EC.SENESCENCE.SIG. A list of genes forming the EC.
SENESCENCE.SIG signature is shown. Table S3. Immunotherapy cohorts. 
A list of immunotherapy cohorts used in this study is shown. Figure S1. 
Cell interaction analysis using CellChat. Circle plots show the cellular 
interaction weights and number of interactions between high-senescent 
(HS-TEC), low-senescent tumor endothelial cells (LS-TEC) and other cell 
types in tumor microenvironment in lung cancer (A), liver cancer (B) and 
head and neck cancer (C). Different colors in the circle plots represent 
different cell types and the edge width is proportional to the indicated 
cell–cell interaction weights. Figure S2. Analysis of signaling pathways 
involved in cell–cell interactions. Heatmaps show the outgoing (left) and 
incoming (right) signal strength of each signaling pathway among differ-
ent cell types in lung cancer (A), liver cancer (B) and head and neck cancer 
(C). Bubble plots show all significant ligand-receptor pairs that contribute 
to the signaling sending from high-senescent tumor endothelial cells (HS-
TEC) to other cell types in lung cancer (A), liver cancer (B) and head and 
neck cancer (C). The dot color and size in the bubble plot represent the 
communication probability and p-values, with blue and red correspond-
ing to the minimum and maximum values, respectively. Figure S3. EC.
SENESCENCE.SIG gsva score across 33 cancer types in TCGA pan-cancer 
cohorts. Figure S4. Performance of the EC.SENESCENCE.SIG-dependent 
pan-cancer predictive model. (A-C) The upper plots show the difference 
of EC.SENESCENCE.SIG scores in response and resistance to checkpoint 
immunotherapy groups. The differences were calculated by Wilcoxon rank 
sum test. The lower plots show the positive enrichment of EC.SENESCENCE.
SIG in patients with resistance to checkpoint immunotherapy in lung can-
cer (GSE135222), gastric cancer (Kim GC) and urothelial carcinoma (Mari-
athasan UC) respectively. NES: Normalized enrichment score in the GSEA 
algorithm. Figure S5. Performance of the EC.SENESCENCE.SIG-dependent 
pan-cancer prognostic model. Receiver operating characteristic (ROC) 
plots show the performance of the EC.SENESCENCE.SIG in distinguishing 
response and resistant to immunotherapy in six different cohorts. Area 
Under Curve (AUC) was calculated by ROC analysis and are displayed in 
the bottom right. Figure S6. Construction of a EC.SENESCENCE.SIG-related 
pan-cancer prognostic model (A, B) LASSO coefficient profiles of the 50 
selected genes in EC.SENESCENCE.SIG. tenfold cross-validation to select 
tuning parameters for the LASSO model. (C) Forest plot of a multivari-
ate Cox proportional hazards regression model in the overall survival of 
TCGA pan-cancer cohort. Figure S7. Performance of the EC.SENESCENCE.
SIG-dependent pan-cancer prognostic model. (A) Receiver operating 
characteristic (ROC) plots show the performance of the EC.SENESCENCE.
SIG-related pan-cancer prognostic model in predicting overall survival 
of pan-cancer TCGA training and test cohorts. (B) ROC plots show the 
performance of the nomogram model in predicting overall survival of 
pan-cancer TCGA training and test cohorts. Area Under Curve (AUC) at 
12 months, 24 months, 36 months and 60 months were calculated by ROC 
analysis and are displayed in the bottom right. Figure S8. Prognostic fea-
ture selection of EC.SENESCENCE.SIG. Importance values of selected genes 
in EC.SENESCENCE.SIG for patient prognosis assessment using random 
forest (A) or XGboost (B). (C) The flow chart shows the selection process 
of the three key genes in EC.SENESCENCE.SIG to predict OS of patients in 
the TCGA pan-cancer cohort. (D) Differential expression of these 3 genes 
in tumor tissue relative to normal tissue among 20 cancer types in the 
pan-cancer TCGA cohort. X-fold changes as compared to normal tissue are 
shown. (E) A summary of the relationship between expression of these 3 
hub genes and patient prognosis (OS and PFS) across 33 cancer types in 
the TCGA pan-cancer cohort is shown.
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