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Abstract

compared to the ALC group.

of ADNF-9 in the fetal alcohol exposure model.

Background: A derived peptide from activity-dependent neurotrophic factor (ADNF-9) has been shown to be
neuroprotective in the fetal alcohol exposure model. We investigated the neuroprotective effects of ADNF-9
against alcohol-induced apoptosis using TUNEL staining. We further characterize in this study the proteomic
architecture underlying the role of ADNF-9 against ethanol teratogenesis during early fetal brain development
using liquid chromatography in conjunction with tandem mass spectrometry (LC-MS/MS).

Methods: Pregnant C57BL/6 mice were exposed from embryonic days 7-13 (E7-E13) to a 25% ethanol-derived
calorie [25% EDC, Alcohol (ALQ)] diet, a 25% EDC diet simultaneously administered i.p. ADNF-9 (ALC/ADNF-9), or a
pair-fed (PF) liquid diet. At E13, fetal brains were collected from 5 dams from each group, weighed, and frozen for
LC-MS/MS procedure. Other fetal brains were fixed for TUNEL staining.

Results: Administration of ADNF-9 prevented alcohol-induced reduction in fetal brain weight and alcohol-induced
increases in cell death. Moreover, individual fetal brains were analyzed by LC-MS/MS. Statistical differences in the
amounts of proteins between the ALC and ALC/ADNF-9 groups resulted in a distinct data-clustering. Significant
upregulation of several important proteins involved in brain development were found in the ALC/ADNF-9 group as

Conclusion: These findings provide information on potential mechanisms underlying the neuroprotective effects

Background

Fetal alcohol exposure (FAE) or fetal alcohol syndrome
(FAS) is a significant worldwide problem. Clinical stu-
dies demonstrate that brain growth deficits and neurolo-
gical disorders are one of the pathological features of
FAS or FAE [[1-4]; for review see Ref. [5]]. Experimental
studies demonstrated that prenatal alcohol exposure
induces brain growth restriction, microcephaly, facial
dysmorphology, and abnormal behaviors [6-10].

Studies performed in our laboratory reveal that prena-
tal alcohol exposure induces brain growth deficits at dif-
ferent embryonic stages [for review see Ref. [11]]. The
effects of prenatal alcohol exposure might be associated
with an apoptotic mechanism [12]. This apoptotic
mechanism involves intrinsic mitochondrial and extrin-
sic pathways such as receptor systems [13,14]. We have
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recently shown that prenatal alcohol exposure induced
apoptosis that might be associated with activation of
caspase-3, increases of cytosolic cytochrome ¢, and
decreases of mitochondrial cytochrome ¢ [15,16].
Label-free quantitative proteomic analyses using liquid
chromatography in conjunction with a tandem mass
spectrometry (LC-MS/MS) system showed significant
alteration of mitochondrial, cytosolic, nuclear and cytos-
keletal proteins in fetal brains exposed prenatally to
alcohol [17]. Less is known about the treatment or pre-
vention of the effects of prenatal alcohol exposure. Stu-
dies performed by us and others have shown potential
preventive effects of prenatal alcohol exposure using
derived peptides in animal models [11,15,16,18-20] and
in vitro [20-23]. Among these peptides, SALLRSIPA,
known as SAL or ADNE-9, is derived from activity
dependent neurotrophic factor (ADNF) [24,25] and
NAPVSIPQ peptide, termed NAP, is derived from activ-
ity-dependent neuroprotective protein (ADNP) [26,27].
In this study, we used histological assay (TUNEL
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staining) for determination of apoptosis and an LC-MS/
MS system to investigate the proteins involved in
ADNEF-9 neuroprotection. We hypothesized that ADNEF-
9 administered alongside prenatal alcohol exposure can
prevent alcohol-induced growth deficit and apoptosis
through several key proteins that are involved in fetal
brain development.

Methods

Animals

C57BL/6 mice were tested in this study. C57Bl/6 is an
established and well studied model in the field of FAE
and FAS [11,15-17,19,28,29]. These mice were supplied
by Harlan, Inc. (Indianapolis, IN, USA). They were
housed at the Indiana University Laboratory Animal
Research Center in a vivarium with a controlled climate
(temperature 22°C, and 30% humidity) and a 12:12
reverse light-dark cycle. Pregnant mice had free access
to a liquid diet for 24 hours during the treatment per-
iod. All animal procedures were approved by the Institu-
tional Animal Care and Use Committee of Indiana
University Bloomington and are in accordance with the
guidelines of the Institutional Animal Care and Use
Committee at the National Institutes of Health and the
Guide for the Care and Use of Laboratory Animals.
Note that this study was performed in part at Indiana
University and The University of Toledo. Animal treat-
ments alongside exposure to liquid diet were performed
at Indiana University Bloomington. TUNEL staining and
proteomics were also performed at Indiana University.
Additional TUNEL staining and cell count were per-
formed at the University of Toledo.

Breeding and treatments

Female mice were placed in the male home cage for 2
hours. Females were then checked for a sperm plug by
vaginal smear. EO was designated as the time point
when the vaginal smear was positive. Weight-matched
pregnant females were assigned on E7 to the following
groups: (1) Ethanol liquid diet group (ALC, n = 5),
which was fed with chocolate sustacal (supplemented
with vitamins and minerals); liquid diet 25% (4.49%, v/v)
ethanol-derived calories (EDC); (2) pair-fed control
groups (PF to ethanol-fed group, n = 5), which was fed
with a maltose-dextrin solution isocaloric to the dose of
ethanol used; and (3) treatment group, which received
ADNEF-9 i.p. injection alongside alcohol exposure in
liquid diet (ALC/ADNE-9, 30 pg/20 g of body weight, n
= 5). The PF group dam, yoked individually to an ALC
dam, was given daily amounts of matched isocaloric
liquid diet with maltose-dextrin substituted for ethanol
at all times during gestation (E7-E13). PF animals were
yoked to ALC or ALC/ADNEF-9 animals. The amounts
of liquid diet and body weight of the dams were

Page 2 of 12

controlled and not different between all groups. Preg-
nant mice had continuous, 24-hour free access to the
alcohol liquid diet or PF liquid diet for 7 days. All
groups were exposed to free choice liquid diet drinking
and no solid food was provided.

We used the fortified liquid diet that contained 237
ml of chocolate-flavored sustacal, 1.44 g vitamin diet
fortification mixture, and 1.2 g salt mixture XIV [30,31].
For the ethanol diet, 15.3 ml (4.49% v/v, 25% EDC) of
95% ethanol was mixed with the fortified chocolate-fla-
vored sustacal, adjusted with water, to make 320 ml of
diet with 1 cal/ml (ethanol). The isocaloric control diet
was prepared by adding 20.2 g maltose-dextrin to the
fortified chocolate-flavored sustacal with water to bring
it to 1 cal/ml. A day prior to treatment, the ALC, PF,
and ALC/ADNEF-9 groups were adapted to the liquid
diet. The body weights of the dams were recorded every
day during the treatments. A consumed liquid diet dur-
ing a 24-hour period was recorded from 30-ml gradu-
ated screw-cap tubes, and a freshly prepared diet was
provided each day. The ALC and ALC/ADNEF-9 groups
had free access to the ethanol liquid diet delivering 25%
EDCs as the sole source of nutrients.

Animal and fetal brain extractions

Pregnant mice were euthanized by CO, followed by cer-
vical dislocation on E13, and the fetuses were removed.
This method is consistent with the recommendations of
the Panel on Euthanasia of the American Veterinary
Medical Association. The fetal brains were further dis-
sected, by an experimenter blind to the treatment
groups, from the base of the primordium olfactory bulb
to the base of the metencephalon. From the same dam,
at least 5 fetal brains were randomly selected, weighed,
frozen and stored at -70°C until used for proteomic
assay and other fetal brains from each dam were post-
fixed in 4% paraformaldehyde for TUNEL assay.

TUNEL assay for determination of cell death

Determination of cell death was performed using
TUNEL reaction (TdT-mediated dUTP Nick End Label-
ing) as recently described in our studies [15-17]. Fetal
brains from control and treated groups, fixed in 4% par-
aformaldehyde, were embedded as pairs in gelatin for
immunostaining consistency. These fetal brains
embedded in gelatin were sectioned at 50 pm thickness
using a Leica vibratome apparatus (W. Nuhsbaum, Inc).
Fetal brain sections were fixed in superfrost plus slides
and then treated with Proteinase K (10-20 pg/ml) for 5
minutes at 37°C, rinsed with PBS three times for 5 min-
utes and then incubated with 3% H,O, in methanol for
10 minutes at room temperature. The fetal brain sec-
tions were again rinsed with PBS three times for 5 min-
utes and then incubated in a permeabilisation solution
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(0.1% TX-100 in 0.1% sodium citrate) for 2 minutes at 4°
C. After the fetal brain sections were rinsed twice in PBS
for 5 minutes they were incubated with a TUNEL reac-
tion mixture (50 ul from bottle 1 and 450 pl from bottle
2, Roche Pharmaceuticals, Inc, IN) for 1 hour at 37°C.
The control was prepared by incubation of tissue sections
only in solution from bottle 2. The sections were rinsed
three times for 5 minutes with PBS and incubated in con-
verter-POD for 30 minutes at 37°C. After the fetal brain
sections were rinsed with TBS, they were incubated in
0.05% 3’-3’-diaminobenzidine tetrahydrochloride and
0.003% H,O, in TBS to detect the activity of peroxidase.
Fetal brain sections were Nissl-counterstained with 0.5%
cresyl violet to determine the cellular profile and then
dehydrated with ethanol. The slides were mounted with a
permount mounting media for microscope observation
and TUNEL-positive cell counts.

The number of TUNEL-positive cells was evaluated in
the primordium cingulate cortex of fetal brains. Four
sections collected from one fetal brain from one litter
were counted for TUNEL-positive cells. We have
counted the entire population of TUNEL-positive cells
manually in every other section in the primordium cin-
gulate cortex, and this was performed to overcome the
bias of over-counting the TUNEL-positive cells. The
data represented the average of all the counted sections.

Protein extraction and trypsin digestion

Frozen fetal brain tissues were thawed and homogenized
at 4°C in 50 mM (600 pL) ammonium bicarbonate
using Tissue-Tearor™ homogenizer (BioSpec Products,
Bartlesville, OK) by gradually increasing the speed to
30,000 rpm for 15 minutes. The extract was centrifuged
at 14,000 rpm for 1 hour at 4°C; the supernatant con-
taining proteins was collected for analysis. The total
protein concentration of the sample was determined by
Bradford protein assay (Bio Rad, Hercules, CA, USA).
Proteins extracted from the supernatant were digested
by trypsin for LC-MC/MS analysis.

Trypsin digestion assay was performed by initially
adding 1% acid-labile surfactant (RapidGest Waters, Mil-
ford, MA, USA) and denaturing the extracted proteins
for 5 minutes at 95°C. The extract was then incubated
with 5 mM Dithiothreitol (DTT) at 60°C for 45 minutes.
Alkylation was achieved by adding iodoacetamide (IAA)
to a final concentration of 20 mM prior to incubation at
room temperature for 45 minutes in the dark. A second
aliquot of DTT was then added to the sample, bringing
the final concentration of DTT to 10 mM. The samples
were then incubated at room temperature for 30 min-
utes to quench the alkylation reaction. Trypsin was
added (1:30 w/w), and the solutions were incubated at
37°C for 18 hours. The enzymatic digestion was finally
quenched through an addition of formic acid.
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Instrumentation

LC-MS/MS analyses of the tryptic digests were per-
formed using a Dionex 3000 Ultimate nano-LC system
(Dionex, Sunnyvale, CA) interfaced to a LTQ Orbitrap
hybrid mass spectrometer (Thermo Scientific, San Jose,
CA). Prior to separation, a 2-ul aliquot of trypsin diges-
tion (1 ug protein equivalent) was loaded isocratically
with 3% acetonitrile and 0.1% formic acid onto a Pep-
Map300 C18 cartridge (5 um, 300 A, Dionex) to purify
the sample from salt and buffers. The peptides were
then separated on a pulled-tip (New Objective, Woburn,
MA) capillary column (150 mm x 75 pm i.d) packed
with 3 pm and 120 A pore-sized resin bonded with
Aqua C18 (Phenomenex, Torrance, CA) using a
reversed-phase gradient 3-55% of acetonitrile with 0.1%
formic acid over 85 minutes for proteins extracted from
fetal brain tissues, at 300 nl/min flow rate. The mass
spectrometer was operated in an automated data-depen-
dent mode switched between an MS scan and CID-MS.
In this mode, eluted LC products undergo an initial full-
spectrum MS scan from m/z 300 to 2000 in the Orbi-
trap at 15,000 mass resolutions. Subsequently, CID-MS
(at 35% normalized collision energy) was performed in
the ion trap. The precursor ion was isolated using the
data-dependent acquisition mode with a 2 m/z isolation
width to select, automatically and sequentially, the five
most intense ions (starting with the most intense) from
the survey scan. The total cycle (6 scans) is continuously
repeated for the entire LC-MS run under data-depen-
dent conditions with dynamic exclusion set to 60 sec-
onds. Performing MS scanning in the Orbitrap offers
high mass accuracy and accurate charge state assign-
ment of the selected precursor ions.

Database searching and quantification

Mascot version 2.1.3 was used for all search results
obtained in this work. The data were searched against
the Swiss-Prot database for house mice. Trypsin was
selected as the enzyme, and one missed cleavage was
allowed. A carbomidomethyl was selected as a fixed
modification of all cysteine residues, and acetyl (N-term)
and oxidation (M) were selected as variable modifica-
tions. The mass tolerance of both MS and MS/MS data
were set to 0.2 and 0.8 Da, respectively. Peptides with
mass accuracy higher than 2 ppm, Mascot ion score of
30 and above, and proteins with 2 or more peptide
matches were considered as positive identifications. The
quantitative analysis of proteins was carried out using
ProteinQuant Suite software developed at Indiana Uni-
versity [32]. Briefly, the raw data obtained from the
LTQ-Orbitrap XL mass spectrometer were converted to
MASCOT generic files (MGFs). MGFs were then parsed
with ProtParser, subject to specific parsing criteria. The
minimum MOWSE score was set to 30, and proteins
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with 2 or more peptide matches were considered a con-
fident match. The peptide mass threshold, peak width
and apex assignment windows were set to 600 Da. All
parsed files were combined into a master file that con-
tains the list of all proteins and peptides identified in
the span of all the processed LC-MS/MS analyses. Then,
the combined master files, incorporated with their cor-
responding mzXML files, were submitted to Protein-
Quant as described previously [32].

Data evaluation and analyses

Principal component analysis (PCA) was performed using
MarkerView software (AB Sciex, Concord, Ontario,
Canada). Unsupervised PCA was employed without using
prior knowledge of the sample groups. MS data were
weighted using logarithm function and scaled by pareto
function, in which each value was subtracted from the
average value and divided by the square root of the stan-
dard deviation. In this way, intense peaks were prevented
from completely dominating the PCA, and any peaks
with a good signal-to-noise ratio had more importance in
the PCA. Dot plots were plotted using Origin software
(OriginLab Corporation, Northampton, MA).

The range of values obtained in this study are
expressed as a standard error of mean (S.E.M.). The
comparisons of the levels of proteins reflecting the levels
of proteins between ALC and ALC/ADNEF-9 were per-
formed using the Wilcoxon rank sum test [33], also
known as the Mann-Whitney rank sum test. The p-
values demonstrating statistically significant differences
between ALC and ALC/ADNEF-9 are reported in Table
1. All statistical analyses were performed using SAS, ver-
sion 9.1.

Statistical analyses of the number of TUNEL-positive
cells and fetal brain weights were performed using one-
way analysis of variance (ANOVA) and Newman-Keuls
multiple comparison test between the PF, ALC, and
ALC/ADNE-9 groups. All tests of significance were set
at p < 0.05.

Results

Fetal brain weight

Fetal brain weights from each litter were averaged and
the averaged value was used as one number (n). Statisti-
cal analyses of fetal brain weights demonstrate a signifi-
cant weight reduction in the ALC group as compared to
the PF control group (Figure 1, p < 0.01). Importantly,
treatment of pregnant mice with ADNF-9 alongside
alcohol exposure shows a preventive effect against alco-
hol-induced reduction in fetal brain weight. Statistical
analyses show significant differences between the ALC/
ADNEF-9 and ALC groups (Figure 1, p < 0.05). There
was no significant difference in fetal brain weights
between the ALC/ADNEF-9 and PF groups.
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TUNEL staining identifying cell death

TUNEL staining was used to determine cell death. We
tested ADNF-9 to investigate its neuroprotective effect
against alcohol-induced apoptosis. We have focused our
anatomical and statistical analysis in one area of the
fetal brains, which is the primordium cingulate cortex.
This fetal brain region has been well studied in previous
work [11,15]. Anatomical observation shows an increase
in TUNEL-positive cells in the ALC group (Figure 2c)
as compared to the PF (Figure 2a) and ALC/ADNEF-9
(Figure 2b) groups. Statistical analyses of the cell counts
reveal a significant reduction in the number of TUNEL-
positive cells in the ALC group as compared to the PF
control group (p < 0.05) (Figure 2d). Treatment with
ADNF-9 alongside prenatal alcohol exposure prevented
alcohol-induced increases in the number of TUNEL-
positive cells as compared to the ALC group (p < 0.05).

LC-MS/MS protein analyses

LC-MS/MS analyses of the extracted proteomes from
each group resulted in the identification of 598 proteins.
As performed in a recent study [17], the peptide identi-
fication was performed using the MASCOT search
engine and a filtering criteria that resulted in at least a
95% identification confidence and a false-positive identi-
fication rate < 5%. The information related to the func-
tionality of the identified proteins were obtained from
the Swiss-Model Repository http://swissmodel.expasy.
org/ and UniProtKB http://www.uniprot.org/.

Protein identifications using LC-MS/MS quantitative
analyses

PCA score plots of the levels of all identified proteins
between the ALC and ALC/SAL(ADNE-9) groups are
shown in Figure 3. Differences in the levels of proteins
between the ALC and ALC/SAL(ADNEF-9) groups show
distinct clusters. Table 1 displays proteins that are sig-
nificantly different and contributed to the distinct clus-
ters observed in Figure 3.

We have focused our proteomic analyses on both the
ALC and ALC/SAL(ADNFEF-9) groups in order to deter-
mine the effects of ADNF-9 administration in the
changes of the level of expression of proteins. Table 1
shows all the proteins that are regulated as a result of
ADNEF-9 administration alongside prenatal alcohol
exposure. Administration of ADNF-9 alongside prena-
tal alcohol exposure upregulates key proteins involved
in cell cycle progression and cell division including
cyclin-dependent kinase inhibitor 1B (p = 0.012) (Fig-
ure 4a) and serine/threonine-protein phosphatase PP1-
beta catalytic subunit (p = 0.036) in the ALC/ADNF-9
group as compared to the ALC group (Table 1).
ADNF-9 administration also prevented alcohol-induced
reduction in the level of expression of proteins
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Table 1 Proteins, among others, that have been significantly down-regulated or up-regulated in their expression as a
consequence of administration of ADNF-9 against the effect of prenatal alcohol exposure in E13 fetal brains

Protein Function ALC group ALC/ADNF-9  p-value
group

Heterogeneous nuclear Acts as a basic transcriptional regulator. Represses basic 5.7E-05 + 8.02E-06 8.1E-05 + 291E-06 0.021
ribonucleoprotein U-like protein  transcription driven by several cellular promoters. When
(HNRL2_MOUSE) associated with BRD7, activates transcription of

glucocorticoid-responsive promoter in the absence of ligand-

stimulation. Plays also a role in mRNA processing and

transport. Binds avidly to poly(G) and poly(C) RNA

homopolymers in vitro.
Dynein light chain 2, Acts as one of several non-catalytic accessory components of 7.1E-04 + 513E-05 88E-04 + 3.71E-05 0.036
cytoplasmic (DYL2_MOUSE) the cytoplasmic dynein 1 complex that are thought to be

involved in linking dynein to cargos and to adapter proteins

that regulate dynein function. Cytoplasmic dynein 1 acts as a

motor for the intracellular retrograde motility of vesicles and

organelles along microtubules.
Hemoglobin subunit epsilon-Y2  Hemoglobin epsilon chain is a beta-type chain found in early 14E-02 + 488E-04 2.1E-02 + 3.18E-03 0.021
(HBE_MOUSE) embryos.
Cyclin-dependent kinase Important regulator of cell cycle progression. Involved in G1 ~ 1.2E-05 + 923E-07 1.8E-05 + 131E-06 0.012
inhibitor 1B (CDN1B_MOUSE) arrest. Potent inhibitor of cyclin E- and cyclin A-CDK2

complexes. Positive regulator of cyclin D-dependent kinases

such as CDK4. Regulated by phosphorylation and

degradation events.
Peptidyl-prolyl cis-trans Immunophilin protein with PPlase and co-chaperone 8.6E-04 + 7.35E-05 1.1E-03 + 4.39E-05 0.036
isomerase FKBP4 activities. Component of unliganded steroid receptors
(FKBP4_MOUSE) heterocomplexes through interaction with heat-shock protein

90 (HSP90). May play a role in the intracellular trafficking of

heterooligomeric forms of steroid hormone receptors

between cytoplasm and nuclear compartments. The

isomerase activity controls neuronal growth cones via

regulation of TRPC1 channel opening. Acts also as a

regulator of microtubule dynamics by inhibiting MAPT/TAU

ability to promote microtubule assembly.
RNA-binding protein Raly Probable-RNA binding protein. Could be a heterogeneous 9.2E-05 + 844E-06 1.3E-04 £ 9.82E-06 0.012

(RALY_MOUSE)

nuclear ribonucleoprotein (hnRNP). May be involved in pre-
mRNA splicing.

60S ribosomal protein L12
(RL12_MOUSE)

Binds directly to 26S ribosomal RNA.

2.3E-03 £ 9.60E-05 3.0E-03 £ 1.06E-04 0.012

Splicing factor 3B subunit 3
(SF3B3_MOUSE)

Subunit of the splicing factor SF3B required for ‘A" complex ~ 5.0E-04 + 2.52E-05 6.5E-04 + 5.20E-05 0.036

assembly formed by the stable binding of U2 snRNP to the
branchpoint sequence (BPS) in pre-mRNA. Sequence
independent binding of SF3A/SF3B complex upstream of the
branch site is essential; it may anchor U2 snRNP to the pre-
mRNA. May also be involved in the assembly of the ‘E'
complex. Belongs also to the minor U12-dependent
spliceosome, which is involved in the splicing ofa rare class
of nuclear pre-mRNA intron.

Peroxiredoxin-2 (PRDX2_MOUSE)

Involved in redox regulation of the cell. Reduces peroxides 3.1E-03 + 2.60E-04 2.3E-03 + 1.84E-04 0.036

with reducing equivalents provided through the thioredoxin
system. It is not able to receive electrons from glutaredoxin.
May play an important role in eliminating peroxides
generated during metabolism. Might participate in the
signaling cascades of growth factors and tumor necrosis
factor-alpha by regulating the intracellular concentrations of
H,0,.

Serine/threonine-protein
phosphatase PP1-beta catalytic
subunit (PP1B_MOUSE)

Protein phosphatase (PP1) is essential for cell division; it 3.7E-04 + 368E-05 5.1E-04 + 4.32E-05 0.036

participates in the regulation of glycogen metabolism,
muscle contractility and protein synthesis. Involved in
regulation of ionic conductances and long-term synaptic
plasticity.

Endoplasmin (ENPL_MOUSE)

Molecular chaperone that functions in the processing and 5.3E-03 + 4.89E-04 6.8E-03 + 2.83E-04 0.036

transport of secreted proteins. Functions in endoplasmic
reticulum associated degradation (ERAD). Has ATPase activity.
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Table 1 Proteins, among others, that have been significantly down-regulated or up-regulated in their expression as a
consequence of administration of ADNF-9 against the effect of prenatal alcohol exposure in E13 fetal brains

(Continued)

Dihydropyrimidinase-related
protein 1 (DPYL1_MOUSE)

Necessary for signaling by class 3 semaphorins and
subsequent remodeling of the cytoskeleton. Plays a role in
axon guidance, invasive growth and cell migration.

3.2E-03 + 922E-05 3.7E-03 £ 1.06E-04 0.012

Serine/arginine-rich splicing May be involved in RNA processing in relation with cellular ~ 7.6E-04 + 7.33E-05 1.0E-03 + 3.86E-05 0.036
factor 3 (SFRS3_MOUSE) proliferation and/or maturation.
Heat shock protein HSP 90-alpha Molecular chaperone. Has ATPase activity 6.1E-03 + 2.95E-04 7.1E-03 + 2.08E-04 0.036
(HS90A_MOUSE)
Hemoglobin subunit beta-1 Involved in oxygen transport from the lung to the various 2.1E-03 + 1.05E-04 2.8E-03 + 1.04E-04 0.012
(HBB1_MOUSE) peripheral tissues.
Transketolase (TKT_MOUSE) Transketolase: A transferase bringing about the reversible 24E-03 + 1.21E-04 16E-03 £+ 1.34E-04 0.012

interconversion of sedoheptulose 7-phosphate and d-

glyceraldehyde 3-phosphate to produce d-ribose 5-

phosphate and d-xylulose 5-phosphate, and also other similar

reactions, such as hydroxypyruvate and an aldehyde into

CO2 and an extended hydroxypyruvate; a part of the

nonoxidative phase of the pentose phosphate pathway.
Casein kinase Il subunit beta Plays a complex role in regulating the basal catalytic activity ~ 4.0E-05 + 4.24E-06 5.5E-05 + 3.36E-06 0.021
(CSK2B_MOUSE) of the alpha subunit. Participates in Wnt signaling.
Microtubule-associated protein  The function of brain MAPS is essentially unknown. 1.3E-03 £ 5.87E-05 1.6E-03 £ 1.31E-04 0.036
1B (MAP1B_MOUSE) Phosphorylated MAP1B may play a role in the cytoskeletal

changes that accompany neurite extension. Possibly MAP1B

binds to at least two tubulin subunits in the polymer, and

this bridging of subunits might be involved in nucleating

microtubule polymerization and in stabilizing microtubules.
Hemoglobin subunit zeta The zeta chain is an alpha-type chain of mammalian 4.18-03 £ 2.76E-04 52E-03 + 3.18E-04 0.036
(HBAZ_MOUSE) embryonic hemoglobin, synthesized primarily in the yolk sac.
Eukaryotic translation initiation ~ mRNA-binding protein involved in translation elongation. Has 4.2E-03 + 2.03E-04 53E-03 + 368E-04 0.036

factor 5A-1 (IF5A1_MOUSE)

an important function at the level of mRNA turnover,
probably acting downstream of decapping. Involved in actin
dynamics and cell cycle progression, mRNA decay and
probably in a pathway involved in stress response and
maintenance of cell wall integrity. With syntenin SDCBP,
functions as a regulator of TP53/p53 and TP53/p53-
dependent apoptosis. Also regulates TNF-alpha-mediated
apoptosis. Mediates effects of polyamines on neuronal
process extension and survival. May play an important role in
brain development and function and in skeletal muscle stem
cell differentiation.

Fatty acid synthase
(FAS_MOUSE)

Fatty acid synthetase catalyzes the formation of long-chain
fatty acids from acetyl-CoA, malonyl-CoA and NADPH. This
multifunctional protein has 7 catalytic activities and an acyl
carrier protein.

1.8E-03 £ 1.12E-04 2.1E-03 £ 841E-05 0.036

Histone-binding protein RBBP4
(RBBP4_MOUSE)

Core histone-binding subunit that may target chromatin
assembly factors, chromatin remodeling factors and histone
deacetylases to their histone substrates in a manner that is
regulated by nucleosomal DNA. Component of several
complexes that regulate chromatin metabolism. These
include the chromatin assembly factor 1 (CAF-1) complex,
which is required for chromatin assembly following DNA
replication and DNA repair, and the core histone deacetylase
(HDAC) complex, which promotes histone deacetylation and
consequent transcriptional repression.

6.6E-04 £ 448E-05 82E-04 = 298E-05 0.036

Nuclear cap-binding protein
subunit 1 (NCBP1_MOUSE)

Component of the cap-binding complex (CBC), which binds
co-transcriptionally to the 5" cap of pre-mRNAs and is
involved in various processes such as pre-mRNA splicing,
translation regulation, nonsense-mediated mRNA decay, RNA-
mediated gene silencing (RNAi) by microRNAs (miRNAs) and
mRNA export. The CBC complex is involved in mRNA export
from the nucleus via its interaction with THOC4/ALY, leading
to the recruitment of the mRNA export machinery to the 5
end of mMRNA and to mRNA export in a 5" to 3" direction
through the nuclear pore.

4.6E-05 £ 7.84E-06 7.7E-05 + 431E-06 0.021

Values are expressed as protein areas and their S.E.M.
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Figure 1 Neuroprotective effect of ADNF-9 in fetal brains exposed prenatally to alcohol at E13. Prenatal alcohol exposure induced
significant reduction in fetal brain weight in the ALC group as compared to the PF group (p < 0.01). ADNF-9 administration alongside prenatal
alcohol exposure prevented alcohol-induced reduction in fetal brains weights (p < 0.05). Values are expressed as means + SEM. N = 5 for each
group. *p < 0.05, *p < 0.01 (Newman-Keul's post hoc test).

involved in axon guidance and cellular proliferation
such as dihydropyrimidinase-related protein 1 (p =
0.012) and serine/arginine-rich splicing factor 3 in the
ALC/ADNE-9 group as compared to the ALC group
(Table 1). In addition, administration of ADNF-9
alongside prenatal alcohol exposure upregulates some
proteins involved in microtubule organization and
function; these proteins include peptidyl-prolyl cis-
trans isomerase (p = 0.036), microtubule-associated
protein 1B (p = 0.036) and dynein light chain 2 (p =
0.036) (Table 1). Moreover, ADNF-9 administration
alongside prenatal alcohol exposure upregulates some
nuclear proteins involved in gene transcription such as
RNA-binding protein Raly (p = 0.012) (Table 1), eukar-
yotic translation initiation factor 5A-1 (p = 0.028)
(Table 1), nuclear cap-binding protein subunit 1 (p =
0.016) (Figure 4B), and histone-binding protein RBBP4

(p = 0.02828) (Table 1) in the ALC/ADNF-9 group as
compared to the ALC group.

Discussion

We report here that alcohol exposure during preg-
nancy resulted in downregulation of fetal brain weights
and increased in TUNEL-positive cells at E13 age.
Importantly, ADNF-9 administration alongside prenatal
alcohol exposure prevented alcohol-induced decreases
in fetal brain weights and increases in cell death at
E13. We chose to expose the pregnant mice from E7
to E13 based on studies indicating that the developing
brain exhibited the highest susceptibility to alcohol
exposure between E7 and later embryonic stages [29].
Using a similar drinking paradigm to these studies, we
previously demonstrated that prenatal alcohol exposure
from E7 to E13, E15 and E8 induced reduction in fetal
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Figure 2 Neuroprotective effect of ADNF-9 against alcohol-induced cell death in primordium cingulate cortex at E13. Prenatal alcohol
exposure induced increases in TUNEL-positive cells. Importantly, administration of ADNF-9 prevented the alcohol-induced increases in cell death
(a-c). Note that cells undergoing apoptosis are indicated by cell processes as shown by arrowheads. However, arrows indicate cells in the final
stage of apoptosis. Statistical analyses demonstrate a significant difference between groups (p = 0.0405). (d) Prenatal alcohol exposure induced
significant increases in the number of TUNEL-positive cells in the ALC group as compared to the PF (p < 0.05). ADNF-9 administration prevented
significantly the alcohol-induced increases in the number of TUNEL-positive cells (p < 0.05). Values are expressed as means + SEM. N = 4 for
each group. *p < 0.05 (Newman-Keul's post hoc test). Scale bar = 100 um.
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brain weights and in the number of serotonin neurons,
alteration of neurotransmitters, and induced neural
tube defects [11,15,16,28,34]. In this study, we revealed
that the neurotrophic peptide, ADNEF-9, prevents the
reduction in fetal brains that might be associated with
the prevention of cell death or apoptosis in the pri-
mordium cingulate cortex. Previous studies have
shown that prenatal alcohol exposure induced altera-
tions in several fetal brain regions, including primor-
dium cerebral cortex, ganglionic eminence,
primordium thalamus, and primodrium septum
[4,5,11,35]. It is noteworthy that alterations of the
organization of primordium cortices by alcohol expo-
sure might be associated with deficits in learning,
memory, motor skills, and visual-spatial skills found in

children born from mothers with habits of heavy
drinks of alcohol during pregnancy [4,36,37].

On the other hand, we used LC-MS/MS to determine
the differential protein expressions between ALC and
ALC/ADNE-9 treated groups. Using LC-MS/MS, we
recently showed that prenatal alcohol exposure induced
alteration in mitochondrial, cytosolic and nuclear pro-
teins in ALC as compared to PF control group [17].
Here, we focused our study to investigate the role of
trophic peptide, ADNF-9, in prevention of alcohol-
induced alteration of key proteins that are involved in
fetal brain development. Thus, quantitative proteomic
analyses revealed differential expression of proteins
involved in cell cycle division and neuronal growth at
E13. Among proteins upregulated in the ALC/ADNF-9
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group as compared to the ALC group are cyclin-depen-
dent kinase inhibitor 1B (CDN1B_MOUSE), serine/
threonine-protein phosphatase PP1-beta catalytic subu-
nit (PP1B_MOUSE), and dihydropyrimidinase-related

protein 1 (DPYL1_MOUSE). Cyclin-dependent kinase
inhibitor is an important regulator of cell cycle progres-
sion. This is in accordance with previous evidence indi-
cating that prenatal alcohol exposure induced

~
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downregulation of cyclin-dependent kinase inhibitor and
cyclin-dependent kinases [38]. It is also reported that
prenatal alcohol exposure has been shown to delay cell
cycle [39]. Moreover, in vitro study reveals that alcohol
exposure alters the cell cycle regulatory factors [40].
Upregulation of cyclin-dependent kinase inhibitor as a
consequence of ADNF-9 administration is an indication
of the preventive effect against alcohol-induced altera-
tion in cell cycle progression. It is possible that upregu-
lation of cyclin-dependent kinase might be mediated
through indirect action of ADNF-9. Indeed, the indirect
upregulatory action of ADNF-9 in cyclin-dependent
kinase might be associated with ADNF-9 neuroprotec-
tion, which consequently can prevent the alteration of
cell cycle division. Moreover, ADNF-9 administration
overcomes the downregulation of serine/threonine-pro-
tein phosphatase, which is involved in protein synthesis
that is essential for cell division. It is unknown about
the mechanisms of action of ADNF-9 involving these
cell cycle proteins. Studies are warranted to investigate
these mechanisms of action.

On the other hand, dihydropyrimidinase-related pro-
tein 1, a protein that plays a role in axon guidance, inva-
sive growth and cell migration, was found upregulated
in the ALC/ADNE-9 group. This protein also has a role
in the remodeling of the cytoskeleton. Another protein
from the same family was also found downregulated in
the ALC group, as reported recently [17]. It is note-
worthy that prenatal alcohol exposure altered brain
growth and retarded the migration of neurons [for
review see Ref. [11]]. Thus, ADNF-9 administration
might prevent these deficits found in the FAE model.

Differential expression of proteins involved in tran-
scription and gene function for cellular growth are iden-
tified at E13. Among the proteins upregulated in the
ALC/ADNEF-9 group, as compared to the ALC group,
are heterogeneous nuclear ribonucleoprotein U-like pro-
tein (HNRL2_MOUSE), RNA-binding protein Raly
(RALY_MOUSE), splicing factor 3B subunit 3
(SE3B3_MOUSE), serine/arginine-rich splicing factor 3
(SFRS3_MOUSE), eukaryotic translation initiation factor
5A-1 (IF5A1_MOUSE), histone-binding protein RBBP4
(RBBP4_MOUSE), and nuclear cap-binding protein sub-
unit (NCBP1_MOUSE). In this study, we found that
ADNF-9 administration induced upregulation of major
nuclear proteins that are involved in the regulatory
function of the transcription factors. Heterogeneous
nuclear ribonucleoprotein acts as a basic transcriptional
regulator that represses basic transcription, which might
be driven by several cellular promoters. RNA-binding
protein Raly is involved in pre-mRNA splicing. The spli-
cing factor 3B subunit 3, found upregulated in the ALC/
ADNE-9 group, is a subunit of the splicing factor SF3B
required for complex assembly formed by the stable

Page 10 of 12

binding of U2 snRNP to the branchpoint sequence in
pre-mRNA. In addition, ADNF-9 upregulates the
nuclear cap-binding protein subunit; involves pre-
mRNA splicing and translation regulation. On the other
hand, ADNF-9 administration upregulates serine/argi-
nine-rich splicing factor 3, which is involved in RNA
processing associated with cellular proliferation and
maturation. It has been demonstrated that prenatal alco-
hol exposure reduced cell proliferation [41]. Thus,
ADNF-9 may have prevented alcohol-induction of this
deficit through the splicing factor 3. ADNF-9 neuropro-
tection involves also a eukaryotic translation initiation
factor, which is associated with actin dynamics and cell
cycle progression for maintaining cell integrity. Studies
are warranted to determine whether ADNF-9 is directly
or indirectly associated with these identified proteins in
the prevention of alcohol-induced apoptosis.
Upregulation of the level of histone-binding protein
RBBP4 was found in the ALC/ADNEF-9 treated group.
This protein is considered as a core histone-binding
subunit that interacts with chromatin assembly proteins,
chromatin remodeling factors and histone deacetylases
to their histone substrates. Alcohol exposure is known
to disrupt histone and histone-binding proteins, which
together can lead to epigenetic imprinting. This phe-
nomenon is currently considered a major problem in
FAE. The mechanisms of action involving the epigenetic
imprinting are mainly DNA methylation and histone
modifications (acetylation, methylation, and phosphory-
lation) that regulate gene transcription [42-46]. Covalent
histone modifications via acetylation and deacetylation
are key players in the changes in chromatin structure
that consequently regulate gene expression [43,44,46].
Quantitative proteomic analyses demonstrated differ-
ential expression of proteins involved in cytoskeletal
machinery. Among these proteins are dynein light chain
2 (DYL2_MOUSE), peptidyl-prolyl cis-trans isomerase
FKBP4 (FKBP4_MOUSE), and microtubule-associated
protein 1B (MAP1B_MOUSE). MAP1B, belonging to a
microtubule-associated protein family, is a major cytos-
keletal protein located in axonal as well as dendritic
neuronal processes [47]. Recent studies reveal that
chronic ethanol exposure alters the expression, assembly
and cellular organization of the cytoskeleton, including
actin and microtubules in vitro culture of hippocampus
neurons [48]. Upregulation of MAP1B in the ALC/
ADNF-9 group overcomes these alterations. In vivo and
in vitro studies performed by us and others show that
microtubule-associate protein 2 (MAP2) was also found
to be downregulated in the ALC group as compared to
the control group [17,49]. Moreover, DYL2 is a protein
that acts as a motor protein for the intracellular retro-
grade motility of vesicles and organelles along microtu-
bules. Upregulation of this protein in the ALC/ADNEF-9
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group prevents the alteration of intracellular retrograde
trafficking. The peptidyl-prolyl cis-trans isomerase is an
enzyme that controls neuronal growth cones by acting
as a regulator of microtubule dynamics. It is noteworthy
that ADNF-9 administration alongside ALC exposure
prevents the alteration of key proteins involved in cytos-
keletal protein function to maintain normal neuronal
growth.

Conclusions

ADNF-9 administration alongside prenatal alcohol expo-
sure prevented alcohol-induced reduction in fetal brain
weights and alcohol-induced increases in TUNEL-posi-
tive cells. Quantitative proteomic analyses were used in
this study to determine differential proteins involved in
ADNE-9 neuroprotection in fetal brains exposed prena-
tally to alcohol. We have identified several target pro-
teins that were upregulated through ADNF-9
administration in the FAE model. Among these proteins
are the proteins involved in cell division and cell growth,
nuclear and/or transcriptional proteins, and cytoskeletal
proteins. The mechanisms of action of ADNF-9 neuro-
protection against alcohol-induced apoptosis might be
mediated directly or indirectly through these identified
proteins. These findings suggest that ADNF-9 might be
used as a compound for the treatment against the
effects of alcohol exposure during gestation.
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