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Abstract

The first- and second-generation epidermal growth factor receptor tyrosine kinase inhibitors (1/2G EGFR-TKIs) gefitinib,
erlotinib, and afatinib have all been approved as standard first-line treatments for advanced EGFR mutation-positive
non-small cell lung cancer. The third-generation (3G) EGFR-TKIs have been developed to overcome the EGFR T790M
mutation, which is the most common mechanism of acquired resistance to 1/2G EGFR-TKI treatment. This resistance
mutation develops in half of the patients who respond to 1/2G EGFR-TKI therapy. The structures of the novel 3G
EGFR-TKIs are different from those of 1/2G EGFR-TKIs. Particularly, 3G EGFR-TKIs have lower affinity to wild-type
EGFR, and are therefore associated with lower rates of skin and gastrointestinal toxicities. However, many of the
adverse events (AEs) that are observed in patients receiving 3G EGFR-TKIs have not been observed in patients
receiving 1/2G EGFR-TKIs. Although preclinical studies have revealed many possible mechanisms for these AEs,
the causes of some AEs remain unknown. Many mechanisms of resistance to 3G EGFR-TKI therapy have also been
reported. Here, we have reviewed the recent clinical and preclinical developments related to novel 3G EGFR-TKIs,
including osimertinib, rociletinib, olmutinib, EGF816, and ASP8273.
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Background
The first-generation reversible epidermal growth factor
receptor tyrosine kinase inhibitors (1G EGFR-TKIs)
gefitinib and erlotinib are both quinazoline derivatives,
as is the second-generation (2G) irreversible EGFR-TKI
afatinib. These drugs are effective for treating advanced
EGFR mutation-positive non-small cell lung cancer
(NSCLC), especially in patients who harbor EGFR exon 21
L858R mutation (EGFRL858R) or exon 19 deletions
(EGFRdel19). Accordingly, all of these drugs are currently
standard first-line therapies for these patients [1–6]. How-
ever, these drugs also inhibit wild-type EGFR (EGFRwt),

and diarrhea and skin acne/rash are common adverse
events (AEs). After a period of 9 to 11 months of effective
treatment, acquired resistance to 1G/2G EGFR-TKIs
inevitably ensues. About 50–60% of the cases of acquired
resistance are attributable to the EGFR T790M mutation,
which is the substitution of threonine with methionine at
amino acid position 790, EGFRT790M [7–12]. Novel third-
generation (3G) EGFR-TKIs were designed to overcome
this major mechanism of resistance while also having less
capacity to inhibit EGFRwt, thereby minimizing the AEs
that are seen in 1G/2G EGFR-TKI therapy. Here, we have
reviewed the recent preclinical and clinical developments
related to 3G EGFR-TKIs with a special focus on the
unusual AEs that are associated with these novel drugs.
We have also reviewed the mechanisms of acquired re-
sistance to these drugs and the possible solutions by
which these resistance mechanisms may be overcome.
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A literature review of clinical studies published between
January 2013 and June 2016 was conducted using PubMed
and MEDLINE, with the entry keywords ‘non-small cell
lung cancer,’ ‘epidermal growth factor receptor T790M
mutation,’ ‘osimertinib,’ ‘rociletinib,’ ‘olmutinib,’ ‘EGF816,’
and ‘ASP8273.’ We also performed a manual search of the
abstracts presented at major oncology meetings.

Main text of the review
Osimertinib
Osimertinib (AZD9291) is a mono-anilino-pyrimidine
compound that irreversibly targets tumors harboring
EGFRL858R, EGFRdel19, and EGFRT790M, while having
little effect on EGFRwt. This compound makes a covalent
bond with cysteine residue in position 797 of EGFR
(Cys797), and also has activity against other kinases that
harbor cysteine residue in the analogous kinase domain,
such as ErBB2, ErBB4, and BLK (BLK proto-oncogene,
Src family tyrosine kinase; previous name: B lymphoid
tyrosine kinase). Like EGFRT790M, insulin receptor and
insulin-like growth factor 1 receptor also have methionine
gatekeeper in their kinase domains. Nonetheless, osimertinib
does not have significant activity against either of these
receptors [13, 14].
In the first phase I/II clinical study of orally administered

osimertinib (AURA), 80 mg/day was chosen as the dose
for subsequent phase II or III studies, even though a true
dose-limiting toxicity was not observed at this dose level
[15]. In a pooled analysis of two studies (AURA phase II
extension cohort and AURA 2), outcomes were examined
for patients who had EGFR mutation-positive NSCLC,
whose disease had progressed following previous EGFR-
TKI therapy, whose tumors harbored EGFRT790M, and
who had been treated with osimertinib at 80 mg/day.
Among the 397 evaluable patients, the confirmed objective
response rate (ORR) was 66% and the disease control rate
(DCR) was 91%. The median progression-free survival
(PFS) was 11.0 months (n = 411). The observed treatment-
related AEs are listed in Table 1, and only < 1% of the
patients developed grade ≥ 3 skin rash or diarrhea. Three
percent of the patients developed interstitial lung disease
(ILD) and QT interval corrected for heart rate (QTc)
prolongation while hyperglycemia developed in less than
1% of the patients [16]. Some grade ≥ 3 laboratory abnor-
malities, such as neutropenia (3.4%), lymphopenia (3.3%),
thrombocytopenia (1.2%), and hyponatremia (3.4%) were
also reported [17].
In November 2015, osimertinib received US Food and

Drug Administration (FDA) approval for EGFR–TKI-
pretreated metastatic EGFRT790M-positive NSCLC, as
did the companion diagnostic test (cobas® EGFR Muta-
tion Test v2) that is used to detect tumor EGFRT790M.
By July 2016, osimertinib had also received approvals in
the European Union, Japan, South Korea, Canada,

Switzerland, Israel, and Mexico. A confirmatory phase
III study (AURA 3, ClinicalTrials.gov, NCT02151981) is
comparing osimertinib with platinum-based chemother-
apy in patients who have advanced EGFR mutation-
positive NSCLC, whose disease progressed following
first-line EGFR-TKI therapy, and whose tumors harbor
EGFRT790M. This study has completed patient accrual
and is ongoing.
Because osimertinib has activity against sensitizing

EGFR mutations and is associated with reduced skin
rash and diarrhea AEs, it has also been tested as a first-
line treatment for metastatic EGFR mutation-positive
NSCLC. Two expansion cohorts in the AURA study
enrolled patients with metastatic EGFR mutation-
positive NSCLC and tested the safety and efficacy of
first-line osimertinib monotherapy. Osimertinib mono-
therapy was tested at 80 and 160 mg/day, and a total of
60 patients were enrolled (30 at each dose level). The
ORR was 67% at 80 mg/day and 87% at 160 mg/day.
The DCR was 93% at 80 mg/day and 100% at 160 mg/day.
For 80 mg/day, the median PFS had not been reached at
the time of the data cutoff for the analysis, and the
18-month progression-free survival rate was 57%. For
160 mg/day, the median PFS was 19.3 months, and
the 18-month progression-free survival rate was 53%.
All grades skin rash and diarrhea developed in 70
and 87% of patients receiving 80 mg/day, respectively,
as well as 60 and 80% of patients receiving 160 mg/day,
respectively. Three percent and 7% of patients developed
grade ≥ 3 skin rash and grade ≥ 3 diarrhea at 160 mg/day,
respectively. ILD and QTc prolongation developed in 10
and 0% of patients receiving 80 mg/day, as well as 7 and
10% of patients receiving 160 mg/day, respectively [18].
A phase III randomized study (FLAURA study, Clini-
calTrials.gov, NCT02296125) is comparing osimertinib
with gefitinib or erlotinib as first-line therapies in patients
with advanced EGFR mutation-positive NSCLC. The
study has completed patient accrual and is ongoing.
Osimertinib showed clinical activity for brain metastases

in the AURA and AURA 2 studies [19]. Leptomeningeal
metastasis is another detrimental complication of
advanced EGFR mutation-positive NSCLC [20]. A phase I
study (BLOOM study, ClinicalTrials.gov, NCT02228369)
is ongoing to test the safety and efficacy of osimertinib
monotherapy against brain and leptomeningeal metastasis.
In a preliminary report, osimertinib at 160 mg/day showed
promising activity against leptomeningeal metastasis [21].
Combination therapy is another treatment strategy for

conferring better anti-tumor activity. In the TATTON
study (ClinicalTrials.gov, NCT02143466), osimertinib
was combined with either MET inhibitor (AZD6094,
savolitinib), MEK inhibitor (selumetinib), or anti-PD-L1
monoclonal antibody (MEDI4736, durvalumab) [22].
However, a preliminary report showed that the incidence

Liao et al. Journal of Biomedical Science  (2016) 23:86 Page 2 of 10



Table 1 Selected clinical efficacy reports of third-generation EGFR-TKIs

Drug name Number Patient group Dose ORR PFS AEs (% total, % ≥ grade 3)a ILD
(%)

Distinct AEs

Osimertinib 411 EGFR-TKI pretreated
advanced EGFRT790M–
positive NSCLC

80 mg/day 66% (95% CI, 61–71) 11.0 months
(95% CI 9.6–12.4)

Skin rash (41, < 1), diarrhea
(38, < 1), dry skin (30, 0),
QTc prolongation (3, 1)

3 Neutropenia, lymphopenia,
thrombocytopenia,
hyponatremia, QTc
prolongation

Rociletinib 548 EGFR-TKI pretreated
advanced EGFRT790M–
positive NSCLC

500–750 mg twice
per day

33.9% (95% CI, 29.5–38.5) 5.7 months (95% CI 4.2–6.2)
at 500 mg twice a day

Hyperglycemia (65.2, 35.2),
skin rash (11.7, 0.4), diarrhea
(57.5, 4.6), QTc prolongation
(30.1, 10.2)

2.4 Hyperglycemia, cataract,
QTc prolongation,
pancreatitis

Olmutinib 76 EGFR-TKI pretreated
advanced EGFRT790M–
positive NSCLC

800 mg/day 54% 6.9 months(95% CI 5.36–9.49) Diarrhea (59, 0), pruritus
(42, 1), rash (41, 5), nausea
(39, 0), Palmar-plantar
erythrodysesthesia
syndrome (30, 4)

1 Palmar-plantar
erythrodysesthesia
syndrome

EGF816 152 Advanced EGFR mutation-
positive NSCLCb

75–350 mg/day 46.9% (95% CI, 38.7–55.3) 9.7 months (95% CI 7.3–11.1) Skin rash (53.9, 16.4),
diarrhea (36.8, 2), pruritus
(34.2, NA), dry skin (25.0,
NA), stomatitis (24.3, 2.0)

0.7 Distinct skin rash, hepatitis
B virus reactivation,
increased serum lipase level

ASP8273 63 Advanced EGFR mutation-
positive NSCLC (92%
harbored EGFRT790M)

300 mg/day 30% (95% CI, 19.2–43.0) 6.0 months (95% CI 4.1–9.8) Diarrhea (48, 2), nausea
(27, 0), paresthesia (14, 0),
vomiting (13, 0), dizziness
(11, 0), and hyponatremia
(19, 13)

0 Hyponatremia, paresthesia

Abbreviations: EGFR epidermal growth factor receptor, TKI tyrosine kinase inhibitor, ORR objective response rate, PFS progression-free survival, AE adverse event, ILD interstitial lung disease, NSCLC non-small cell lung
cancer, CI confidence interval, QTc QT interval corrected for heart rate, NA not available
aFor each AE, reported values in this column are (the percent of patients receiving the therapy who experience the AE, the percent of patients receiving the therapy who experienced the AE at grade ≥ 3)
bIncluding patients harbored sensitizing EGFR mutations following EGFR-TKI therapy (regardless of EGFRT790M status), EGFR exon 20 insertion or deletion, de novo T790M mutation, and patients with treatment-naïve
advanced EGFR mutation-positive NSCLC
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of ILD was high in the osimertinib plus durvalumab
arm. A phase III study of osimertinib plus durvalumab
versus osimertinib monotherapy (CAURAL study,
ClinicalTrials.gov, NCT02454933), also showed a high
incidence of ILD in the combination arm, and the develop-
ment of osimertinib plus durvalumab combination therapy
was therefore discontinued [23]. Investigations of other
combination therapies are ongoing, such as for osimertinib
in combination with necitumumab, ramucirumab, or
bevacizumab (ClinicalTrials.gov, NCT02496663, 02789345,
and 02803203). In addition to metastatic disease, clinical
trials of osimertinib monotherapy for EGFR mutation-
positive NSCLC are also ongoing in the adjuvant setting
(ADAURA study, ClinicalTrials.gov, NCT02511106).
Another important issue in the development of 3G

EGFR-TKIs is the application of liquid biopsies to detect
EGFRT790M in blood or urine samples [24–27]. Plasma
samples were collected in the AURA study, and the
cell-free plasma DNA was genotyped using the beads,
emulsions, amplification, and magnetics (BEAMing)
digital polymerase chain reaction technique (Sysmex
Inostics, Inc., Mundelein, IL, USA) [25, 28]. The plasma-
based sensitivity for detecting EGFRT790M was 70%. The
ORR and median PFS were similar in patients with
EGFRT790M-positive plasma and those with EGFRT790M-
positive tissue, which was defined as the gold standard
(ORR: 63 vs. 62%; median PFS: 9.7 vs. 9.7 months). The
authors concluded that patients with EGFRT790M-positive
plasma could avoid tumor re-biopsy for EGFRT790M

testing, while those with EGFRT790M-negative plasma
should undergo tumor re-biopsy [29]. Mechanisms of
resistance to osimertinib therapy have also been reported.
In a preclinical cell line study, acquired EGFR C797S
mutation (the substitution of cysteine with serine at amino
acid position 797, EGFRC797S) was identified as a
mechanism of resistance to osimertinib therapy. This is
understandable because osimertinib forms a key covalent
bond with EGFR at the position of the noted cysteine resi-
due. Resistant cells that contain sensitizing mutations
(EGFRL858R/C797S and EGFRdel19/C797S) retain sensitivity to
quinazoline-based 1G/2G EGFR-TKIs, such as gefitinib
and afatinib, but are resistant to these drugs in the
presence of EGFRT790M (EGFRL858R/T790M/C797S and
EGFRdel19/T790M/C797S). However, resistant cells that
harbor EGFRL858R/T790M/C797S remain partially sensitive
to cetuximab because of the disruption of EGFR
dimerization [30]. Another preclinical study also pro-
vided evidence that EGFRC797S is a resistance mechanism
[31]. Furthermore, the authors of that study demonstrated
that, if EGFRC797S occurred in trans (on a different allele)
from EGFRT790M, then the resistant cells were sensitive to
a combination of 1G/3G EGFR-TKIs. In contrast, if the
two mutations occurred in cis (on the same allele), then
the cells were resistant to the combination therapy. Other

mechanisms of resistance to osimertinib therapy have also
been identified in cell line studies, including NRASE63K

mutation and gains of copy number for wild-type NRAS
and wild-type KRAS. Combination therapy with
osimertinib and selumetinib prevented and delayed
the developments of resistance [32].
In the clinical setting, EGFRC797S was first described in

a patient who developed acquired resistance to osimertinib
therapy. In this case, EGFRC797S was detected in a cell-free
plasma DNA analysis that was performed using next-
generation sequencing. A subsequent study collected
plasma samples from 15 patients who received osimertinib
therapy and had pre-existing plasma EGFRT790M that was
detected using droplet digital polymerase chain reaction.
Upon developing resistance, 6 (40%) patients had EGFR-
del19/T790M/C797S, 5 (33%) patients had EGFRT790M alone,
and EGFRT790M was no longer detectable in 4 (27%)
patients who retained prior sensitizing mutations [33].
Mechanistically, EGFRC797S parallels the acquired Bruton
tyrosine kinase (BTK) C481S mutation, which is observed
in patients with chronic lymphocytic leukemia who
develop acquired resistance to therapy with ibrutinib, an
irreversible BTK inhibitor. Provided in combination with
cetuximab, a novel EGFR–resistance-mutation selective
allosteric inhibitor (EAI045) has been observed to be
effective in a mouse model of NSCLC harboring
EGFRL858R/T790M/C797S. Cetuximab blocks the dimerization
of EGFR and renders the kinase susceptible to this
allosteric agent [34]. EGFRC797S was also detected in tumor
re-biopsy samples from a patient who developed acquired
resistance to osimertinib [35]. Several other acquired
resistance mechanisms were reported in patients who
experienced disease progression on osimertinib therapy:
acquired EGFRL718Q, small cell transformation, MET amp-
lification, HER2 amplification, BRAFV600E mutation, PIK3-
CAE545K mutation, loss of EGFRT790M plus alternative
pathway activation, and EGFR ligand-dependent activation
[36–41]. In a case report, a patient who developed MET
amplification responded to therapy with crizotinib, an
ALK and MET inhibitor [36].

Rociletinib
Rociletinib (CO-1686) is a 2,4-disubstituted pyrimidine
compound that irreversibly targets tumors harboring
EGFRL858R, EGFRdel19, and EGFRT790M, while having
little effect on EGFRwt. There is a meta-acrylamide that
points to Cys797 and forms the covalent bond. This
compound also has activities against other kinases, such
as FAK, CHK2, ErBB4, and JAK3 [42, 43]. A metabolite
of rociletinib, M502, has potency against insulin receptor
and insulin-like growth factor 1 receptor, which may
lead to the AE of hyperglycemia [44].
An early-phase clinical study (TIGER X, Clinical-

Trials.gov, NCT01526928) determined that orally
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administered rociletinib at 500 mg twice per day was the
recommended dose for subsequent clinical study [45, 46].
An update report of the 208 patients who received
rociletinib at 500 mg twice per day disclosed that any
grade of hyperglycemia, diarrhea, nausea, and QTc
prolongation developed in 57.2, 56.7, 43.8, and 26.4%
of the patients, respectively. Of the patients, 28.8 and
7.7% developed grade ≥ 3 hyperglycemia and grade ≥ 3
QTc prolongation, respectively. ILD was observed in
0.5% of the patients at this dose level [47]. An unex-
pected AE of sudden-onset cataract developed in 21 of
40 patients (53%) who were treated with rociletinib in
a single-hospital study, and most of these patients
required surgical repair [48]. In the TIGER-X study, the
overall incidence of cataract was 9.1% in patients who
received rociletinib therapy at dose levels of 500–750 mg
twice per day [47]. Additionally, this drug has limited
activity against central nervous system metastases [49, 50].
In the first report of the TIGER-X study, the ORR of roci-
letinib in patients who harbored EGFRT790M was 59% [45];
however, those patients who achieved partial response
(PR) as their best response did not have a subsequent
confirmed PR at least 4 weeks apart, per the RECIST
criteria (version 1.1) [51]. Rociletinib did not receive
accelerated approval by the US FDA. An official report
of the TIGER-X study has updated the confirmed ORR
to 33.9% for the efficacy population of 443 patients who
received rociletinib at dose levels of 500–750 mg twice per
day, and who had centrally confirmed EGFRT790M-positive
NSCLC. The PFS was 5.7 months in 208 patients who
received rociletinib therapy at 500 mg twice per day. The
safety profile of 548 patients from the study is shown in
Table 1 [47]. A biomarker study that used tissue, plasma
(BEAMing), and urine specimens (Trovera Quantitative
NGS assay, Trovagene, San Diego, CA, USA) to detect
EGFRT790M showed sensitivities of 80.9 and 81.1% based
on plasma and urine, respectively. The confirmed ORRs
in patients with EGFRT790M-positive tissue, plasma, and
urine were 33.9, 32.1, and 36.7%, respectively. Patients
with M1a/M0 intrathoracic disease had lower plasma
sensitivity than did patients with M1b distant meta-
static disease (56.8 vs. 88.4%, p < .001) [52].
Ongoing clinical studies include the TIGER-2 study

(ClinicalTrials.gov, NCT02147990), which is a phase II
study that seeks to test the safety and efficacy of rociletinib
as a second-line treatment for advanced EGFR mutation-
positive NSCLC, following progression on prior EGFR-
TKI therapy. Additionally, the TIGER-3 study (Clinical-
Trials.gov, NCT02322281) is a phase III study that
seeks to compare rociletinib with single-agent cytotoxic
chemotherapy as a third-line or later treatment for
advanced EGFR mutation-positive NSCLC in patients
for whom EGFR-TKI and platinum-doublet therapy
have failed. Patients with EGFRT790M-positive and -negative

disease were both eligible for the two aforementioned
studies.
Rociletinib is also being tested in the first-line setting

in TIGER-1 (ClinicalTrials.gov, NCT02186301), which
is a randomized phase II/III study that is comparing
rociletinib with erlotinib as first-line treatments for
advanced EGFR mutation-positive NSCLC. Studies of
combination therapies are ongoing, such as for rocileti-
nib in combination with trametinib (a MEK inhibitor)
(ClinicalTrials.gov, NCT02580708) or atezolizumab
(MPDL3280A, an anti-PD-L1 monoclonal antibody)
(ClinicalTrials.gov, NCT02630186). However, in May
2016, Clovis Oncology, Inc. announced that it had
terminated enrollment in all ongoing sponsored studies
of rociletinib and withdrawn its Marketing Authorization
Application for rociletinib from European regulatory
authorities [53].
A preclinical study identified epithelial-mesenchymal

transition as a possible mechanisms of resistance to roci-
letinib therapy that can be overcome by AKT inhibitors
[43]. A cell line study identified MET amplification with
or without EGFRT790M as a mechanism of resistance to
CNX-2006 (tool compound of rociletinib). In a cell line
that had MET amplification without EGFRT790M, MET
tyrosine kinase inhibitor was able to overcome the resist-
ance by itself, suggesting an oncogenic shift from EGFR
to MET. The authors described this phenomenon as
“oncogene swap” [54].
In clinical studies, mechanisms of resistance to rocile-

tinib were identified by using plasma circulating tumor
DNA profiling (Cancer Personalized Profiling by Deep
Sequencing, CAPP-Seq). MET copy number gain is the
most frequent mechanism, and was observed in 43
(26%) patients in a recent study [55]. In this study,
rociletinib-resistant xenografts also developed MET
amplification that could be overcome using crizotinib
therapy. EGFRC797S and novel EGFRL798I were each iden-
tified in one patient. Other mechanisms involving MET,
EGFR, PIK3CA, ERRB2, KRAS, and RB1 were also
described. Nineteen percent of the patients displayed
resistance mechanisms that affected multiple genes, a
finding that further emphasizes the importance of tumor
heterogeneity [55]. In another study, tumor re-biopsy
after progression on rociletinib therapy showed that loss
of EGFRT790M plus EGFR amplification and small cell
transformation were mechanisms of resistance. The
authors emphasized the concept of tumor heterogeneity,
in which EGFRT790M-positive and -negative tumor cells
may coexist in a tumor before rociletinib therapy, and
for which it is not sufficient to target only one mechanism
of resistance [56]. A short clinical report demonstrated
that, following the development of resistance to
rociletinib, some patients still responded to osimertinib
therapy [57].
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Olmutinib
Olmutinib (BI 1482694 / HM61713) is an irreversible
kinase inhibitor that binds to a cysteine residue near the
kinase domain. Olmutinib shows activities against cell
lines and xenograft tumors harboring EGFRL858R/T790M

and EGFRdel19, while having little effect on cell lines with
EGFRwt [58].
In the first phase I/II study (ClinicalTrials.gov,

NCT01588145) conducted in South Korea, orally
administered olmutinib at 800 mg/day was identified as
the recommended dose for subsequent studies. In that
study, 76 EGFRT790M-positive patients received olmutinib
therapy at a dose of 800 mg/day, and the median PFS was
6.9 months. The confirmed ORR was 54% among 70
evaluable patients, and activity against central nervous
system metastases was also observed [59]. The treatment-
related AEs from this study are listed in Table 1. One
patient experienced ILD and discontinued therapy, but
there was no AE of hyperglycemia [59].
In December 2015, olmutinib was granted the break-

through therapy designation for NSCLC by the US FDA.
In May 2016, it was approved in South Korea for ad-
vanced EGFRT790M-positive NSCLC patients who were
pretreated with EGFR-TKIs [60]. Regarding the future
clinical development of olmutinib, the phase II ELUXA
1 study (ClinicalTrials.gov, NCT02485652) is recruiting
patients with advanced EGFRT790M-positive NSCLC after
prior EGFR-TKI therapy. Other global clinical trial plans
for olmutinib are available online [61]. Regarding first-
line treatment, a phase II study of first-line olmutinib for
advanced EGFR mutation-positive NSCLC was conducted
in South Korea (ClinicalTrials.gov, NCT02444819).
Acquired resistance to olmutinib was reported in a

patient who developed EGFRC797S after a period of
effective olmutinib therapy [62].

EGF816
EGF816 irreversibly targets EGFR by forming a covalent
bond to Cys797. Preclinical data show activities against
cell lines and xenograft models harboring EGFRL858R/

T790M, EGFRdel19/T790M, EGFRdel19, and EGFRL858R, while
having little effect on cell lines harboring EGFRwt [63].
In an early-phase clinical study (ClinicalTrials.gov,
NCT02108964), 152 patients were enrolled to receive
orally administered EGF816 at 75–350 mg/day. The
common AEs in this study are shown in Table 1.
Grade ≥ 3 AEs included rash (16.4%), anemia (2.6%),
urticaria (2.6%), diarrhea (2.0%), and fatigue (2.0%). The
type and distribution of the skin rash were different
from the acneiform rash that is observed in patients
treated with 1G/2G EGFR-TKIs. Two and 2 patients
developed hepatitis B virus reactivation and increased
lipase level, respectively [64]. The confirmed ORR and
DCR among 147 evaluable patients were 46.9 and 87.1%,

respectively. The estimated PFS across all dose levels
was 9.7 months [64]. In a preclinical study, EGF816 also
showed activity against EGFR exon 20 insertion. There-
fore, the early-phase study also enrolled patients with
tumors harboring this genetic alteration [63]. A study of
the combination therapy of EGF816 and nivolumab
(an anti-PD-1 monoclonal antibody) is ongoing (Clini-
calTrials.gov, NCT02323126).
A preclinical study demonstrated several mechanism

of resistance to EGF816, including EGFRC797S, MET
amplification, and epithelial-mesenchymal transition.
Dual inhibition of EGFR and cMET with EGF816 and
INC280 (a MET inhibitor) can overcome this resistance
mechanism [63]. A phase Ib/II study of EGF816 and
INC280 combination therapy for advanced EGFR
mutation-positive NSCLC is in progress (ClinicalTrials.-
gov, NCT02335944).

ASP8273
ASP8273 is a mutant-selective irreversible EGFR inhibitor
that targets EGFR by forming a covalent bond to Cys797.
Preclinical data show activities against cell lines and xeno-
graft models harboring EGFRL858R/T790M, EGFRdel19/T790M,
EGFRdel19, and EGFRL858R, while having little effect on cell
lines harboring EGFRwt [65, 66]. In a first-in-human phase
I/II study (ClinicalTrials.gov, NCT02192697) conducted
in Japan, ASP8273 has been well tolerated across multiple
dose levels. Common treatment-related AEs have included
diarrhea, vomiting, nausea, hyponatremia, increased
serum alanine transaminase level, and thrombocytopenia.
A few patients have experienced rash, QTc prolongation,
and ILD-like events. Three hundred mg/day was chosen
as the recommended dose for subsequent phase II studies
[67]. An update report showed a preliminary ORR (in-
cluding both confirmed and unconfirmed response) of
64% in 70 EGFRT790M-positive patients treated with
ASP8273 at 300 mg/day [68]. This study is ongoing in
Japan, South Korea, and Taiwan.
In another phase I study that was conducted in the US

(ClinicalTrials.gov, NCT02113813), orally administered
ASP8273 at 300 mg/day was chosen as the recom-
mended dose for subsequent phase II studies. A total of
110 patients were enrolled and 63 patients received
treatment at the dose of 300 mg/day. Ninety-two percent
of these 63 patients harbored EGFRT790M. The con-
firmed ORR was 30% and the median PFS was
6.0 months [69]. Common treatment-related AEs are
listed in Table 1. Grade ≥ 3 AEs included diarrhea (2%)
and hyponatremia (13%). One subject developed grade 1
hyperglycemia, and no patient developed ILD or QTc
prolongation [69].
ASP8273 was mainly developed as a first-line treatment

for advanced EGFR mutation-positive NSCLC in a phase
II study in Japan (ClinicalTrials.gov, NCT02500927).
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The global randomized phase III SOLAR study (Clini-
calTrials.gov, NCT02588261) is comparing ASP8273
with gefitinib or erlotinib as first-line treatments for
advanced EGFR mutation-positive NSCLC.

Others
Other third-generation EGFR-TKIs are currently under
early clinical development, including PF-06747775 (Pfizer,
ClinicalTrials.gov, NCT02349633), avitinib (Hangzhou
ACEA Pharmaceutical Research Co., Ltd., Clinical-
Trials.gov, NCT02330367 and NCT02274337), brigati-
nib (ARIAD, AP26113, ALK and EGFR inhibitor,
ClinicalTrials.gov, NCT01449461), and TAS-121 (Taiho
Pharma) [70–75].

Discussion
The EGFRT790M mechanism of acquired resistance to 1G
EGFR-TKIs was first reported in 2005 [9, 10]. EGFRT790M

is also the major mechanism of acquired resistance to
therapy using the 2G EGFR-TKI afatinib [7]. The prog-
nostic role of acquired EGFRT790M was controversial
before the era of 3G EGFR-TKIs [12, 26, 76, 77]. Indeed,
there were many different theories about the development
of drug-resistant cells, such as the pre-existence theory
and evolution from drug-tolerant cells. The drug-tolerant
state may provide an environment in which heterogeneous
drug-resistance mechanisms can be developed [78–81].
3G EGFR-TKIs have been developed to address the

EGFRT790M resistance mechanism, and phase I dose find-
ing studies of these 3G EGFR-TKIs have been conducted
almost exclusively for patients with the EGFRT790M muta-
tion. These “atypical” phase I studies have several charac-
teristics in common: First, these studies (for example
AURA and TIGER-X) enrolled large numbers of patients
in their phase I components. Second, given the effective-
ness of the 3G EGFR-TKIs, these studies expanded patient
numbers at the same dose level and were extended to the
phase II component within the same overall study, in
order to accelerate accruals. Third, because of the rela-
tively low rates of treatment-related toxicities that were
observed, the recommended phase II/III doses are not
necessary the true maximum tolerated doses. Fourth,
because of the complexities of the trial designs, caution is
warranted when interpreting their clinical outcomes. The
application of liquid biopsies (plasma or urine) using
various modalities is one of the attractive features of these
studies, and the concordance rates between tissue and
liquid biopsy results have been high [29, 52]. Nonetheless,
the current diagnostic standard for EGFRT790M is still
tumor re-biopsy for tissue sampling, and the role of
liquid biopsy should be explored further in prospective
trials [82, 83].
The resistance mechanisms to 3G EGFR-TKIs were

discovered either via preclinical investigations, clinical

liquid biopsy, or tumor re-biopsy. Some of the resistance
mechanisms revealed in preclinical studies were later
confirmed in clinical studies. EGFRC797S and MET ampli-
fication/copy number gain are the most important of the
mechanisms of resistance. Novel treatment strategies are
under development to overcome these resistance mecha-
nisms [30, 31, 33, 36–40, 54–57, 62]. In light of tumor
heterogeneity, EGFRT790M-positive and -negative cells may
coexist in the same tumor, or may occur at different sites
in the same patient. 3G EGFR-TKI-based combination
therapies that seek to overcome the bypass pathways are a
reasonable strategy for addressing the coexistence of
EGFRT790M-positive and -negative cells [39, 56, 84].
Some distinct AEs have been observed in patients who

received 3G EGFR-TKI therapy. For example, neutro-
penia, lymphopenia, thrombocytopenia, and QTc pro-
longation have been observed in patients receiving
osimertinib; hyperglycemia and cataract have been
observed in patients receiving rociletinib; distinct skin
rash and hepatitis B virus reactivation have been observed
in patients receiving EGF816; and hyponatremia and
paresthesia have been observed in patients receiving
ASP8273. Although some of these AEs are attributable to
off-target effects, the causes of others remain unknown.
These rare and unexpected AEs were prudently observed
by the investigators in these early-phase studies, and infor-
mation on their occurrence spread to all collaborators in a
timely manner; the importance of tight global collaboration
cannot be overemphasized [85]. The incidences of ILD
were low in the clinical trials, although they excluded
patients with a history of ILD.
Given their high inhibitory activity against sensitizing

EGFR mutations, some 3G EGFR-TKIs are under develop-
ment as first-line treatments that are being compared with
1G/2G EGFR-TKIs (FLAURA [osimertinib], TIGER-1
[rociletinib], ELUXA 1 [olmutinib], SOLAR [ASP8273]
studies). Investigators should be more cautious of ILD and
other AEs associated with these therapies. When adminis-
tered as a first-line treatment, the combination therapy of
osimertinib and durvalumab induced a high incidence of
ILD, which serves as an important reminder that the same
drugs can have unexpected consequences when provided
in different clinical settings and combinations [23].
In summary, the development of 3G EGFR-TKIs is

encouraging because they have often shown noteworthy
effectiveness and reduced rates of classic AEs, such as
diarrhea and skin rash. The application of these drugs in
different settings and combinations should be explored
in the future.

Conclusions
Osimertinib therapy is the current standard of care for
patients with EGFR mutation-positive NSCLC who
developed acquired EGFRT790M after prior EGFR-TKI

Liao et al. Journal of Biomedical Science  (2016) 23:86 Page 7 of 10



therapy. Other 3G EGFR-TKIs are currently under
development. Liquid biopsy is being investigated as a
means of both detecting plasma/urine EGFRT790M prior
to 3G EGFR-TKI therapy and identifying mechanisms of
resistance to 3G EGFR-TKI therapy. Various combination
therapies that incorporate a 3G EGFR-TKI aim to prolong
the benefits of 3G EGFR-TKIs and/or overcome resistance
mechanisms. Many clinical trials of first-line 3G EGFR-
TKI therapies are in progress, and their findings may
ultimately change the paradigm of standard first-line treat-
ment for EGFR mutation-positive NSCLC.
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