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Abstract

suitable.

The coupling between neuronal activity and vascular responses is controlled by the neurovascular unit (NVU),
which comprises multiple cell types. Many different types of dysfunction in these cells may impair the proper
control of vascular responses by the NVU. Magnetic resonance imaging, which is the most powerful tool available
to investigate neurovascular structures or functions, will be discussed in the present article in relation to its
applications and discoveries. Because aberrant angiogenesis and vascular remodeling have been increasingly
reported as being implicated in brain pathogenesis, this review article will refer to this hallmark event when

Review
Neurovascular abnormalities in brain disorders
The brain consumes one fifth of the body’s energy and
nutrients. The cerebrovascular system plays a key role in
supporting the brain by providing oxygen and nutrients
to the brain. Any abnormalities occurring in the cerebral
microvasculature may affect the integrity of brain func-
tioning. This relationship is best appreciated based on the
concept of the neurovascular unit (NVU), which com-
prises multiple cell types, including neurons, vascular
smooth muscle cells, endothelial cells, astrocytes, micro-
glia, and pericytes [1] (Figure 1). Various types of dysfunc-
tion in these cells may impair the proper control of
vascular responses by the NVU. For example, aberrant
neuronal activity, abnormal calcium wave frequency in as-
trocytes, pathogenic proliferation of endothelial cells, or
degeneration of vascular smooth muscle cells might affect
the control of vascular responses in the brain [2-7].
Abnormal neurovascular alterations involve either
structural or functional modifications of the cerebromic-
rovascular system. Structurally, increased tortuosity of
the vasculature, increased thickness or permeability of
the vessel walls, altered vessel density and size, and even
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hemorrhage are possible changes in the neurovas-
culature. Neurodegenerative diseases that have been
associated with structural abnormalities of the neurovas-
culature include Alzheimer’s disease (AD), Huntington’s
disease (HD), and multiple sclerosis (MS). AD, as the
most widespread dementia in the elderly, is linked to
microvascular pathogenesis [8,9]. In AD transgenic
mouse models, the notorious amyloid-f3 aggregates are
sometimes found surrounding aberrant neurovas-
culature. Changes in the blood vessel walls, in the per-
meability of the blood-brain barrier (BBB), and in the
morphology of the vasculature have been reported. In
HD, structural abnormalities of the neurovasculature are
less appreciated, because of scarce evidence. Unlike what
is observed in AD, the integrity of the BBB is not im-
paired in HD, as several groups have observed [10,11].
However, narrowed vessels and increased vascularity
have been found in postmortem HD brain tissues [12].
Indications of abnormal neurovasculature emerged very
recently; however, the specific underpinnings are still be-
ing investigated [13]. MS is an elusive brain disorder that
is associated with inflammation and demyelination. The
venous system of the cerebral neurovasculature appears
to be disrupted in MS [14]. These aberrations involve
perivenular plaques and perivenular iron deposits. In
some cases, these venous abnormalities can accom-
pany local inflammation and demyelination. Other
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Figure 1 lllustration of the neurovascular unit (NVU) in the central nervous system. (A) The NVU comprises multiple cell types, including
neurons, vascular smooth muscle cells, endothelial cells, astrocytes, microglia, and pericytes. Astrocytes and microglia release various factors
(including TNF-q, IL-1B, IL-6, and VEGF), which act on neurons and endothelial cells. (B) Enlarged illustration of the interaction between astrocytes
and endothelial cells. Under pathological conditions, several inflammatory cytokines (TNF-a, IL-13, and IL-6) that are released by activated
astrocytes may cause a positive feedback on the production of VEGF. These factors (TNF-q, IL-13, IL-6, and VEGF) may collectively induce the

proliferation of endothelial cells and lead to neurovascular abnormalities in brain disorders.

neurovascular damages, such as BBB leakage, have also
been reported in MS.

Functionally, the neurovascular abnormalities can be re-
lated to altered vascular perfusion in cerebral blood flow
(CBEF), cerebral blood volume (CBV), oxygen consumption
and blood pressure [15,16]. Among these functional indi-
cators, CBF changes are the most widely used. Abnormal
blood flow has been commonly observed in brain disor-
ders. For example, before the onset of cognitive impair-
ment in patients with AD, the blood flow in their brain is
lower than that of control subjects [17,18]. Disturbance in
the regulation of CBF was also reported in patients with
HD [19-22]. Although area-specific disturbance of CBF
was noted in the brains of HD patients, association

between reduced CBF and regional atrophy was observed
only in certain brain areas [19]. The regulatory role of
CBF in neurodegenerative disorders is complex and re-
quires further characterization.

Angiogenesis is a characteristic neurovascular aberra-
tion in brain disorders. It is a newly identified conse-
quence of neurovascular remodeling triggered by the
pathologies of brain disorders [9,15,23-29]. Angiogenesis
features increased vascularity involving both structural
and functional alterations within the neurovascular sys-
tem. This hallmark event, although not yet completely
evident in all brain disorders, might be a promising bio-
marker that can be used for the characterization of dis-
ease severity and progression in the future.
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Angiogenesis in neurodegenerative diseases: molecular
and cellular views

Angiogenesis may involve the secretion of the vascular
endothelial growth factor (VEGF). VEGF is a prominent
molecule that acts directly on the proliferation of endo-
thelial cells and may contribute to neovascularization or
angiogenesis in brain pathologies. Marked overexpres-
sion of VEGF has been reported in brain disorders
unrelated to tumors, such as AD [24], stroke, MS
[25], and Parkinson’s disease (PD) [23]. Reactive as-
trocytes are a major source of VEG overexpression.
The activation of astrocytes in the scenario of brain
disorders often implies the involvement of inflam-
matory reactions. The astrocytic VEGF-mediated
neovascularization or angiogenesis in neuroinflamma-
tion is believed to be a reactive factor in many cen-
tral nervous system disorders [30].

VEGF is the key molecule in the control of both
vasculogenesis and angiogenesis. It is synthesized and
released by neurons and astrocytes during early brain
development and in the adult brain, respectively. The
VEGF protein family consists of five different isoforms
(VEGE-A, -B, -C, -D and -E). Among them, VEGF-A
and VEGF-B are more abundant in the brain [31,32].
The functions of VEGF-A are closely associated with the
angiogenesis process, whereas those of VEGF-B have
been implicated in neuronal protection [33-35]. As a
result of alternative splicing, five different VEGF-A
isoforms (VEGF121, VEGF145, VEGF165, VEGF189, and
VEGF206) have been identified that exhibit different
affinities toward heparin and distinct abilities to regulate
angiogenesis [34,36-38]. There are two receptors (flt-1,
VEGF-R1; flk-1, VEGF-R2) for VEGF-A. VEGF-R2 is
expressed mainly in endothelial cells and in some neu-
rons [39]. The activation of VEGF-R2 in endothelial
cells activates multiple pathways (including activation
of the RAS/RAF/ERK1/2 and PI3K/AKT cascades,
suppression of caspase 9, and stimulation of the Rac/
Rho pathway) to trigger proliferation, enhance sur-
vival, reorganize cytoskeletal structure, and stimulate
migration [40,41]. In contrast, VEGF-R1 is expressed
mostly in astrocytes and is important for astrocytic
activation [39].

The expression of VEGF family members and their re-
ceptors was found to be upregulated in the brain after
injury or trauma, which was associated with a subse-
quent enhancement of angiogenesis and increased neur-
onal availability of blood nutrients [42-46]. Nonetheless,
it is important to note that high levels of VEGF-A in the
brain can be pathogenic and lead to leakage of the BBB,
production of proinflammatory cytokines (e.g., MIP-1«),
promotion of leucocyte infiltration, and neuroinflam-
mation [47,48]. Abnormal regulation of VEGF in astro-
cytes has been reported in several degenerative diseases.
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For example, amyloid-p (the causative agent in AD, [49])
was reported to stimulate the secretion of VEGF-A by
astrocytes [50]. Similarly, a high level of VEGF-A and its
receptor (VEGF-R1) was found in microglia of AD,
which might contribute to angiogenesis and BBB leakage
[51-53]. Consistent with these findings, enhanced micro-
vascular density was reported in mice and patients with
AD [24,54]. Impaired BBB function was also reported in
AD mice (Tg2576; [54]). Elevated expression of VEGF
was also reported in certain brain areas of patients
with PD, which is another common neurodegenerative
disease [55]. Such elevated brain VEGF levels might
contribute to the increased angiogenesis found in the
brains of PD patients and animal models [23,56,57].
Most intriguingly, the standard treatment for this
disease (L-DOPA) was found to upregulate the ex-
pression of VEGF in astrocytes via the activation of
the D1 dopamine receptor, which contributes to the
development of a major side effect of L-dopa (dyskin-
esia, [58,59]).

Chronic inflammation is another important factor that
might cause an abnormal neurovascular structure in the
brain [60]. Many proinflammatory cytokines (such as
IL-1pB, IL-6, TNF-a, and the transforming growth factor
B1 (TGE-P1)) were reported to enhance directly the pro-
liferation of endothelial cells, thus triggering angiogen-
esis [61-63]. Elevated cytokines released by astrocytes
accounted for not only neuroinflammation, but also
angiogenesis in AD [61]. Via the NF«kB- and/or HIF-1a-
dependent pathways, cytokines enhance the production
and secretion of VEGF-A, which in turn triggers angio-
genesis [50,64]. Conversely, TNFa reportedly stimulates
its receptor on endothelial cells and enhances the
response of endothelial cells to VEGF [65]. Because
neuroinflammation is commonly observed in neurode-
generative diseases and disorders, an abnormal neuro-
vascular structure associated with enhanced angiogenesis
has been found in many brain disorders. In an AD
mouse model triggered by the direct injection of
amyloid-p into the brain, the amyloid-f-induced produc-
tion of TNF-a by microglia evoked significant angiogen-
esis and BBB leakage [66]. Similarly, the age-dependent
enhancement of microglial activation was closely associ-
ated with vascular remodeling in the brain of a mouse
model of HD (YAC128, [67]).

It is important to note that enhanced angiogenesis
does not always result in increased CBF in the brain. In
AD mice, large parenchymal amyloid plaques were
associated with microvascular alterations and might
case vascular degeneration, therefore disturbing CBF
[9,68,69]. To evaluate the pathophysiological role of the
NVU in each specific brain disorder, further charac-
terization of the pathological response and regulation in
the major cell types of the NVU is critical.
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MRI as an important tool to explore neurovascular
aberrations in vivo

MRI is a powerful technique that allows both structural
and functional characterization of the neurovasculature
[70,71]. It identifies structural changes by direct visualiz-
ing the neurovasculature or measuring blood brain
barrier permeability, the vessel size, and the vessel dens-
ity. It also reveals functional alterations in the neurovas-
culature by measuring the CBE, CBV, oxygenation, and
the oxygen consumption. The structural and functional
information is essential to determine whether neurovas-
cular aberrations such as angiogenesis, vascular remod-
eling, or loss of vascularity/vascular reactivity have
occurred. The advantages of MRI well surpass that of-
fered by histology or other imaging modality alone.

For structural characterization, the visualization of the
neurovasculature is made possible by time-of-flight
(TOF) magnetic resonance angiography (MRA) for
larger vessels, or by microscopic MRA (mMRA) for the
entire vasculature including arteries, arteriole, veins, and
venule, or by venography for the venous system [72,73].
Vessel size and density can be characterized by steady
state contrast - enhanced (SSCE) MRI [74]. The perme-
ability of blood vessels can be measured by dynamic
contrast-enhanced (DCE)-MRI [75].

For functional characterization, CBF can be measured
by arterial-spin labeling (ASL) or dynamic susceptibility
contrast (DSC)-MRI [76-78]. CBV can be measured by
functional MRI with the use of contrast agents. The ver-
satility of MRI allows a comprehensive characterization
of both the structural and functional properties of the
cerebral neurovascular system.

Among the abovementioned MR approaches, a cutting
edge 3D mMRA technique based upon the AR2 values
was recently established [79]. 3D mMRA is unique and
advantageous for its revelation of exquisite structures at
the micron level with quantitative information of the
vessel size, vessel density, and CBV. To reach the reso-
lution and quality, this method entails the use of a con-
trast agent, iron oxide nanoparticles. The agent, after
being injected intravenously, flows in the blood vessels
including arteries, arterioles, veins, and venules with a
half-life of 2—3 hours in the bloodstream. This conse-
quently enables the visualization of the entire cerebral
microvasculature.

Angiogenesis in brain disorders may be identified by
MRI via versatile methods. Please refer to the following
section of stroke because this disorder is most well
established in this regard.

Stroke

In nontumor brain disorders, experimental stroke is the
pathological condition that has been studied most widely
using MRI [80]. DCE MRI identified BBB leakage at
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3 days after ischemia in a rat stroke model called three-
vessel middle cerebral artery occlusion (MCAO) [27].
BBB leakage may be a combinational result from the ini-
tial ischemia-induced endothelial injury and the subse-
quence neurovascular remodeling. The alteration was
not recovered, even at 21 days after the injury. In an-
other rat stroke model induced by embolic focal cerebral
ischemia, DCE-MRI indicated that treatment with neural
progenitor cells caused the BBB leakage, which was ob-
served at 2 weeks postischemia, returning to normal at
6 weeks [26].

Vascular remodeling involving angiogenesis is another
key feature that is observed after ischemia [29]. As men-
tioned above, angiogenesis may involve both structural
and functional changes of the neurovasculature; thus, it
can be identified using versatile MRI methods. SSCE-
MRI offered structural evidence of angiogenesis during
the postischemic stage [27]. Vessel density was signifi-
cantly increased 2 weeks after ischemia and was
sustained after 3 weeks in the MCAO model. Vessel size
was largest within 3 days after ischemia, followed by
normalization at later stages. Alternatively, the func-
tional changes of increased CBF or CBV are also indica-
tive of angiogenesis. Flow-sensitive alternating inversion
recovery (FAIR) detected significantly elevated CBF in
the infarct region as early as day 1 postischemia, and
showed that it was sustained even at day 14
postischemia [28]. CBV measured using DSC-MRI was
largest at day 7 postischemia, but was not significantly
different from the baseline at days 1 and 14. For the pur-
pose of demonstrating angiogenesis in stroke, 3D A R2
mMRA acquired from an MCAO rat at day 3
postischemia, a time point with active angiogenesis and
vascular remodeling, is shown in Figure 2. The 3D A R2
mMRA method proposed by Lin and colleagues [79] has
the advantage to simultaneously characterize the structural
and functional features. As shown in the Figure 2, even the
small vessels from the remodeled neurovasculature can be
revealed vividly by this approach [79].

Alzheimer’s disease

AD is increasingly recognized as a neurovascular disease.
There is growing evidence of neurovascular abnormal-
ities in this disorder, as assessed using perfusion MRL
ASL and DSC are the most popular MR approaches in
clinical AD research. ASL involves the magnetic labeling
of arterial blood water as an endogenous tracer. The
labeled blood water reduces total tissue magnetization,
and the signal intensity of the slice of interest [81]. DSC,
conversely, uses an exogenous gadolinium-based con-
trast agent as a tracer. Images are acquired rapidly as
the contrast flows through the blood stream to establish
the time-course data of signal changes. Functional indi-
ces, such as CBF and CBYV, can be derived accordingly.
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Figure 2 3D demonstration of the neurovascular remodeling and angiogenesis in experimental stroke. 3D A R2 mMRA was performed at
day 3 after middle cerebral artery occlusion on a Sprague-Dawley rat. The ischemic region was located in the right cortex. The vessel signals are
coded in the green color. (A) a 3D outlook, (B) an axial section, (C) a sagittal section, and (D) a horizontal section of the ischemic region. More
cortical penetrating vessels are seen in the lesioned area, representing the hallmark event, angiogenesis.
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A very detailed summary of ASL and DSC findings in
AD patients is provided in the review authored by Chen
et al. [82]. Briefly, using DSC, decreased CBF in wide-
spread brain regions from AD patients was reported by
several different groups, whereas increased CBF in the
frontobasal regions has been found in patients with early
AD and mild dementia. Similarly, ASL findings also
indicate that AD is characterized by hypoperfusion in
some areas and hyperperfusion in others. In particular,
hyperperfusion is associated with an early progression of
AD [81,83-86]. A possible explanation for this MRI finding
during hyperperfusion in AD is angiogenesis, whereas the
loss of vasculature is an explanation for the hypoperfusion;
however, more direct evidence remains necessary.

There are also implications of structural alterations in
the neurovasculature of AD. Ultra-high-field TOF-MRA
revealed severe deficits in large- and medium-sized
arteries in Tg2576 mice, which is a conventional AD
mouse model. The aberrations were mainly observed in
the middle cerebral artery and in the anterior communi-
cating artery [87]. Another structural abnormality, BBB
disruption, has been well documented in AD using
microscopic examination and biochemical assays. How-
ever, in vivo demonstration of the damage is still lacking.
Patients with mild cognitive impairments exhibited a
tendency to have a leaky BBB in the hippocampus;

however, the difference did not reach significance [88].
A clinical report indicated that DCE-MRI is likely suffi-
ciently sensitive to reveal BBB leakage in AD if proper
pharmacokinetic modeling is employed [89].

Huntington’s disease

Emerging evidence indicates a role for neurovascular ab-
normalities in HD, although HD is typically viewed as a
neurodegenerative disorder. A recent ASL study indicated
that pre-HD individuals compared with controls showed
hypoperfusion in medial and lateral prefrontal regions and
hyperperfusion in the precuneus [22]. In addition, pre-HD
with progression to symptom manifestation exhibited
hypoperfusion in the putamen and hyperperfusion in the
hippocampus. The measurement of relative CBV in R6/2
mice, which are a mainstay HD transgenic mouse model,
revealed unusual increases in widespread regions, including
the hippocampus, the cortex, the striatum, and the thal-
amus. The rCBV increases were associated with enhanced
neuronal activity, and with decreases in glucose utilization
[13]. The CBV increase observed in HD may be a result of
neurovascular disruptions involving angiogenesis.

Parkinson’s disease
PD is another refractory neurodegenerative disorder
that afflicts the elderly and features dopaminergic
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dysfunctions of the basal ganglia. Investigations of the
neurovascular abnormalities observed in the degenerated
brain areas of PD patients remain inconclusive. DSC
revealed higher perfusion in the more affected hemi-
sphere of PD patients, and subcutaneous apomorphine
administration normalized these changes [90]. However,
ASL indicated preserved perfusion in the degenerated
brain regions of PD patients compared with healthy con-
trols, and decreased perfusion in other regions, including
the posterior parieto-occipital cortex, precuneus and
cuneus, and middle frontal gyrus [91]. Intriguingly, the
neurovascular abnormalities become more salient if
dopaminergic neurotransmission is engaged, ie., CBV
response of the lesioned striatum is significantly altered
when dopaminergic agonists or antagonists are adminis-
tered [92]. Moreover, in a rat PD model induced by
6-hydroxydopamine, the lesioned striatum exhibited a
weakened CBV decrease in response to the nociceptive
stimulus. This weakened CBV response occurred mainly
in areas with dopaminergic denervation [93]. These
studies indicate that the neurovascular abnormalities ob-
served in PD are dependent on the neurotransmitter
dopamine. This tight neurovascular coupling is unique,
and again indicates the intimate relationship between
the neural and vascular elements in brain functions.

Conclusions

Cerebral microvascular abnormalities are an important
sign that may precede or concur with the major patholo-
gies of brain disorders. The understanding of the im-
portance of neurovascular remodeling and angiogenesis
in brain disorders is still preliminary. Brain stroke and
AD are probably the pathologies that have been most
linked to neurovascular alterations and remodeling.
Many other brain disorders, such as HD, PD, and MS
are less appreciated in this regard. MRI, as a versatile
and practical clinical diagnosis tool, is invaluable for
identifying and characterizing the multiple aspects of the
neurovascular aberrations of brain disorders, including
angiogenesis. Recent MRI findings suggest that neuro-
vascular alterations are likely to be present, even in the
pathologies in which vascular disruptions were rarely
considered. These explorations are a good foundation
for future studies aimed at highlighting the significance
of neurovascular abnormalities, neurovascular remodel-
ing, and angiogenesis in various brain diseases, including
neurodegenerative disorders.
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