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Abstract

Background: Insufficient clearance of soluble oligomeric amyloid-3 peptide (0AB) in the central nervous system
leads to the synaptic and memory deficits in Alzheimer's disease (AD). Previously we have identified scavenger
receptor class A (SR-A) of microglia mediates oligomeric amyloid-$ peptide (0AR) internalization by siRNA approach.
SR-A'is @ member of cysteine-rich domain (SRCR) superfamily which contains proteins actively modulating the
innate immunity and host defense, however the functions of the SRCR domain remain unclear. Whether the SRCR
domain of SR-Al modulates the receptor surface targeting and ligand internalization was investigated by expressing
truncated SR-A variants in COS-7 cells. Surface targeting of SR-A variants was examined by live immunostaining and
surface biotinylation assays. Transfected COS-7 cells were incubated with fluorescent oAf and acetylated LDL
(AcLDL) to assess their ligand-internalization capabilities.

Result: Genetic ablation of SR-A attenuated the internalization of oA and AcLDL by microglia. Half of oAB-containing
endocytic vesicles was SR-A positive in both microglia and macrophages. Clathrin and dynamin in SR-Al-mediated
0AB internalization were involved. The SRCR domain of SR-Al is encoded by exons 10 and 11. SR-A variants with
truncated exon 11 were intracellularly retained, whereas SR-A variants with further truncations into exon 10 were
surface-targeted. The fusion of exon 11 to the surface-targeted SR-A variant lacking the SRCR domain resulted in the
intracellular retention and the co-immunoprecipitation of Bip chaperon of the endoplasmic reticulum. Surface-targeted
variants were N-glycosylated, whereas intracellularly-retained variants retained in high-mannose states. In addition to
the collagenous domain, the SRCR domain is a functional binding domain for oA and AcLDL. Our data suggest
that inefficient folding of SR-Al variants with truncated SRCR domain was recognized by the endoplasmic reticulum
associated degradation which leads to the immature N- glycosylation and intracellular retention.

Conclusion: The novel functions of the SRCR domain on regulating the efficacy of receptor trafficking and ligand
binding may lead to possible approaches on modulating the innate immunity in Alzheimer's disease and atherosclerosis.
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Background

The accumulation of soluble oligomeric Amyloid-p peptide
(0AP) contributes to synaptic and memory deficits in
Alzheimer’s disease (AD) [1]. The activation of microglia
induced by oAp is SR-A-dependent [2]. Previously, we
identified SR-A as a prominent subtype of scavenger recep-
tors mediating oA internalization in microglia by knock-
down SR-A expression using siRNA [3]. In macrophages,
SR-A mediates the internalization of low-density lipopro-
tein (LDL), leading to the formation of foam cells in ath-
erosclerosis [4,5], and also mediates adhesion to the
extracellular matrix [6]. Furthermore, SR-A regulates the
induction of inflammatory cytokines in myocardial infarc-
tion and fungal infections [7]. In addition to its endocytotic
activity, SR-A suppresses lipopolysaccharide-induced
Toll-like receptor 4 signaling and nuclear factor-kappa B
activation, thereby modulating the inflammatory response
[8]. Knockout of SR-A reduces the lethality of septic shock
and down-regulates TLR4 signaling in peritoneal macro-
phages [9]. Therefore, SR-A, a trimeric transmembrane
glycoprotein, functions as a pattern recognition recep-
tor and is actively involved in innate immunity and host
defenses [10,11].

SR-A type I (SR-AI) contains six domains: a cytoplas-
mic domain, a transmembrane domain, a spacer region,
an a-helical coiled-coil domain, a collagenous domain,
and a C-terminal cysteine-rich (SRCR) domain encoded
by exons 10 and 11. SR-AIl and SR-AIIl, alternative
splicing isoforms of SR-AI, share all domains with SR-
AT except for the SRCR domain [12]. SR-AII completely
lacks the SRCR domain but binds the same ligands as
SR-AIL However, SR-AIII, which has a truncated SRCR
domain encoded by exon 11, is intracellularly retained.
The cytoplasmic domain of SR-A is involved in cell ad-
hesion and receptor internalization [13], with critical
amino acids identified as being involved in SR-A sur-
face targeting and interaction with signaling molecules
[6,14]. Seven residues in the o-helical coiled-coil do-
main mediate the formation of the trimeric coiled-coil
structure [15]. The collagenous domain mediates bind-
ing to the extracellular matrix [16], and point mutations
in the positively charged lysine clusters in the SR-AII
collagenous domain have been shown to decrease AcLDL
binding activity [17].

Although more than 30 members of the SRCR superfam-
ily have been identified, the function of the SRCR domain
has remained unclear [18]. The expanding SRCR super-
family has been divided into two groups. Group A has an
SRCR domain encoded by at least two exons with six cys-
teine residues, and group B has an SRCR domain encoded
by a single exon with eight cysteine residues. Different
members of the SRCR superfamily serve varying func-
tions, including pathogen recognition and innate immune
responses, and are associated with inflammation-related
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diseases, such as autoimmune diseases, atherosclerosis,
and Alzheimer’s disease. SR-AI and MARCO (macrophage
receptor with collagenous domain) are members of group
A with highly conserved SRCR domains. Examination of
the crystal structure of the mouse MARCO SRCR domain
revealed that the monomeric recombinant SRCR domain
is a compact, globular domain [19]. The SRCR domain of
MARCO was identified as the binding domain for bacteria,
acetylated-LDL (AcLDL), and the extracellular matrix
[19,20]. The function of the SRCR domain of SR-AI, how-
ever, remains unclear. The SRCR domain of several group
B members, including CD163, Spa, and SSDSRCRB, func-
tions as the binding domain for haptoglobin-hemoglobin
complexes, lipopolysaccharide, and bacteria and modulates
innate immunity in macrophages [21-23].

In the present study, we identified critical roles of
the SRCR domain play in SR-AI surface trafficking and
internalization of 0Ap and AcLDL. Our results provide
insight into the critical role of the SRCR domain in N-
glycosylation and receptor surface targeting of SR-AI,
which is a prerequisite for the uptake of oA and AcLDL
by microglia and macrophages in the initiation stage of AD
and atherosclerosis.

Methods

Materials

AP1-42 and fluorescein amidite (FAM)-labeled AP1-42
were purchased from American Peptide (Sunnyvale, CA)
and Biopeptide (San Diego, CA). Antibodies against A
were purchased from Signet (Dedham, MA). Anti-BiP
antibody, Alexa-labeled AcLDL, and Lipofectamine 2000
were purchased from Invitrogen (Carlsbad, CA). Rat anti-
mouse SR-A and rabbit anti-human SR-A were purchased
from AbD Serotec (Oxford, United Kingdom) and Santa
Cruz (California, USA). Alexa Fluor488-conjugated sec-
ondary antibody was purchased from Molecular Probe
(Oregan, USA). Sulfo-NHS-SS-biotin and NeutrAvidin
were purchased from Pierce (Rockford, IL). PNGase F
and Endo H were purchased from New England BioLabs
(Ipswich, MA).

Cell cultures and transfection

Human macrophages were prepared as previously de-
scribed [24]. Briefly, whole blood from healthy donors was
fractionated through a Histopaque-1077 density gradient
(Sigma-Aldrich, St. Louis, MO). The mononuclear cells
were re-suspended in serum-free RPMI 1640 medium
and differentiated into macrophages by incubation with
10 ng/mL human macrophage colony stimulating factor
(R&D, Minneapolis, MN) for 7 days. Primary mouse
microglia were prepared as previously described [3].
Briefly, cortices from newborn wild-type and SR-A homo-
zygous knockout mouse pups were dissociated and grown
in DMEM with 10% low-endotoxin FBS. Microglia were
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isolated from the mixed glia after 14 days. COS-7 cells,
fibroblast-like cells derived from monkey kidney tissue and
J774 cells, macrophage cells were maintained in Dulbecco’s
Modified Eagle Medium (DMEM) containing 10% heat-
inactivated fetal bovine serum at 37°C in a 5% CO, hu-
midified atmosphere. THP-1 cell is a human monocyte
cell line, which were differentiated into macrophages by
phorbol 12-myristate 13-acetate (PMA). Human SR-AI
¢DNA was provided by Dr. Qi Chen (Nanjing Medical
University, Nanjing, China). The sequences of primers
and ligation sites used to construct SR-Al variants are
shown in Additional file 1: Table S1. Site-directed muta-
genesis was performed using the QuikChange site-directed
mutagenesis kit (Stratagene, La Jolla, CA). COS-7 cells
(3 x 10°) were transfected with 2 pg SR-AI or variants per
well in 6-well plates using Lipofectamine 2000 according
to manufacturer instructions. After 24 h, cells were
subjected to ligand binding, surface protein biotinylation,
and immunocytochemical analyses. The involvement of
clatherin in the internalization of oAp was assessed by
cotransfecting with SR-A clatherin shRNA for 48 h. The
internalization of oA was performed after cotransfecting
HA-tag dynamin 2 dominant negative (K44A-dyn) with
SR-A for 24 h.

Live immunostaining and immunocytochemistry

To detect surface-targeted SR-A, live transfected COS-7
cells were incubated with rabbit anti-human SR-A antibody
at 1:500 dilution, followed by incubation with secondary
antibody conjugated to Alexa Fluor 488. To detect cyto-
solic SR-A, permeabilized mouse microglia were incubated
with rat anti-mouse SR-A antibody. Permeabilized human
macrophages and transfected COS-7 cells were incubated
with rabbit anti-human SR-A antibody, followed by incu-
bation with secondary antibody conjugated to Alexa Fluor
594. Coverslips were mounted with Vitashield (Vector
Laboratories, Peterborough, Cambridgeshire, UK) and im-
ages were taken using a confocal microscope (Olympus,
FV-1000 and FV-10i). The experiments were repeated at
least three times.

Ligand binding and internalization

FAM-labeled 0oAp was prepared and biochemically char-
acterized as described [3,25]. Prior to each usage, a li-
quate of oAp was centrifuged at 14,000 g at 4°C for
10 min to remove fibrillar and aggregated Ap. Cells were
incubated with 2 pM FAM-0Af on ice for 30 min and
live immunostained with anti-SR-A antibody for another
30 min. Then, cells were fixed with 4% paraformalde-
hyde to assess the oA binding ability at the plasma
membrane. To assess the levels of internalized oA and
AcLDL, transfected cells were incubated with 1 pM
FAM-0Ap for 1 h or 5 pg/mL Alexa 594-labeled AcLDL
for 1.5 h in serum-free DMEM at 37°C. Then, cells
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were fixed with 4% paraformaldehyde and immuno-
stained with anti-SR-A antibody. Images were taken
using a confocal microscope. The fluorescence inten-
sities of more than 100 SR-A-positive cells in five ran-
dom fields were analyzed using MetaMorph software
(ver. 7.1; Molecular Devices).

Surface biotinylation

Surface proteins were labeled with Sulfo-NHS-SS-biotin
following manufacturer instructions (Pierce, Rockford, IL).
Briefly, cells were incubated with membrane-impermeable
sulfo-NHS-SS-biotin on ice for 30 min. Unbound biotin
was quenched with Tris buffer on ice for 10 min. Cells
were lysed with NP40-containing lysis buffer (Invitrogen,
Life Technologies AS, Norway) and incubated with
NeutrAvidin beads overnight at 4°C. Bound proteins were
eluted from the NeutrAvidin beads by boiling. After cen-
trifugation, the supernatants were used in subsequent
analyses.

Peptide N-glycosidase (PNGase F) and endoglycosidase
(Endo H) cleavage

The N-glycosylation status of SR-AI and variants was
determined by incubating with PNGase F or Endo H
following manufacturer instructions. Briefly, glycopro-
tein denaturing buffer was added to the total cell ly-
sates and surface biotinylated lysates. After boiling
for 10 min, the mixtures were incubated with PNGase F
(500 U) or Endo H (1000 U) for 18 h at 37°C. The pro-
tein was boiled for 10 min and subjected to SDS gel
electrophoresis.

Western blot analysis and immunoprecipitation

After electrophoresis, proteins were transferred onto
PVDF membranes. After blocking, the membranes were
incubated with anti-SR-A antibody at 1:1,000 dilution,
transferrin receptor antibody at 1:500 dilution, and p-
actin antibody at 1:5,000 dilution. After incubation
with the secondary antibody, immune complexes were
detected using an enhanced chemiluminescence kit (GE
Healthcare, Burlingame, CA). The luminescence intensity
was quantified using densitometry. The experiments
were repeated at least three times. For immunoprecipita-
tion, cells were lysed in lysis buffer containing protease
inhibitor cocktail (Sigma-Aldrich, St. Louis, MO). Rabbit
anti-human SR-A antibody were coupled to paramag-
netic Dynabead protein G (Invitrogen, Life Technologies
AS, Norway). Lysates were incubated with the antibody-
Dynabead complex overnight at 4°C. The immune com-
plex was subjected to Western blot analysis using anti-BiP
antibody at 1:1,000 dilution. The Western blot was incu-
bated with anti-SR-A antibody served as a loading control
(data not shown). The experiments were repeated at least
three times.
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Statistical analysis

All data were expressed as mean + standard error of the
mean (SEM) and analyzed by one-way analysis of vari-
ance followed by Tukey’s HSD post hoc tests using SPSS
11.5 software (SPSS Inc., Somers, NY). Values of p < 0.05
were considered statistically significant. Experimental
groups labeled with different letters were significantly dif-
ferent from each other. Experimental groups labeled with
identical letters were not significantly different from each
other. In Figures 1 and 2, asterisks represent statistically
significant differences.

Results

Genetic ablation of SR-A attenuated the internalization

of oAB and AcLDL by primary microglia

The role of SR-A in oA internalization was examined
using microglia isolated from SR-A knockout mice. The
level of internalized oAp and AcLDL by microglia iso-
lated from SR-A knockout mice was significantly reduced
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compared with that of microglia isolated from wild-type
mice (Figure 1A,B). The percentage of oAB and SR-
A-positive endocytic vesicles in primary mouse microglia,
human monocyte-derived macrophages, and macro-
phage cells J774 were 49.1 +3.1, 4621 £9.2 , and 56.5+ 6
(Figure 1C). In addition to SR-A, our data also suggested
that there are the other receptors mediating oA interna-
lization in microglia and macrophage [26-28].

Clathrin and dynamin 2 are involved in SR-Al-mediated
oA internalization

COS-7cells are commonly used for the functional study
of SR-A [29,30]. The N-glycosylation status of transfected
human SR-AI in COS-7 cells mimics endogenous human
SRA of human blood-derived macrophage and PMA-
differentiated THP1 cells (Additional file 2: Figure S1A).
COS-7 cells cannot internalize Ap and AcLDL, were used
to characterize the functions of individual domain of
human SR-AI (Additional file 2: Figure S1B and C). The

microglia

Scale bar, 10 pm.

Figure 1 Microglia of SR-A knockout mice internalizes less oAp and AcLDL. A and B, Primary microglia isolated from wild-type (WT) and
SR-A knockout mice were incubated with fluorescent oAB and AcLDL. Representative confocal images and quantification of relative fluorescence
intensities of internalized oA and AcLDL showed that less internalization of oA and AcLDL by microglia of SR-A knockout mice. Scale bar,

20 um. More than 60 cells were analyzed. Bars indicate mean + SEM of three independent experiments (*p < 0.05). C, Primary microglia, human
blood-derived macrophages (HM@), and J774 cells were incubated with FAM-0AB and immunostained with anti-SR-A antibody. Representative
confocal images showed that oAB was highly co-localized with SR-A in endocytic vesicles. The experiments were repeated at least three times.
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Figure 2 Clathrin and dynamin-2 mediate SR-Al-dependent oA internalization. A, SR-Al-transfected COS-7 cells were incubated with
FAM-0AB (green) and immunostained with anti-SR-A antibody (red). Representative confocal images showed the co-localization of FAM-0AB
and SR-Al in endocytotic vesicles (left panel). A magnified image of the boxed region was shown in the right panels. Scale bar, 10 um.
B, COS-7 cells were co-transfected with SR-Al and clathrin shRNA or luciferase shRNA (negative control). The confocal images and the quantification
of clathrin immunoreactivity showed clathrin shRNA knockdown the expression of clatherin in SR-Al-positive cells. The experiments were repeated
at least three times. C. The relative level of internalized oAR was significantly reduced by clathrin shRNA compared with luciferase shRNA in
SR-Al-positive cells. D, COS-7 cells were co-transfected with SR-Al and HA-tagged wild type dynamin-2 or dominant-negative dynamin-2 (K44A).
The relative intensity of internalized oAB was significantly reduced by dynamin-2 (K44A) in SR-Al-positive cells. More than 100 SR-Al-positive cells

were analyzed. Bars indicate mean + SEM of three independent experiments (*p < 0.05).

internalized AP was colocalized with SR-AI in endocytotic
vesicles in SR-Al-transfected COS-7 cells (Figure 2A). The
involvement of clathrin and dynamin 2 in SR-Al-mediated
0Ap internalization was examined by cotransfecting SR-AI
with clathrin shRNA or a dominant-negative mutant of
dynamin 2 (k44A-dyn). The expression of clathrin was
effectively knockdown by clathrin shRNA (Figure 2B).
The level of internalized oAp was significantly reduced
by clathrin shRNA (Figure 2C). OAp was retained at
the plasma membrane of clathrin shRNA and SR-AI
cotransfected cells. It has been shown that receptor-
mediated endocytosis is dependent on dynamin [31]. The
overexpression of wild-type dynamin-2 did not affect oA
internalization (Figure 2D). However, the overexpression of
k44A-dyn in SR-A in COS-7 cells, inhibited 0Ap interna-
lization. The level of internalized oAp in SR-Al-positive
COS-7 cells was significantly reduced by k44A-dyn. Thus,
our data suggested that clathrin and dynamin 2 were in-
volved in SR-Al-mediated 0AP endocytosis.

The SRCR domain of SR-Al is critical for receptor
surface targeting

Next, we assessed the role of the SRCR domain in the
protein trafficking of SR-AI by expressing mutated vari-
ants with serial truncations of the SRCR domain in

COS-7 cells (Figure 3). The comparable enzymatic acti-
vities of co-transfected [-galactosidase across variants
suggest that their transfection efficiencies were similar
(data not shown). Merged confocal images of live immu-
nostaining and immunocytochemistry showed that full-
length SR-AI and deletion variants 371 and 341 were
surface-targeted, whereas deletion variants 430 and 407
were retained intracellularly (Figure 4A). The molecular
weight of nascent SR-AI is approximately 50 kDa. In the
total cell lysates while SR-AI was in the process of
protein modifications, a diffuse block was detected by
Western bolt analysis. To quantify the expression level of
SR-A variants, cell lysates were incubated with PNGase F,
which cleaves N-acetylglucosamine from asparagine at
N-glycosylation sites. In SR-Al-transfected cell lysate, we
detected one major band at 55 kDa and a second band
close to 50 kDa (Figure 4B). To investigate the identity of
these bands, we performed tandem mass spectrometry
analyses after enriching the proteins by immunoprecipi-
tation (data not shown). Although we found that these
two bands exhibited partial SR-A sequences, our data
was not sufficient to determine the cause of the two
bands detected in the cell lysates after PNGase F clea-
vage. The expression levels of SR-AI variants in the total
cell lysates were comparable.
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Figure 3 Schematic representation of human SR-Al, SR-All, and SR-Al variants. Constructs 430, 407, 371, and 341 were SR-Al variants with
truncated SRCR domains. Construct 341wirh exon 11 fused to the C-terminus of the collagenous domain mimicking SR-Alll is designated as
3471-ex 11. * indicates three lysine residues in the collagenous domain that were mutated to alanine at 332, 335, 338 in 341KA and SR-AIKA.
Seven putative N-glycosylation sites in the spacer and coiled coil domains of SR-Al were labeled.

To quantify the level of surface-targeted SR-AI and vari-
ants, the surface protein biotinylation assay was performed.
Avidin pull-down of biotinylated lysates was subjected to
PNGase F cleavage and Western blot analysis. One major
band at 55 kDa and one minor band close to 50 kDa were
only detected in SR-AI-, 371-, and 341-transfected cell ly-
sates, suggesting that SR-AI, 371, and 341 were surface-
targeted and that 430 and 407 were intracellularly retained
(Figure 4C,D).

Endo H cleaves N-glycans in a high-mannose state and
but not complex N-glycans. It has been shown that the
complex N-glycan of SR-AI is Endo H-resistant, whereas
the N-glycan of SR-AIII, which is in a high-mannose
state, is Endo H-sensitive [12]. In total cell lysates, SR-AI
and variants were undergoing N-glycosylation at dif-
ferent states, therefore a diffused block of signal was
detected (Figure 4E). The molecular weight shift by
PNGase F cleavage of SR-AI variants suggests that SR-A
variants were N-glycosylated. SR-AI, 371, and 341 were
predominantly Endo H-resistant, but 430 and 407 were
Endo H-sensitive, suggesting that the deletion of exon
11-encoded portion of the SRCR domain alters their
N-glycosylation status. The amount of oA and AcLDL
internalized by 371- and 341-positive cells was signifi-
cantly lower than that internalized by full-length SR-AL
However, the levels of internalized oA and AcLDL in
variants 430 and 407 were not different from that of the
vector-only. These results suggest that the SRCR do-
main plays critical roles in the protein trafficking and
ligand internalization (Additional file 3: Figure S2A,B and
Figure 4EG).

The fusion of exon 11 of SRCR domain with the
surface-targeted SR-A variant mimics the intracellular
retention of SR-Alll

SR-AIII, the splicing isoform of SR-AI with a truncated
SRCR domain encoded by exon 11 is intracellularly
retained. We have shown that 341 with the collage-
nous domain only was surface-targeted. The effect of
fusing exon 11 with 341 mimicking SR-AIIl was exam-
ined next. The confocal images of immunostaining
confirmed that 341-exonll was intracellularly retained
(Figure 5A). The expression levels of SR-AI, SR-AIl,
and 341-exonll in the total cell lysates were compar-
able (Figure 5B). The surface protein biotinylation
assay showed that 341-exonll was not targeted to the
plasma membrane (Figure 5C,D). The surface level of
SR-AIl was significantly lower than that of SR-AIL
Surface-targeted SR-AI and SR-AIl were predomin-
antly Endo H-resistant, whereas 341-exonll was Endo
H-sensitive (Figure 5E). It indicated that the fusing of
exon 11 with 341 attenuated its N-glycosylation and
surface targeting.

BiP is an important protein chaperone for protein quality
control in the endoplasmic reticulum (ER). Prolonged
binding of BiP can trigger the dislocation of misfolded
proteins from the ER into the cytoplasm for degradation
[32]. An immunoprecipitation assay was performed by
incubating total lysates of SR-AI-, SR-AII-, 341-exonll-,
and vector-transfected cells with anti-SR-A antibody. After
eluting from anti-SR-A antibody-conjugated beads, pro-
tein was subjected to Western blot analysis using anti-
BiP antibody (Figure 5F). BiP was detected in all of input
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Figure 4 The SRCR domain is critical for the surface targeting and N-glycosylation of SR-Al. COS-7 cells were transfected with
SR-Al' and variants with truncated SRCR domains. A, Surface-targeted SR-Al variants were detected by live immunostaining (green).
Cytosolic SR-Al variants were detected by immunocytochemistry (red). The yellow signal in the merged confocal images indicated that
SR-Al, 371, and 341 were surface-targeted. Nuclei were counterstained with Hoechst 33258 (blue). Scale bar, 20 um. B and C, Western
blot analysis of total cell lysates and avidin pull-down of biotinylated lysates after PNGase F cleavage. B-actin and transferrin receptor
(TfR) served as loading controls. D, Relative levels of surface-targeted SR-Al variants were quantified by densitometry. E, Western blot
analysis of total cell lysates after PNGase F or Endo H cleavage. F and G, Transfected cells were incubated with fluorescent oAB and
AcLDL followed by immunostaining using anti-SR-A antibody. The experiments were repeated at least three times. Relative fluorescence
intensities of internalized oAB and AcLDL for more than 100 SR-Al-positive cells were quantified using MetaMorph software. Bars
indicate mean + SEM of three independent experiments. Experimental groups labeled with different letters (a, b, c) were significantly
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lysates, however, BiP was only co-immunoprecipitated with
341-exonll. This suggested that the fusion of exon 11
to 341 resulted in the prolonged binding of BiP. Con-
sistently, SR-AII internalized less 0AP and AcLDL com-
pared with SR-AI, whereas 341-exonll internalized
little 0AP or AcLDL (Additional file 3: Figure S2C,D and
Figure 5G,H).

The SRCR domain mediates the internalization of oA
and AcLDL

The collagenous domain has been identified as AcLDL
binding domain [33]. Next, we examined whether the
SRCR domain also mediates the ligand binding. Variants
341 and A273-341 lacked the SRCR and collagenous do-
main, respectively. Variant 272 lacked both the SRCR
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signal in the merged confocal images indicated that SR-Al and SR-All were surface-targeted. Nuclei were counterstained with Hoechst 33258
(blue). B and C, Western blot analysis of total cell lysates and avidin pull-down of biotinylated lysates after PNGase F cleavage. D, Relative levels
of surface-targeted SR-Al variants were quantified by densitometry. E, Western blot analysis of total cell lysates after PNGase F or Endo H
cleavage. F, Lysates of COS-7 cells were immunoprecipitated with anti-SR-A antibody and subjected to Western blot analysis using anti-BiP. The
experiments were repeated at least three times. G and H, Transfected cells were incubated with fluorescent oA and AcLDL followed by
immunostaining using anti-SR-A antibody. Relative fluorescence intensities of internalized oAB and AcLDL for more than 100 SR-A-positive cells
were quantified using MetaMorph software. Bars indicate mean + SEM of three independent experiments. Experimental groups labeled with
different letters were significantly different from each other (p < 0.05).
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and collagenous domains. The protein level of 272 was
higher than that of 341 and A273-341 in the total cell ly-
sates (Figure 6A). The surface biotinylation assay and
Western bolt analysis showed that all these deletion mu-
tants were surface-targeted (Figure 6B). The densitom-
etry analysis indicated similar surface protein levels of
341 and A273-341 (Figure 6C). Both A273-341 and 272
were predominately Endo H-resistant (Figure 6D). The
surface-targeting of SR-AI, 341, and A273-341was fur-
ther confirmed by the confocal images of surface-bound
0Ap on the plasma membrane of SR-AI, 341, and A273-
341-transfected cells (Additional file 4: Figure S3A). 341
and A273-341 internalized approximately 50% of the
oAp and AcLDL internalized by SR-AI (Additional file 4:
Figure S3B,C and Figure 6E,F). These results indi-
cated that the SRCR domain functioned as a binding
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domain for oAp and AcLDL in the absence of the
collagenous domain.

Lysine residues at 332, 335, and 338 in the collage-
nous domain of SR-AI have been shown to be critical
for AcLDL uptake [33]. We mutated three lysine res-
idues at 332, 335, and 338 in SR-AI and 341. The in-
ternalization of 0Ap and AcLDL by SR-AIKA and 341KA
was examined. SR-AIKA and 341KA were surface-targeted
and predominantly Endo H-resistant (Figure 7A-D).
The live immunostaining showed that SR-AI, SR-AIKA,
and 341KA were surface-targeted (red signal, Figure 7E).
However, SR-AI and SR-AIKA, but not 341KA bound
oAP (yellow signal) at the plasma membrane. SR-
AIKA internalized 50% oAf and a similar amount of
AcLDL compared to SR-AI (Figure 7F,G). However,
341KA internalized little 0Ap and AcLDL. These data
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lysates and avidin pull-down of biotinylated lysates after PNGase F cleavage. C, Relative levels of surface-targeted SR-Al variants were quantified
by densitometry. D, Western blot analysis of total lysates of transfected cells after PNGase F or Endo H cleavage. The experiments were repeated
at least three times. E and F, Relative fluorescence intensities of internalized oAB and AcLDL for more than 100 SR-Al variant-positive cells were
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letters were significantly different from each other (p < 0.05).
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suggests that intact SRCR domain of SR-AIKA func-
tions as a ligand binding domain while the ligand bind-

ing activity of the mutated collagenous domain was
abolished.

Discussion

In the present study, we use live immunostaining, sur-
face biotinylation assay and ligand internalization to as-
sess the functions of the SRCR domain of SR-AI Our
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results provide the first evidence that the intact SRCR
domain of SR-AI is critical for the protein folding and
N-glycosylation. We show that the SRCR domain of
SR-AI can serve as the binding domain of oA and
AcLDL in the absence of the collagenous domain. The
coimmunoprecipitation of BiP chaperon suggested that in-
efficiently folded intracellularly-retained SR-A variants
were recognized by the endoplasmic reticulum-associated
degradation pathway. These results thus indentify two
novel functions of the intact SRCR domain which may
be shared by the SRCR superfamily.

The functions of the SRCR domain of SR-AI were not
identified by the previous studies due to several reasons.
First of all, SR-AII lacking the SRCR domain is surface-
targeted and binds AcLDL, suggesting that the SRCR
domain may be not involved in AcLDL binding [34]. In
addition, Doi et al. showed that a truncated variant of
bovine SR-AI with a deletion of a long segment of the
SRCR domain including exon 11 and part of exon 10 is
surface-targeted and functional. However, mutants with
partial or complete deletion of exon 11 were not avail-
able in their study [17]. Because they did not construct a
plasmid containing an intact SRCR domain in the absence
of the collagenous domain, the ligand-binding activity of
the SRCR domain is not revealed in their study.

Cysteine residues in the SRCR domain, which form
disulfide bonds, are involved in protein folding and
resistance to biochemical and enzymatic stress [7,35].
Disulfide bond formation stabilizes and accelerates pro-
tein folding [36]. It is suggested that six cysteine residues
in the SR-AI SRCR domain form three pairs of disulfide
bonds. Variant 430 lacked two disulfide bonds, whereas
variant 407 lacked all three disulfide bonds, suggesting
that the truncated SRCR domain encoded by exon 11
may affect the folding of SR-AI protein. Electron micros-
copy revealed that a flexible hinge exists between the a-
helix coiled-coil and the collagenous triple helix of SR-AI
and SR-AII [37]. The angle of the two adjacent fibrous
segments is zero degrees at physiological pH level,
suggesting that SR-AI is compact, with the SRCR domain
near the other domains. Therefore, the SRCR domain
may be able to modulate protein folding of SR-AI be-
cause the hinge at zero degrees brings the SRCR domain
close to the other domains.

It has been shown that misfolded proteins with ex-
posed hydrophobic patches or unpaired cysteines elicit
prolonged binding by the molecular chaperone BiP in
the ER [32]. This prolonged BiP binding prevents the
misfolded protein from being transported along the
secretory pathway [38]. BiP also binds misfolded proteins
bearing monoglycosylated N-glycans, which are beyond re-
pair and released from the calnexin chaperone [32,39]. 341
was surface-targeted, however, the fusion of exonll with
341 converted the compartment of this SR-AI variant
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into intracellular retention. The co-immunoprecipitation
of BiP with suggests that 341-exonll was not effectively
folded. It is purposed that SR-AIII acts as a dominant
negative regulator of SR-A activity to prevent excessive
lipid uptake by macrophage and prevent form cell
formation [40]. In the study, the ineffective folding of
341-exonll which mimics SR-AIIl provides a cellular
mechanism for the intracellular retention of SR-AIIL. The
direct interaction of 341-exonll and SR-AI was detected
by co-immunoprecipitation (data not shown). Our fin-
dings suggest that SR-AI variants with truncated SRCR
domain are detected by protein quality control mecha-
nisms in the ER. Consistently, we found that the intracel-
lular retention of SR-AI variants co-occurs with the arrest
of N-glycosylation at high-mannose stages in cis-golgi.

Conclusion

The SRCR domain is highly conserved within the SRCR
superfamily with more than 30 proteins with diverse
functions including pathogen recognition, and modulation
of innate immunity. However, the roles of the SRCR do-
main of these proteins remain unclear. The novel functions
of the SRCR domain of SR-AI revealed by this study may
be conserved in the SRCR superfamily and provide oppor-
tunities to modulate the innate immunity and host de-
fenses through regulating the level of protein surface
targeting and ligand binding of SR-AI and members of the
SRCR superfamily in microglia and macrophages.

Additional files

Additional file 1: Table S1. The primer sets and cloning strategy for
expression constructs of SR-Al, SR-All, and SR-Al variants.

Additional file 2: Figure S1. Overexpressed human SR-Al in COS-7 is
N-glycosylated and mediates the internalization of AcLDL and oAR.
A, Western blot analysis of total cell lysates of human macrophage and
PMA-differentiated THP-1 cells and SR-Al-transfected COS-7 cells with and
without PNGase F. B, Transfected COS-7 cells were incubated with Alexa
488-labeled AcLDL for 1 h at 37°C and immunostained with an anti-SR-A
antibody. Representative confocal images showed that SR-Al-positive
COS-7 cells internalized AcLDL (upper panel). The level of internalized
AcLDL of SR-Al-positive or vector-positive cells was quantified by the
flow cytometry. The mean fluorescence intensity of AcLDL uptake by
SR-Al-positive COS-7 cells was significantly higher than the vector-positive
COS-7 cells (lower panel). C, Transfected COS-7 cells were incubated with
Alexa FAM-0A for 30 min at 37°C and immunostained with an anti-SR-A
antibody. Representative confocal images showed that SR-Al-positive COS-7
cells internalized oA (upper panel). Relative fluorescence intensity of
internalized oAR of SR-Al-positive or vector-positive cells was quantified
(lower panel). More than 100 SR-Al-positive cells in five random fields were
analyzed. Bars indicate mean + SEM of three different experiments (*p < 0.05).
Nuclei were counterstained with Hoechst 33258 (blue). Scale bar, 20 um.

Additional file 3: Figure S2. Internalization of oAp and AcLDL by
COS-7 cells transfected with SR-Al and variants. Cells were incubated with
FAM-0AR for 30 min or Alexa 594-labeled AcLDL for 1 h at 37°C. Cells
were immunostained with an anti-SR-A antibody. A and B, SR-Al and
variants 371 and 341 internalized oAB and AcLDL. Variants 430 and 407
failed to internalize oAB and AcLDL. C and D, SR-Al- and SR-All- but not

3471-exon11-positive cells internalized oA and AcLDL. Nuclei were
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counterstained with Hoechst 33258 (blue). Scale bar, 20 um. Nuclei were
counterstained with Hoechst 33258 (blue). Scale bar, 20 pm.

Additional file 4: Figure S3. Both SRCR and collagenous domains bind
and internalize 0AB and AcLDL. COS-7 cells were transfected with SR-Al, 341,
A273-341, and 272. A, Representative confocal images of surface-bound oAB
on the plasma membrane of transfected cells. Yellow signal of merged
images represented the surface-targeted SR-Al, 341, and A273-341 bind
OAR (green) at the plasma membrane as shown by SR-A live
immunostaining (red). Scale bar, 20 um. B and C, SR-Al, 341, and
A273-341-positive cells internalized oAP and AcLDL. Nuclei were
counterstained with Hoechst 33258 (blue). Scale bar, 20 um.
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