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Heme oxygenase-1: emerging target of cancer
therapy
Lee-Young Chau
Abstract

Heme oxygenase-1 (HO-1) is a rate-limiting enzyme catalyzing oxidative degradation of cellular heme to liberate free
iron, carbon monoxide (CO) and biliverdin in mammalian cells. In addition to its primary role in heme catabolism, HO-1
exhibits anti-oxidative and anti-inflammatory functions via the actions of biliverdin and CO, respectively. HO-1 is highly
induced in various disease states, including cancer. Several lines of evidence have supported the implication of HO-1 in
carcinogenesis and tumor progression. HO-1 deficiency in normal cells enhances DNA damage and carcinogenesis.
Nevertheless, HO-1 overexpression in cancer cells promotes proliferation and survival. Moreover, HO-1 induces
angiogenesis through modulating expression of angiogenic factors. Although HO-1 is an endoplasmic reticulum
resident protein, HO-1 nuclear localization is evident in tumor cells of cancer tissues. It has been shown that HO-1
is susceptible to proteolytic cleavage and translocates to nucleus to facilitate tumor growth and invasion independent
of its enzymatic activity. HO-1 also impacts cancer progression through modulating tumor microenvironment. This
review summarizes the current understanding of the protumorigenic role of HO-1 and its potential as a molecular
target for cancer therapy.
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Heme oxygenase-1 (HO-1) was initially identified as a
liver microsomal protein with activity to degrade heme
to bilirubin four decades ago [1]. The first HO-1 cDNA
was cloned from rat spleen in 1985 [2], and the amino
acid sequence revealed a hydrophobic segment located
at the carboxyl terminus, which is required for its anchor-
ing to endoplasmic reticulum (ER) with type II transmem-
brane topology. HO-1 is highly expressed in the organs
responsible for degrading senescent red blood cells, in-
cluding spleen, reticuloendothelial cells of the liver and
bone marrow, and HO-1 in macrophages is involved in
the recycling of hemoglobin-heme [1]. Although the basal
HO-1 expression level in tissues not directly responsible
for hemoglobin metabolism is low, HO-1 is highly in-
duced in cells upon exposure to many agents promoting
cellular stresses, including heavy metals, endotoxin, cyto-
kines, heme, hypoxia, nitric oxide, and UV irradiation
[2-6]. These findings indicate that HO-1 is not only
involved in normal physiology but also has a role in
pathophysiological states.
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The research on HO-1 was rapidly extended in late
1990’s. It has been shown that HO-1 knockout mice de-
velop anemia associated with hepatic and renal iron over-
load, which leads to oxidative tissue injury and chronic
inflammation [7]. Moreover, these mice are more suscep-
tible to ischemic and reperfusion injury [8,9]. A human
case of HO-1 deficiency was also reported [10]. This pa-
tient suffered from growth retardation with persistent
hemolytic anemia and abnormal coagulation/fibrinolysis
system associated with persistent vascular injury. These
observations provide strong evidence to support the im-
plication of HO-1 in systemic iron homeostasis and stress
response. Along with the genetic studies, increasing evi-
dence has accumulated to show that CO and biliverdin,
the byproducts derived from heme degradation by HO-1,
possess potent anti-inflammatory and antioxidant activ-
ities, respectively [11,12]. These findings provoke substan-
tial interest in the cytoprotective functions of HO-1 and
its therapeutic potential in treating various disease states
associated with inflammation and oxidative stress, such as
cardiovascular and pulmonary diseases [13]. Considering
that both oxidative stress and inflammation are implicated
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in tumorigenesis, the role of HO-1 in cancer has also re-
ceived considerable attention in recent years.

Association between HO-1 gene polymorphism and
cancer
Genetic variation is one of the important factors contrib-
uting to cancer susceptibility. A (GT)n repeat poly-
morphism present in the proximal promoter of human
HO-1 gene has been shown to influence the transcrip-
tional activation of HO-1 gene [14]. The shorter (GT)
repeats is associated with higher transcriptional activity
of HO-1 gene in human cells. Several genetic studies
have been carried out to assess the association between
HO-1 gene polymorphism and the risk of cancer in
humans [15-23]. It has been shown that subjects carry-
ing the shorter (GT) repeats have lower risk in oral
squamous cell carcinoma [15], lung adenocarcinoma
[16], gastric adenocarcinoma [18], breast cancer [19],
esophageal squamous cell carcinoma [21], and malignant
mesothelioma [23]. However, some reported the higher
risk for melanoma [17], gastric cancer [20], and pancre-
atic cancer [22] in subjects carrying the shorter repeats.
The inconsistency is likely caused in part by the differ-
ences in the subject ethnicity, sample sizes, disease
stages, and cancer types for studies [24]. It is apparent
that further studies with large homogeneous patient
populations will be needed to validate the association
between HO-1 gene polymorphism and human cancer.

Association between HO-1 expression and cancer
progression
HO-1 overexpression is commonly seen in human can-
cers, including prostate [25], renal [26], gastric [27],
colon [28], lung [29], thyroid [30], bladder [31], breast
[32], oral [33], and glioma [34] cancers. Moreover, the
expression level is positively correlated with the disease
stage and poor prognosis in patients. Notably, there were
studies showing that HO-1 was detected not only in
cytoplasm but also in nucleus of tumor cells in prostate
[35,36], lung [29,37], and oral [38] cancer tissues. The
extent of HO-1 nuclear localization was associated with
disease progression and poor prognosis in patients with
prostate cancer [36] and oral carcinoma [38]. In addition
to the expression in tumor cells, the positive HO-1 im-
munoreactivity was also detected in stromal compart-
ment, particularly the tumor-associated macrophages
[39-41] of cancer tissues, suggesting that HO-1 may im-
pact cancer progression through modulating tumor
microenvironment.

Regulation of HO-1 expression in cancer cells
Cancer cells exhibit elevated oxidative stress due to their
high metabolic rate. Moreover, they are surrounded by a
complex microenvironment and significantly influenced
by their interplays with the stromal components, espe-
cially the infiltrating inflammatory cells [42]. It is envi-
sioned that the oxidative stress and stimulations by
various growth factors and cytokines released from stro-
mal cells are capable of inducing HO-1 gene transcrip-
tion in tumor cells through activation of various
signaling pathways and transcriptional factors, including
Nrf2, NF-κB, AP2 and others [43]. Hypoxia has also
been shown to induce HO-1 expression [6].
Furthermore, HO-1 gene expression is upregulated by

oncogenes, such as Kaposi sarcoma-herpes virus [44]
and BCR/ABL kinase [45]. In addition to the regulation
at transcriptional level, HO-1 expression is subjected to
posttranscriptional regulation. It has been shown that
regulation of HO-1 by mir378 is implicated in lung car-
cinoma growth and metastasis [46]. Downregulation of
HO-1 by mir200c enhances the sensitivity of renal car-
cinoma cells to chemotoxic agents [47]. Moreover, HO-
protein is turnovered by ubiquitin-proteasome system
[48]. Our group recently demonstrated that HO-1 is a
physiological substrate of TRC8, which is an ER-resident
E3 ligase associated with hereditary renal cell carcinoma
and thyroid cancer [49]. It was shown that the tumor
suppressive effect of TRC8 is mediated at least in part
via targeting HO-1 for ubiquitination and degradation in
cancer cells.

Paradoxical roles of HO-1 in tumorigenesis
Tumorigenesis is a multistep process in which the accu-
mulation of several genomic mutations is required to
initiate the transformation of normal cells to become
cancer cells. DNA damage caused by the reactive oxygen
species (ROS) is a major source of mutation. HO-1
downregulation leads to the increase of ROS and DNA
damage in cells [49]. Furthermore, CO improves cell
survival post irradiation or genotoxin treatment by indu-
cing DNA repair [50]. Therefore, increase in HO-1 ex-
pression prevents DNA damage and the initiation of
carcinogenesis in normal cells. However, at late phase of
tumorigenesis, HO-1 overexpression promotes cancer
cell proliferation and invasiveness [45,49,51-53]. HO-1
protects cancer cells from apoptosis induced by chemo-
toxic agents or irradiation, suggesting its involvement in
therapeutic resistance [54-61]. A recent study showed
that CO contributes to the resistance of cancer cells to
oxidative stress and chemotoxic agents by inhibiting the
heme-containing cystathionine β-synthase, which causes
reduced PFKFB3 methylation and shift of glucose
metabolism to pentose phosphate pathway, resulting in
subsequent increase of NADPH to replenish reduced
glutathione [62].
Paradoxically, another study in prostate cancer dem-

onstrated that CO inhibits tumor growth and increases
sensitivity to chemotherapy by enhancing metabolic
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exhaustion [36]. The cause behind the opposite effects
of CO observed in these studies is not yet clear. Never-
theless, HO-1 augments angiogenesis in tumor by indu-
cing the expression of angiogenic factors, such as
vascular endothelial growth factor (VEGF) [63-65]. Re-
cently, increasing evidence has demonstrated the in-
volvement of Nrf2-mediated transcriptional activation of
antioxidant genes in promoting cell transformation and
tumorigenesis [66,67]. Mutations in Nrf2 and its inhibi-
tor, KEAP1, have recently been identified in human can-
cers [68]. As HO-1 is one of the target genes regulated
by Nrf2, it is apparent that HO-1-mediated antioxidant
response contributes at least in part to the tumorigenic
process promoted by Nrf2 activation. Targeting HO-1
has been shown to be an effective approach for hormone-
refractory prostate cancer [69] and overcome imatinib re-
sistance in chronic myeloid leukemia [70]. It also increases
the sensitivity of hepatoma, urothelial and pancreatic
cancers to chemotherapy [55,60,63,71]. Furthermore,
HO-1 inhibition is synthetic lethal in fumarate-hydrotase
deficient cells associated with hereditary leiomyomatosis
and renal-cell cancer [72].

Protumorigenic function of nuclear HO-1
Although HO-1 is an ER-anchored protein, there were
reports showing HO-1 localization in other subcellular
compartments [73-75]. HO-1 nuclear localization has
been seen in fetal lung cells exposed to hyperoxia [76],
and in brown adipocytes and astroglial cells during dif-
ferentiation [77,78]. HO-1 nuclear localization was also
evident in the cancer cells of prostate, lung, and oral
cancer tissues, and associated with tumor progression
[29,35,36,38]. However, the pathophysiological signifi-
cance of HO-1 nuclear localization and the mechanism
involved are not yet fully explored. Early studies have
shown that HO-1 is sensitive to proteolytic cleavage
[79]. A recent study demonstrated that HO-1 undergoes
proteolytic cleavage, which results in the release of a sol-
uble HO-1 with truncation of its C-terminal transmem-
brane segment from ER membrane and subsequent
translocation to nucleus under some stress conditions
in vitro [80]. More recently, studies from our group and
others have shown that HO-1 is susceptible to intramem-
brane cleavage mediated by the ER-associated signal pep-
tide peptidase (SPP) [37,81]. We further demonstrated
that SPP is highly expressed in lung cancer cells, and cor-
relates with HO-1 nuclear localization in the same lung
cancer tissues [37]. Interestingly, nuclear HO-1 promotes
tumor growth and invasion independent of its enzymatic
activity [37]. The nuclear HO-1 translocation has also
been shown to be implicated in imatinib resistance in
chronic myeloid leukemia cells [82]. These findings add
a new dimension to HO-1-mediated protumorigenic ef-
fects. It has been shown that HO-1 nuclear translocation
confers protection against oxidative stress in yeast and
mammalian cells through activating oxidant responsive
transcriptional factors and upregulation of antioxidant
genes. [80,83] Since HO-1 does not contain DNA binding
domain, whether it can impact the transcription of genes
related to cancer progression through interaction with
transcriptional factors or other nuclear proteins deserves
further investigation.
Impacts of hematopoietic HO-1 on cancer
The immune/inflammatory cells recruited to tumor
microenviroment have profound effects on cancer pro-
gression by modulating inflammatory response and anti-
tumor immunity [42]. HO-1 has been shown to modulate
the immune regulatory functions of myeloid cells by sup-
pressing the expression of proinflammatory cytokines,
such as tumor necrosis factor-α, but promoting the ex-
pression of immunosuppressivecytokine, interleukin-10
(IL-10) [12]. HO-1 promotes inflammation-associated
angiogenesis through up-regulating VEGF expression in
macrophages [84]. Furthermore, HO-1 expression in
myeloid-derived suppressor cells participates in the sup-
pression of alloreactive T cells [85]. Although HO-1 ex-
pression in the stromal macrophages has been seen in
the cancer tissues [39-41], the impact of HO-1 expres-
sion in myeloid cells on cancer progression is less ex-
plored. A recent study by Arnold et al. demonstrated
that HO-1 expression mediates the immune suppressive
function of a stromal macrophage subpopulation ex-
pressing fibroblast activation protein-α [86].
By performing the syngeneic tumor graft experiments

with wild type and HO-1 +/− mice, we recently demon-
strated that the host HO-1 expression did not affect the
growth of primary tumor, but significantly enhanced
lung metastasis [87]. The involvement of hematopoietic
HO-1 in this process was further demonstrated by the
bone marrow transplantation experiment. Mechanistically,
we found that HO-1 enhances the chmoattractant-induced
migration response of myeloid cells, and therefore facilitates
the recruitment of myeloid cells to the pulmonary premeta-
static niche and the metastatic loci. Moreover, myeloid
HO-1-induced expressions of VEGF and IL-10 promoted
tumor cell extravasation and STAT3 activation, which are
crucial for the survival and successful colonization of tumor
cells in metastatic sites.
In addition to the role in innate immunity, HO-1 also

participates in the adaptive immune response in tumor
microenvironment. There was a study showing that HO-
1-specific CD8+ regulatory T cells with immunosuppres-
sive activity is present in the peripheral blood and tumor
tissues of patients [88]. Collectively, these findings sup-
port that HO-1 can impact cancer progression through
modulating tumor microenvironment.



Figure 1 Multifaceted roles of HO-1 in cancer. HO-1 induction under various cellular stresses impacts tumorigenesis through multiple
pathways. CO and biliverdin, the byproducts derived from heme degradation by HO-1 reaction, protect normal cells from transformation in the
early phase of tumorigenesis, whereas promote the growth and survival of tumor cells in the late phase of cancer development. Nuclear translocation
of HO-1 from ER can affect cancer progression independent of its enzymatic activity. Moreover, HO-1 expression in stromal compartments influences
the establishment of cancer permissive microenvironment.
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Conclusion
As illustrated in Figure 1, HO-1 can influence cancer de-
velopment through multiple pathways. HO-1 confers
protection in early carcinogenesis, but it promotes can-
cer cell survival, growth and metastasis in the later
process. The paradoxical roles of HO-1 in different
phases of tumorigenesis may provide partial explanation
for the discrepant findings in the genetic association
studies. Beyond its effect on tumor cells, HO-1 can im-
pact cancer progression through modulating tumor
microenvironment. Myeloid HO-1 expression promotes
the recruitment of immune/inflammatory cells and their
immunosuppressive and proangiogenic capacities facili-
tate cancer cell growth and metastasis. Although consid-
erable protumorigenic effects of HO-1 are mediated by
its reaction byproducts, the discovery that HO-1 translo-
cates to nuclear to enhance tumor cell proliferation and
invasion via a mechanism independent of its enzymatic
activity increases the complexity of HO-1-targeted therapy.
Nevertheless, accumulative evidence has demonstrated that
HO-1 inhibition using specific gene knockdown approach
or metalloprotoporphyrin competitive inhibitor, such as
zinc protoporphyrin IX, to block heme binding significantly
enhances the sensitivity of cancer cells to chemotherapy
or irradiation and suppresses cancer metastasis in ex-
perimental animals [55,60,61,63,70.71]. Recently, several
imidazole-based non-porphyrin HO-1 inhibitors were
developed [89]. These compounds exhibit higher selectiv-
ity toward HO-1 without affecting other heme-containing
proteins. Moreover, their potent anti-tumor activities have
been shown in vitro and in vivo, supporting their thera-
peutic applications [69,89,90]. Collectively, these findings
support the possibility of targeting HO-1 to improve
cancer immunotherapy and prevent metastasis, which is
the major cause of cancer-associated death.
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