
REVIEW Open Access

Neuroblastoma treatment in the
post-genomic era
Maria Rosaria Esposito1*†, Sanja Aveic1†, Anke Seydel2 and Gian Paolo Tonini1

Abstract

Neuroblastoma is an embryonic malignancy of early childhood originating from neural crest cells and showing
heterogeneous biological, morphological, genetic and clinical characteristics. The correct stratification of neuroblastoma
patients within risk groups (low, intermediate, high and ultra-high) is critical for the adequate treatment of the patients.
High-throughput technologies in the Omics disciplines are leading to significant insights into the molecular pathogenesis
of neuroblastoma. Nonetheless, further study of Omics data is necessary to better characterise neuroblastoma tumour
biology. In the present review, we report an update of compounds that are used in preclinical tests and/or in Phase I-II
trials for neuroblastoma. Furthermore, we recapitulate a number of compounds targeting proteins associated to
neuroblastoma: MYCN (direct and indirect inhibitors) and downstream targets, Trk, ALK and its downstream signalling
pathways. In particular, for the latter, given the frequency of ALK gene deregulation in neuroblastoma patients, we discuss
on second-generation ALK inhibitors in preclinical or clinical phases developed for the treatment of neuroblastoma
patients resistant to crizotinib.
We summarise how Omics drive clinical trials for neuroblastoma treatment and how much the research of biological
targets is useful for personalised medicine. Finally, we give an overview of the most recent druggable targets selected by
Omics investigation and discuss how the Omics results can provide us additional advantages for overcoming tumour
drug resistance.
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Background
Neuroblastoma is an embryonal malignancy of early
childhood of the sympathetic nervous system belonging
to the neuroblastic tumors that also include ganglioneur-
oblastoma and ganglioneuroma. The nosologic group of
neuroblastoma is very heterogeneous in terms of
biologic, genetic, clinical and morphologic characteristics
[1, 2]. Neuroblastoma presents with a poor prognosis for
individuals diagnosed at over 18 months of age with
disseminated disease as metastatic processes in liver,
bone marrow, skin and several other organs [3]. The
highly heterogeneous clinical behaviour of disease makes
the prediction of the patient’s individual risk at the time
of diagnosis the major goal in choosing an adequate
therapeutic approach. Many efforts done by performing
the so called “Omics” technologies have shed light on

the biology of this tumour allowing more accurate strati-
fication of the patients in proper risk group.
In fact, by combining the results of Omics data and

available clinical/biological parameters, the International
Neuroblastoma Risk Group (INRG) task force has estab-
lished a stratification system of neuroblastoma patients
taking into consideration diverse prognostic factors (i.e.,
clinical stage, patient’s age at diagnosis, tumour histology
(Shimada system) [4], grade of tumour differentiation,
MYCN oncogene amplification, 11q deletion and DNA
ploidy). Based on these criteria, neuroblastoma patients
are currently subdivided into (very) low-, intermediate-,
high- and ultra-high-risk groups. Nowadays, about half of
all diagnosed cases are classified as high-risk (HR) for
disease relapse, while overall survival rates still show only
modest improvement, less than 40% at 5 years [5],.
Therefore, recent discoveries regarding the understanding
of the genetic basis of neuroblastoma and Omics data
should necessarily be integrated in current knowledge of
this malignancy in order to assure more accurate diagnosis
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for each patient and ascertain a good medical practice in
terms of personalised therapy. In this regard, the awareness
of the sequence of the entire human genome and the
development of high-throughput Omics technologies has
changed the approach to study neuroblastoma. Genome-
wide information of amplifications and deletions of
genomic regions, or somatically acquired genetic variations,
common predisposing genetic variants and mRNA expres-
sion profiles have greatly helped us in better understanding
of tumour behaviour. In this review we provide an overview
on recent Omics studies, and how they direct current and
future therapeutic approaches, shaping in that way the
clinical trials set for neuroblastoma patients.

Therapeutic solutions to approach the treatment
of neuroblastoma
Immunotherapy
The HR patients require very intensive treatments, includ-
ing chemotherapy, surgery, radiotherapy, myeloablative
chemotherapy with stem cell rescue, immunotherapy with
anti-GD2 (disialoganglioside, tumour-associated surface
antigen) antibody and differentiation therapy with 13-cis
retinoic acid. However, new clinical trials for HR neuro-
blastoma patients are ongoing: i) a phase III trial that
demonstrated significant improvement in event-free

survival after combined immunotherapy with granulocyte-
macrophage colony-stimulating factor GM-CSF, IL-2 and
the ch14.18 anti-GD2 antibody (NCT00026312; list of all
clinical trials discussed here can be found in Table 1) [6];
ii) a phase III randomized study (SIOPEN) for isotretinoin
(13-cis-RA) and ch14.18 efficacy testing, in combination
or not with IL-2 and after autologous stem cell transplant-
ation (NCT01704716) [7]; and iii) two trials using L1-cell
adhesion molecule (L1-CAM) together with GD2-specific
chimeric antigen receptors (CARs) to demonstrate anti-
tumour activity in intensely treated relapsed or refractory
neuroblastoma patients (NCT01822652) [8]. The results
of the listed trials are expected in 2017 and onwards.

Targeting MYCN
For more than 30 years, MYCN status (amplified versus
single copy) has been determined to be one of the stron-
gest biological markers for neuroblastoma, providing a
negative prognosis for a subset of patients with amplified
MYCN [9–12]. Since a discovery of a correlation between
MYCN, rapid tumour progression and poor prognosis of
neuroblastoma patients, many efforts have been made in
developing suitable MYCN drug that could impair its
functions, and the same attempts are still ongoing. This is
because of difficulties in developing an optimal therapy

Table 1 Drugs of clinical trials for HR neuroblastoma interventetion

ClinicalTrials ID Original study Phase Status Referencea

NCT00026312 Isotretinoin With or Without Dinutuximab, Aldesleukin
and Sargramostim Following Stem Cell Transplant in
Treating Patients With Neuroblastoma

phase III Completed Yu AL et al., 2010 [6]

NCT01704716 High Risk Neuroblastoma Study 1.7 of SIOP-Europe
(SIOPEN)

phase III Recruiting Dobrenkov K & Cheung NK, 2014 [7]

NCT01822652 3rd Generation GD-2 Chimeric Antigen Receptor and
iCaspase Suicide Safety Switch, Neuroblastoma, GRAIN

phase I Active, not recruiting Heczey A & Louis CU, 2013 [8]

NCT02395666 Preventative Trial of Difluoromethylornithine (DFMO) in
High Risk Patients With Neuroblastoma That is in
Remission

Phase 2 Active, not recruiting Wallick CJ et al., 2005 [64]

NCT01586260 Preventative Trial of DFMO in Patients With High Risk
Neuroblastoma in Remission

Phase 2 Active, not recruiting Wallick CJ et al., 2005 [64]

NCT01059071 Safety Study for Refractory or Relapsed Neuroblastoma
With DFMO Alone and in Combination With Etoposide

Phase 1 Completed Wallick CJ et al., 2005 [64]

NCT02097810 Study of Oral RXDX-101 in Adult Patients With Locally
Advanced or Metastatic Cancer Targeting NTRK1,
NTRK2, NTRK3, ROS1 or ALK Molecular Alterations

phase I Recruiting Lee J et al., 2015 [83]

NCT01742286 Phase I Study of LDK378 in Pediatric, Malignancies With
a Genetic Alteration in Anaplastic Lymphoma Kinase
(ALK)

phase I Recruiting Schulte JH et al., 2013 [69]

NCT01871805 A Study of CH5424802/RO5424802 in Patients With
ALK-Rearranged Non-Small Cell Lung Cancer

phase II Active, not recruiting McKeage K, 2015 [86]

NCT01049841 Perifosine With Temsirolimus for Recurrent Pediatric
Solid Tumors

phase I Active, not recruiting Rodrik-Outmezguine VS et al., 2011 [104]

NCT01767194 Irinotecan Hydrochloride and Temozolomide With
Temsirolimus or Dinutuximab in Treating Younger
Patients With Refractory or Relapsed Neuroblastoma

Phase 2 Recruiting Geoerger B et al., 2012 [105]

a References are cited in review manuscript
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against MYCN due to a lack of appropriate surfaces on its
DNA-binding domain to which drugs can bind. This
problem persists not only for MYCN but also for other
Myc family members [13]. Therefore, at present, a more
widely accepted approach for MYCN regulation involves
its indirect targeting [14].

Indirect targeting of MYCN expression and function
A number of compounds currently in use for the cure of
neuroblastoma patients have been tested for their capacity
to down-regulate MYCN expression. Among these com-
pounds are retinoic acid [15] and other MYCN non-specific
inhibitors such as HDAC inhibitors [16, 17] or inhibitors of
the PI3K/AKT/mTOR pathway [18, 19]. The capacity of
these compounds to down-regulate MYCN expression has
been confirmed, but their effectiveness is variable. There-
fore, other strategies have been adopted to target MYCN
indirectly, by altering the function of other proteins known
to regulate MYCN protein stability or by manipulating
downstream targets of MYCN [20, 21].

Aurora A and Aurora B inhibitors
The serine/threonine kinases Aurora A (AURKA) and
Aurora B (AURKB) are crucial regulators of the cell cycle.
Their coding genes differ in subcellular distribution and
the protein products in their specific functions [22].
AURKA stabilizes MYCN through a direct protein-
protein interaction, making MYCN less degradable by the
proteasome [23]. AURKA mRNA expression has been
described as a negative prognostic factor for neuroblast-
oma patients [24]. Therefore, AURKA has garnered much
interest as a target in this disease [24]. On the other side,
AURKB has been confirmed as a direct transcriptional
target of MYCN, and its expression was observed
increased in patients with poor outcomes [25]. Both
kinases are therefore candidates for successful targeting
with specific inhibitors. In fact, many preclinical studies
have been conducted with anti-AURKA compounds.
Among these compounds are orally active small-molecule
inhibitors of AURKA (Fig. 1a), MLN8054 and MLN8237
(alisertib) [3, 26]. Both compounds have been tested in
vitro and in vivo. However, of these two compounds, par-
ticular interest was given to MLN8237 due to its higher
potency to inhibit AURKA, whereas dose-limiting toxicity
was observed for MLN8054 [27, 28]. Nevertheless, the
therapeutic promise of MLN8237 that was previously
observed in vitro was not confirmed when tested in
neuroblastoma patients, since it showed low efficacy,
particularly in neuroblastoma patients with MYCN-
amplification [29].
An interesting screening approach for the evaluation of

the most potent inhibitors of AURKA has been proposed
at the preclinical level by Gustafson and colleagues [30].
Their principal aim was to select a candidate compound

that would lead to the degradation of the MYCN protein.
The authors wanted to create an AURKA inhibitor able to
compromise protein conformation and hence perturb
MYCN-AURKA interaction [23]. Starting from tozasertib
as a chemical model, the authors selected the candidate
CD532 as a strong inhibitor of AURKA, which fulfilled
the desired function of MYCN protein destabilisation.
Application of CD532 induced an inactive AURKA con-
formation that provoked loss of MYCN protein due to its
degradation [31]. Tested in vitro or in vivo using a
MYCN-amplified neuroblastoma xenograft model, CD532
showed remarkable features in eradicating MYCN protein,
warranting its probable use against neuroblastoma in
future therapies. We are expecting an optimised version
of CD532, which will allow its application in clinical trials.
Another approach applicable to the therapy of neuro-

blastoma patients is targeting of both aurora kinases,
using non-selective anti-aurora compounds. In fact, pan-
aurora kinase inhibitors are a subject of interest of many
researchers who believe in their potency as anti-tumour
drugs. By affecting both Auroras, A and B, a more
substantial impact on tumour cells might be expected. To
date, the pan-aurora inhibitors CCT137690 [32] and
tozasertib (VX-680, MK-0457) [33] have been tested. Each
of them has been demonstrated as a potential drug for
targeting drug-resistant neuroblastoma cells [34], which
has made them interesting candidates for further clinical
evaluation.

Inhibitors of MYCN/MAX interaction
As other members of the MYC family of proto-oncogenes,
MYCN also works as a transcriptional activator. To fulfil
this action, MYCN requires the formation of a heterodi-
mer with the MAX protein [35]. This binding is necessary
for proper activity of the MYCN protein; hence, its
obstruction has been considered as a strategy through
which MYCN can be targeted in tumours. For this
purpose, several small molecules have been designed for
MYC inhibition and have been proven as efficient blockers
of MYCN/MAX interactions. Among them are the
structurally unrelated compounds 10074-G5 and 10058-
F4 (Fig. 1a), which have been tested in vitro and which
produce satisfying effects on neuronal differentiation and
the induction of apoptosis [36]. Whether these com-
pounds can repeat their effectiveness against neuroblast-
oma cells in vivo still remains to be verified.

Bet inhibitors
Another well-accepted approach for indirect MYCN-
targeting is by inhibiting the BET (bromodomain and
extra-terminal domain) family of proteins, which are
important for transcriptional regulation of many genes
including MYCN. One of the compounds developed for
this purpose is the small molecule BET bromodomain
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inhibitor JQ1. Puissant and colleagues [37] demonstrated
the use of JQ1 as a promising strategy for blocking the
growth of MYCN-dependent neuroblastoma cells in vitro.
It has been confirmed that JQ1 has anti-tumour properties
in vivo, suggesting that JQ1 might be an option for the
treatment of MYCN-dependent neuroblastomas [38].
However, additional studies are necessary to confirm JQ1’s
effectiveness in the clinical setting. More recently, a
European-American collaboration is applying BET inhibi-
tors in neuroblastoma therapy [39]. In this study, Henssen
et al. evaluated OTX015 as a promising anti-tumour drug
in MYCN-driven neuroblastomas. In particular, OTX015
was shown to have a potent inhibitory effect on the
growth of either mouse or human MYCN-dependent
neuroblastomas. The mechanism of action involves the
impediment of BRD4, one of the BET family proteins, to
maintain active transcription of genes with super enhancers
in their promoter regions. Interestingly, MYCN is among
the genes that have super enhancers. Taken together, the

data from the latter report suggest that OTX015 is a rea-
sonable choice for targeted therapy of MYCN-amplified
neuroblastomas.

MYCN downstream pathway targeting
It is possible that targeting of the proteins in the path-
ways downstream of MYCN might be also an useful and
strategic alternative to direct inhibition of MYCN. There
are several targetable candidates downstream of MYCN
for which drugs are already available: MDM2 (by nutlin-
3 or RG3788) [40], ODC1 (by difluoromethylornithine
-DFMO) [41] and mTOR (by Temsirolimus) [42].

P53/MDM2 targeting Unlike tumours in adults, which
tend to overcome physiological regulation of P53 tumor-
supressor by the means of mutations of TP53 gene,
neuroblastoma is rarely associated with those mutations
[43]. Nonetheless, the P53 pathway is often impaired in
childhood cancers because of upstream P53/MDM2/

Fig. 1 Schematic presentation of current pre-clinically tested drugs in neuroblastoma. A discussed anti-tumor drugs used against neuroblastoma in
vitro and/or in vitro, and their targets are presented. In addition, a connection between the molecular targets is determined by the arrows. Legend
shows a type of interaction described between the molecules a Indicates targeting of MYCN and P53/MDM dependent pathways. b Depicts drugs
against ALK, Trk and PI3K/AKT/mTOR pathway. c Illustrates a targeting of main anti-apoptotic molecules. Gene symbol and its corresponding protein:
NTRK1 – TrkA; NTRK2 – TrkB; PIK3CA - PI3K, BIRC5 – Survivin (Data resource: http://www.pathwaycommons.org/)
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P14ARF network aberrations. Therefore, it is of great
interest to understand the interaction between P53 and
its main negative regulator MDM2, as it may lead to-
wards a therapeutic approach in paediatric patients with
malignancies that do not have TP53 mutations and who
have poor prognoses [44]. In neuroblastoma, however,
there is evidence that the P53 pathway is inactivated
[45], and the inactivation of the P53 pathway occurs
mainly at the time of relapse, probably contributing to
chemoresistance. Several studies have confirmed that
wild-type TP53 alleles exist in most cases of newly diag-
nosed neuroblastoma, but after chemotherapy, the P53/
MDM2/P14ARF pathway is repressed, in part because of
the abnormal inhibition of P53 by MDM2 [46–48]. This
finding suggests that down-regulation of the P53 axis
may underlie the treatment of patients who acquire drug
resistance, which is a situation that is frequently ob-
served in HR neuroblastoma. Although P53 is very rarely
mutated in primary neuroblastoma at diagnosis and its
downstream effectors are functional [47], multiple hits
seem to cooperate to impair P53 functions, including
deregulation of the ARF/MDM2 pathway [49, 50],
expression of microRNAs that can target P53 pathways
[51], and repression of P53-mediated autophagy [52].
Recent studies are focusing on current therapies and
novel drugs targeting P53 signalling in neuroblastoma to
understand the equilibrium between P53 family proteins
and their regulation in neuroblastoma [53].
As so, a very frequent functional abnormalities de-

tected in the P53/MDM2/p14ARF pathway of relapsed
patients shed light on its potential clinical targeting. One
of the strategies to affect this pathway is by perturbing
the P53/MDM2 interaction, in which MDM2 acts as a
negative regulator of P53 levels [54]. Small molecules,
such as nutlin-3 or MI-219, can interact with MDM2 by
mimicking the P53 N-terminal region, where MDM2
binds to P53. Both of these small molecules have been
tested in neuroblastoma, and the results of the studies
showed that the effects depend on the MYCN status of
neuroblastoma cells [21, 55]. More precisely, it has been
found that overexpression of MYCN sensitises neuro-
blastoma cells to the use of MDM inhibitors, confirming
that MYCN and MDM2 together confer pro-survival
benefits to tumour cells [56]. Regarding nutlin-3, it has
been reported to work independently of P53, affecting
other important pro-tumour molecules, such as P73 or
multidrug resistance protein 1 (MDR-1), that are respon-
sible for drug resistance in different types of cancer [57].
Tests of MDM2–P53 antagonists are ongoing in several
clinical trials in which these antagonists are administered
either alone or in combination with other anti-cancer
drugs [58]. We will have to wait and see the outcome of
these trials to draw a conclusion about the promise of
these inhibitors for use in personalised targeting. Until

then, a strategy that might be adopted for the selection
of the patients who might benefit from treatment with
these compounds was suggested by Jeay et al. [59]. The
authors described a gene signature that enables rapid
prediction of tumours sensitive to NVP-CGM097, a
potent and selective MDM2 inhibitor [60]. The same
approach could be used for the recruitment of neuro-
blastoma patients for whom inhibition of P53/MDM2
might be highly effective.

ODC1 Encodes for ornithine decarboxylase 1, an enzyme
required for synthesis of polyamines. The level of this
enzyme is increased in highly metabolically active cells,
such are the normal growing cells, but also transformed
neuroblasts. In fact, the MYCN-driven neuroblastomas
promote polyamine production by coordinating its down-
stream targets among which ODC1 [61]. Therefore, a tar-
geting of polyamine metabolism in MYCN-positive
neuroblastoma has been considered preclinically and also
during clinical trials [61, 62]. The efficiency of an irrevers-
ible inhibitor of the ODC1, known as difluoromethylor-
nithine (DFMO; Eflornithine), drew a particular attention
of oncologists [63]. It has been confirmed that the pre-
emptive block of polyamine production by DFMO
could impair tumour growth either in vitro or in the
in vivo MYCN-mouse model [64]. These findings support
not only the relevance of MYCN for the synthesis of
polyamines, but also imply that depletion of this metabolic
route might be a successfully alternative to direct MYCN
targeting in neuroblastoma patients. In the moment,
DFMO is tested either alone or together with other
chemotherapics (NCT02395666, NCT01586260 and
NCT01059071 - Table 1) and results of clinical trials
are expecting.

mTOR Mammalian target of rapamycin plays an essential
function in cells’ growth regulation and protein produc-
tion control [65]. Targeting of mTOR is very attractive
since its block leads to MYCN destabilization, unfavouring
therefore neuroblastoma growth [66]. However, since
mTOR signals downstream from PI3K/AKT pathway, its
targeting will be discussed together with drugs against this
signalling branch.

Inhibitors of anaplastic lymphoma kinase (ALK)
ALK is a receptor tyrosine kinase (RTK) implicated in the
development of neuroblastoma [67–69]. As discussed pre-
viously [70], activating mutations in the ALK gene have
been described in either familial neuroblastoma (under
1%) or in sporadic disease (approximately 8%) [71, 72].
Additionally, ALK has been confirmed as a target of the
MYCN transcription factor, which automatically links this
molecular marker with a poor outcome in neuroblastoma
patients. Therefore, it is not surprising that retinoic acid
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can down-regulate the expression of the ALK gene as well,
as a direct consequence of MYCN down-regulation [73].
Scientists interested in ALK share a strong confidence in
its targeting during anti-neuroblastoma treatment. In fact,
many of them believe that inhibition of ALK could ensure
improved outcomes for neuroblastoma patients. There-
fore, many strategies have been adopted in blocking the
constitutive activation of ALK [74]. Because ALK is a cell-
membrane receptor, its use in antibody-targeted therapy
has been considered. This possibility was tested by the use
of antibodies that block conformational activation of the
tyrosine kinase domain after dimerization of two nearby
ALK receptors [75]. However, this approach showed cer-
tain limitations, which might be improved by combining
ALK-targeted immunotherapy with next-generation ALK
inhibitors that act intracellularly [76].

Novel ALK inhibitors
A new generation of anti-ALK compounds inhibit kinase
activity of this RTK. These compounds recognize and
bind to the adenosine triphosphate (ATP) pocket of the
receptor. Thus, the compounds compete with ATP,
thereby preventing subsequent autophosphorylation,
which is necessary for further signal transduction. Many
ALK inhibitors have been tested either preclinical or
clinically with a wide range of effectiveness. The most
known anti-ALK drug is crizotinib (Pfizer; Fig. 1b),
which gave promising results during treatment of pa-
tients with deregulated ALK function [77, 78]. This drug
is a small molecule inhibitor capable of targeting ALK,
ROS1 and MET RTKs. In vitro studies demonstrated
that crizotinib is particularly efficient in neuroblastoma
cells with the R1275Q mutation. Hence, crizotinib might
be a valuable choice for the treatment of neuroblastoma
patients with either amplifications or mutations in the
ALK gene [79]. One point of caution is that we might
need to use crizotinib in combination with other drugs
in order to prevent resistance phenomena [80]. This
hypothesis is in line with recent results published by
Krytska and colleagues [81], who confirmed that when
used in combination with the current chemotherapeutic
agents topotecan and cyclophosphamide, crizotinib
exhibited increased cytotoxic effects. Interestingly, deep
sequencing has been shown to be an efficient approach
for quick detection of ALK mutations within tumour
biopsies responsible for resistance to crizotinib [82]. This
technique might be useful for follow-up assessments of
treatment efficacy by allowing the detection of possible
resistance long before it actually develops. Another
newly proposed ALK inhibitor is entrectinib (Ignyta Inc)
which is currently being tested in a clinical trial
(NCT02097810 – Table 1) [83]. This drug showed excel-
lent cytotoxic effects in vitro, particularly in neuroblast-
oma cells with amplified ALK [84]. Additionally, the

activity of entrectinib against neuroblastoma cells
bearing ALK mutations was significantly improved
when this drug was combined with chloroquine. This
proposed combination was justified by the findings
that application of entrectinib induced autophagy that
protected tumour cells from death. In this work, a
similar behaviour was observed for crizotinib, which
induced autophagy in neuroblastoma cells when
tested under the same in vitro conditions. Besides
affecting ALK, entrectinib was also confirmed as an
effective and promising compound against TrkB-
dependent neuroblastomas, supporting the initiation of a
phase 1 clinical trial for this compound in neuroblastoma
patients with refractory disease [85]. In this case, the
effectiveness of entrectinib in inhibiting neuroblastoma
growth in vivo was determined after either single use of
this compound or after its combination with the conven-
tional chemotherapeutic drugs irinotecan and temozolo-
mide. Given the frequency of ALK gene deregulation in
neuroblastoma patients, it is reasonable to expect that
many pharmaceutical companies will search for second-
generation ALK inhibitors, possibly with more specificity
for ALK mutations. Some of these inhibitors are in
preclinical or clinical phases for neuroblastomas, such as
LDK378 (ceritinib; Novartis Pharmaceuticals; NCT017
42286 – Table 1) [69] and Alectinib (CH5424802; Ale-
censa; NCT01871805 – Table 1) [86].
A serious issue that remains is whether mentioned anti-

ALK compounds would lead to the development of resist-
ance, which was observed for crizotinib [87]. However,
this seems not to be the case for PF-06463922, a potent
and selective next-generation ROS1/ALK inhibitor tested
by Infarinato et al. [88]. The authors described PF-
06463922 as an extremely efficient drug when used for the
treatment of neuroblastoma in crizotinib-resistant xeno-
graft mice. The compound not only showed a potential to
overcome crizotinib resistance but also a high capacity to
induce complete tumour regression when administered
alone in vivo. It should be emphasized that quicker detec-
tion of ALK mutations within tumour biopsies responsible
for resistance to crizotinib would be necessary. Numerous
ongoing investigations into the effectiveness of anti-ALK
therapeutics provide confidence that we will soon be
closer to a cure of HR neuroblastoma with deregulated
ALK RTK.

TrkA and TrkB: different roles in neuroblastoma
A line of evidence suggests that the TRK family of neuro-
trophin receptors plays a critical role in the diverse
courses of neuroblastoma development. Human TrkA
gene maps to 1q21, but no mutations or activating
rearrangements have been identified in neuroblastoma
[89]. Neuroblastomas are biologically favourable and
susceptible to spontaneous regression or differentiation
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when TrkA is expressed. In this case, neuroblastoma
fate depends greatly on the absence or presence of
the TrkA ligand, nerve growth factor (NGF). In most
tumours of patients in advanced stages, TrkA expres-
sion is low or absent, and such tumours do not
undergo complete differentiation in response to NGF.
This indicates that the NGF/TrkA pathway is respon-
sible for differentiation and regression of favourable
neuroblastomas. Another human Trk, TrkB, was
cloned and mapped to 9q22 [90], and similarly, no
mutations or activating rearrangements for this gene
have been found in neuroblastomas to date. The TrkB
receptor and its ligand are highly expressed in bio-
logically unfavourable neuroblastomas. Full-length
TrkB and BDNF are expressed in more aggressive
neuroblastomas, and their expression is highly corre-
lated with MYCN amplification [91]. In addition, it
has been shown that TrkB expression in neuroblasto-
mas is associated with drug resistance and expression
of angiogenic factors [92]. Thus, the expression of
both BDNF and full-length TrkB may represent an
autocrine or paracrine survival pathway that is im-
portant for the aggressive behaviour of some neuro-
blastomas [93, 94]. Because TrkB has been correlated
with poor outcome of neuroblastoma patients [95], its
targeting in neuroblastoma is reasonable. GNF-4256,
a selective and potent pan-Trk inhibitor (Novartis;
Fig. 1b), is one of the compounds designed to target
TrkB. This inhibitor demonstrated potent cytotoxic
effects, both in vitro and in a mouse xenograft model
[96], when used alone or in combination with irinote-
can and temozolomide. These results suggest that
GNF-4256 is an attractive compound for the therapy
of relapsed neuroblastoma patients with dysregulated
TrkB. Moreover, preclinical studies confirmed its low
toxicity. Promising anti-tumour activity was also
reported for AZD6918, a recently proposed novel
pan-Trk inhibitor, that was tested in vivo [97]. Similarly to
GNF-4256, AZD6918 showed strong inhibitory effects on
tumour growth when used in combination with other
conventional chemotherapeutics, such as etoposide. These
results suggest that Trk (TrkB preferentially) inhibi-
tors might be effective in personalised therapies for
neuroblastoma patients with deregulated TrkB activ-
ity. A more detailed study in this field was performed
by Nakamura et al. [98], who tested a series of synthetic
candidate compounds predicted to have anti-TrkB activity
in silico. These compounds were then analysed in vitro
and in vivo to evaluate their efficiency against neuroblast-
oma tumour growth. The most efficient compounds
identified in this study were suggested as drugs against
TrkB-dependent neuroblastomas. Whether they might
repeat their effectiveness in preclinical studies remains to
be validated.

Drugs against the PI3K/AKT/mTOR pathway
A recent study showed that the persistence of ALK
mutations, and hence its constitutive activation, led to
over-activation of several downstream signalling pathway,
including PI3K/AKT/mTOR, in a subset of neuroblast-
oma [80]. Berry et al. showed that co-expression of one of
the most common ALK mutations (ALKF1174L) and
MYCN amplification up-regulated several down-stream
pathways, including the PI3K/AKT/mTOR pathway, in a
neuroblastoma mouse model. In addition to ALK, several
other RTKs and/or their ligands have been implicated in
the increased activation of the PI3K/AKT/mTOR pathway
in neuroblastoma [99]. However, although there is in-
creasing evidence supporting a role of the PI3K/AKT/
mTOR pathway in the development and progression of
neuroblastoma, the molecular mechanisms that actually
activate the PI3K/AKT/mTOR remain to be elucidated.
Certainly, it is to be expected that by blocking a part

of this pathway, the proliferative capacities of neuro-
blastoma tumour cells should be inhibited. Still, the
most relevant question that remains to be answered is
where is the Achilles heel of this signalling cascade in
tumour cells and where should we strike? Numerous in-
hibitors have already been developed, and some of them
have been tested in neuroblastoma [100]. Because PI3K/
AKT/mTOR pathway inhibitors have been discussed in
many reviews already, e.g., Pal et al. [101], Mei et al.
[102], we will focus only on the therapeutic aspects of
the latest scientific reports.
A strategy involving the blockade of mTOR’s function

to ameliorate ALK inhibition itself has been proposed by
Moore and colleagues [87]. The authors observed that
ALK inhibition by crizotinib did not affect all branches
of the downstream pathways of ALK, leaving the
mTOR-dependent signalling pathway active. The im-
portant relationship between ALK and the PI3K/AKT/
mTOR pathway has also been illustrated by the finding
that combined treatment with the ATP-competitive
mTOR inhibitor Torin2 overcame the resistance of
ALKF1174L/MYCN tumours to crizotinib. In the same
work [87], the authors combined crizotinib with mTOR
inhibitors. This combination led to a strong cell cycle
arrest and, importantly, prevented the growth of neuro-
blastoma tumours, suggesting that multiple attacks of
ALK downstream pathways might be necessary for
efficient defeat of tumour. Westhoff et al. [103] proposed
similar experiments to improve effectiveness against
neuroblastoma by using NVP-BEZ235, a PI3K/mTOR
inhibitor (Fig. 1b), together with conventional chemo-
therapeutics. However, we must exercise caution in
planning strategies against PI3K in the battle against
neuroblastoma. As explained by Westhoff and colleagues
[103], we must consider proposed drug use critically,
keeping in mind that usually “there is no linear link
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between degree of inhibition that we provoke chemically
and inhibition of tumour growth”. On the other hand,
numerous studies have proposed the combined targeting
of AKT with various biological agents as a more success-
ful approach. There is a clinical trial (NCT01049841 -
Table 1) ongoing for perifosine, which is one of the best-
characterized AKT inhibitors, in combination with the
mTOR inhibitor temsirolimus. It is expected that this
combination would provide a better impact on tumour
growth, ensuring a synergic effect between these drugs
that has been observed in previous preclinical studies
[104]. This therapeutic choice can be additionally justi-
fied by the results obtained from the clinical studies in
which temsirolimus, used as mono-therapy, worked as
cytostatic and guaranteed a stable disease after 12 weeks
of treatment [105]. At the moment some clinical trials
are recruiting patients to test temsirolimus in combin-
ation with standard chemotherapy and monoclonal
antbodies, in order to seek for more promising cure of
neuroblastoma patients with deregulated PI3K/AKT/
mTOR signalling (NCT01767194 - Table 1). Whether
neuroblastoma patients would benefit from these
therapy remains to be seen.

Drugs against the anti-apoptotic molecules - Survivin,
BCL2 and HSP90
Survivin is another molecular biomarker whose enhanced
expression was correlated with poor prognosis in neuro-
blastoma patients [106]. Encoded by the gene BIRC5, this
protein has anti-apoptotic activity and represents an inter-
esting druggable target whose blockage might provide sig-
nificant benefits to HR neuroblastoma patients [107, 108].
Therefore, this candidate is an attractive target in neuro-
blastoma, even though its eventual integration in currently
used therapy has not been considered profoundly. One of
the compounds that regulates Survivin expression and
hence its cell death-protective role is YM155 (Fig. 1c)
[109]. The most important fact is that YM155 shows
efficacy in eliminating tumour cells with acquired resist-
ance to doxorubicin, vincristine and cisplatin. These find-
ings imply that Survivin depletion could assure benefits to
the patients in whom standard therapy has limited effects.
BCL2 is a protein with an important role in cell survi-

ving [110, 111]. Although BCL2 mutations are rare in
neuroblastoma, this pro-survival protein plays an import-
ant function in neuroblastoma due to its deregulated
expression [112, 113]. In fact, expression profiling studies
have confirmed the increased levels of BCL2 gene in many
neuroblastomas. Therefore, BCL2 likely represents a good
molecular target for neuroblastoma treatment. Several
anti-BCL2 drugs have been designed to date (among
which is a BH3 mimetic), such as ABT-263 and ABT-737,
which appear to be particularly promising and efficient
[114]. Nevertheless, the effect of the aforementioned

inhibitors in neuroblastoma is still to be investigated
sufficiently.
Recently, much attention has been paid to the inhib-

ition of Heat shock protein 90 (Hsp90) as a strategy for
neuroblastoma treatment. As a central molecule of com-
plex folding machinery, HSP90 acts as a major regulator
of protein integrity and function for the vast majority of
proteins, including those with oncogenic potential [115].
High expression of HSP90 ensures protection from deg-
radation for numerous proteins inside the cell, including
ERBB2, AKT, MET and MYCN. Hence, over-expression
of HSP90 protein in malignancies has been described as
an anti-apoptotic feature, and its abrogation is seen as a
therapeutic option even in neuroblastoma [116]. A role
of HSP90 in protecting MYCN from degradation was
observed when 17-DMAG (Alvespimycin), a small
inhibitor against HSP90, was used in vitro. Interestingly,
the same treatment also decreased the expression of
AKT [117]. Another intriguing approach for targeting
HSP90 in neuroblastoma has been proposed by Sidaro-
vich et al. [118]. The authors discovered the potential to
suppress the translational efficiency of heat shock
proteins, including HSP90, by using compounds with
iron-chelating characteristics. As a result, the authors
observed a significantly reduced growth of neuroblast-
oma in a cell culture system. However, it is clear that
additional work and clinical trials are necessary to evalu-
ate whether the anti-apoptotic drugs can be a valuable
clinical tool. In summary, although positive results from
the preclinical testing of drugs against anti-apoptotic
proteins have been obtained, it still remains to be seen if
these drugs will be employed clinically as therapeutic
strategies for the treatment of neuroblastoma.

Current views and directions in neuroblastoma
therapy: the Omics as the basis for personalised
medicine
Among all Omics, the advent of massive parallel
sequencing approach, so-called Next Generation
Sequencing (NGS), has enabled a more detailed and
deeper molecular characterisation of the neuroblast-
oma tumours. The analysis of the entire genome and
exome showed genomic alterations associated with the
molecular pathogenesis of neuroblastoma [119–124]. In
particular, somatic point mutations and somatic structural
variants in the PTPRD, ODZ3, CSMD1 and ARID1A genes
[120, 123], a few high-frequency recurrent somatic muta-
tions in the ALK, CHD9, PTK2, NAV3, NAV1, FZD1,
ATRX, ARID1B, TIAM1, ALK, PTPN11, OR5T1, PDE6G,
MYCN and NRAS genes [119, 120, 122, 123] and
rearrangements in TERT gene super enhancer region
[121, 124] are discovered in neuroblastoma patients
with worst survival.
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Considering all currently available genomic data, several
national and international groups operating in neuroblast-
oma field discussed in March 2015 during the SIOPEN
Genomics Meeting in London, a NGS neuroblastoma
signature for tumours of HR patients. At this meeting the
collaborators proposed a panel of mutations, determined
by whole exome sequencing (WES), to be screened in
neuroblastoma patients, defining in that way a NGS signa-
ture specific for neuroblastoma [70]. The use of NGS
profile is the first step towards personalised medicine in
this paediatric malignancy. Subsequently, genomic data
assisted in the development of pharmacogenomic tech-
nologies that allow the determination of specific thera-
peutic approaches for genetically homogenous cohorts of
patients. It is expected that the current therapeutic proto-
col adopted for patients of one risk group will be replaced
by a specific drug combination designed to treat patients
based on their specific genetic profiles. A pioneer result
that compare mutational spectrum in mitochondria (mt)
versus nuclear (n) DNA in neuroblastoma patients at
diagnosis and at relapse has been published by Reihl et al.
[125]. To address the question if and in which extent
DNA appertaining to these two cell compartments varies
at spatiotemporal scale they applied WES. They found
that both mtDNA and nDNA showed similar variations in
relapsed samples with respect to samples obtained at diag-
nosis. Hence, the authors suggest that observed genetic
variances could be useful biomarkers for monitoring of
neuroblastoma progression. In support to this concept,
recent studies on matched primary tumours and biopsies
at relapse clarified that genetic alteration in CHD5,
DOCK8, PTPN14, HRAS and KRAS genes and losses on
chromosome 9p acquired during tumour progression
suggesting a likely tailored therapy against these genetic
alterations in patients at the disease recurrence [126]. Fur-
thermore, the authors showed that the overall count of
mutations in biopsies at relapse is higher than in primary
tumours. In another independent, non-overlapping study,
78% of recurrent tumours harboured a higher overall mu-
tations count compared to primary tumours showing an
hyperactivated RAS-MAPK signalling pathway [127]. Both
reports introduced the concept of temporal and dynamic
cancer model in which neuroblastoma primary tumours
were composed of a minor population of multiple clones
that persisted throughout the therapy, expanding then at
the recurrence [128]. Together, these studies suggest that
the analysis of recurrent tumour biopsies is mandatory for
any clinical trial [128].

Metabolomics and proteomics – is it time to move
therapy towards precision medicine?
Additional Omics that will certainly contribute to more
effective personalised medicine are metabolomics and
proteomics. The analysis of small-molecule metabolites

is an advantageous means to differentiate normal from
malignant tissue and to predict tumour treatment
response [129–131]. Indeed, Imperiale and colleagues
[132] defined a metabolite profile using tumour of
neuroblastoma patients, establishing differences in
their profiles with respect to healthy tissues. More
precisely, they defined the so-called metabolic finger-
print of neuroblastoma as a metabolic marker to
control the disease course. Another valuable approach
includes metabolome analysis of patients’ sera to
improve the reliability of diagnosis or risk-
stratification of neuroblastoma patients, as reported
by Beaudry et al. [133]. The authors performed a
retrospective metabolome study, examining whether
the patient’s sera discriminate low from HR neuro-
blastoma patients. They observed equally distributed
metabolite profile between low and HR patients using
nuclear magnetic resonance (NMR). In addition, they
analysed metabolites profile in sera of mice after
neuroblastoma xenografts by NMR and gas chroma-
tography–mass spectrometry. Importantly, they distin-
guished the metabolites differentially present at early
phase versus late stage of disease proposing them as
possible biomarkers to determine a presence of early
stage tumours. Moreover, the results of these analyses
done in humans and repeated using sera of
xenografted-mice gave comparable profiles confirming
that the xenografts recapitulate the behaviour of
human tumours. These observations imply that the
analysis of metabolome profile from neuroblastoma
patients’ sera, together with other diagnostic tools
already used in clinic, could enable more accurate
prediction of tumour behaviour. In any case, at this
moment larger studies are needed to determine
whether identification of key metabolites in patients’
sera can be used as diagnostic tools in neuroblastoma.
As far as proteomics is concerned, the level of
specific protein biomarkers in the plasma of neuro-
blastoma patients can determine HR neuroblastoma
[134]. These results support the integration of proteomic
approaches as fast and non-invasive techniques in the
monitoring of neuroblastoma behaviour in HR patients.
Additional findings that provide evidence in favour of
metabolic markers have been provided by Otake et al.
[135], who defined new biomarkers of an unfavourable
neuroblastoma phenotype, applying shotgun proteomic
analysis. The authors focused particular attention to the
protein DDX39A, which might be considered a novel
marker for proteomics approaches to HR neuroblastoma
diagnosis. Several in vitro validation studies also gave en-
couraging data that a proteomic approach can be applied
to define the diverse intracellular pathways and molecules
that are responsible for: i) an aggressive neuroblastoma
phenotype or ii) resistance to therapy [136, 137].
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High-throughput drug screening
The National Cancer Institute has launched a program to
assess new drugs for paediatric use, called the Paediatric
Preclinical Testing Program (PPTP) [138]. The PPTP is an
initiative to identify therapeutic drugs that have significant
activity against childhood cancers, including neuroblast-
oma. The PPTP has established panels of childhood
cancer cell lines and xenografts to be used for in vitro and
in vivo testing. The PPTP has the capacity to test approxi-
mately 12 compounds or combinations of compounds in
preclinical models of childhood cancers. The cancers
include Wilms tumour, sarcomas (rhabdomyosarcoma,
Ewing sarcoma and osteosarcoma), neuroblastoma, brain
tumours (glioblastoma, ependymoma and medulloblas-
toma), rhabdoid tumours (CNS and renal) and acute
lymphoblastic leukaemia (ALL). The selection of drugs for
PPTP testing is based on their potential relevance in the
childhood cancer setting and their stage of clinical devel-
opment. In parallel, standard drugs are also being tested,
both to calibrate the PPTP tumour panels and to serve as
a basis for future combination studies [107]. Between
2008 and 2015, more than 60 reports of initial testing
(Stage 1) were published by the PTPP. From the point of
the in vitro studies, another interesting approach arrives
and proposes high-throughput screening for the best
single or combined drug selection. In fact, an increasing
number of reports identified high-throughput screening
as useful methodology to select additional functional anti-
tumour drugs. Indeed, an example is the screening of
compounds against the neuroblastoma cell line IMR32,
from which it was discovered that the PHOX2B gene
might be targetable by influencing its direct transcrip-
tional regulators, such as Meis-1, NF-κB and AP-1 [139].
Accurate evaluations of high-throughput screening in
neuroblastoma have been described by Harder et al. [140].
Therefore, we propose that introducing this technique
could lead to increased identification of promising com-
pounds for neuroblastoma treatment. The identification
of new compounds could allow us to increase the number
of clinical trials for personalised medicine.

Epigenetic biomarkers and regulatory RNAs
Recently, analysis of epigenome profiling and micro-
RNA (miRNA) expression patterns performed in neuro-
blastoma samples has provided a significant amount of
data, identifying the targeting of epigenetic regulators as
a possible treatment strategy. It is also expected that
epigenomic studies will identify new biomolecular
markers that may lead to a better stratification of neuro-
blastoma patients.

Epigenetic background of neuroblastoma
Aberrant DNA methylation, either hyper- or hypo-
methylation, has emerged as a new hallmark of

tumourigenic processes [141]. In particular, changes of the
“physiological” methylation patterns have been correlated
with neuroblastoma patients’ prognosis [142]. Additional
studies of DNA methylation profiles in neuroblastoma
tumours have identified the pro-apoptotic gene CASPASE
8 and the tumour suppressor gene RASSF1A as novel
target molecules. The hyper-methylation of their pro-
moter regions, and hence reduced or absent gene expres-
sion, has been confirmed in the majority of examined
neuroblastoma [143]. Soledad Gómez and colleagues
revealed that major DNA methylation changes took place
outside promoter regions. More importantly, they
observed that the changes in the methylation pattern are
associated with clinico-pathological characteristics of
neuroblastoma [144]. A similar conclusion was drawn by
Buckley et al. [145], who associated a hyper-methylation
pattern with diverse neuroblastoma phenotypes.

Non coding RNAs
Another class of biological molecules whose expression de-
pends on epigenetic regulators are microRNAs (miRNAs).
As non-coding RNA molecules, miRNAs are able to
control the expression of genes at the post-transcriptional
level. miRNAs have emerged as very important biomarkers
of many cancers including neuroblastoma. In fact, an
increasing number of studies indicate that imbalanced
expression of miRNAs could offer an alternative explan-
ation for neuroblastoma aggressiveness and serve as a basis
for selection of more efficient drug combination [146]. Even
at this level MYCN is an important player, since some
miRNAs are described as direct transcription targets of
MYCN. Among them, several miRNAs with tumour-
suppressor features (e.g. miR-184, miR-181a-5p, miR-
181b-5p, miR-320a) [147] are evidenced. These find-
ings suggest that MYCN, beside direct impact on its
target genes, can indirectly regulate a subset of other
genes at post-transcriptional level. There are several
data that indicate that miRNAs profiles are predictive
for the outcome of neuroblastoma patients [148–150].
Some of the suggested miRNAs might be interesting
targets to be combined with standard therapeutic
protocols for neuroblastoma cure in future. High through-
put studies of long non-coding RNAs (lncRNAs) also
highlighted the role of these regulatory RNAs as promis-
ing drug targets for therapeutic interventions. Indeed, a
recent sequencing transcriptomes analysis of low- and HR
neuroblastomas pinpointed a lncRNA neuroblastoma
associated transcript-1 (NBAT-1) as a biomarker that
predicted neuroblastoma patients outcome [151]. The au-
thors showed that NBAT-1 was necessary for differentiation
of neuronal precursors and that hypermethylation of its
promoter region and following gene down-regulation in-
creases neuroblastoma cells proliferation. Being described
as tumour suppressor, NBAT-1 might be among crucial
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regulatory RNAs and so, the therapy against NBAT-1
and its downstream effectors could be a potential
novel therapeutic option for the treatment of HR
neuroblastoma [151]. Moreover, another recent study
evaluated differential expression profiles of lncRNAs
and protein-coding genes between MYCN amplified

and non-amplified neuroblastomas by examining
microarray and RNA-seq datasets [152]. The authors
revealed correlation between SNHG1 regulation and
MYCN amplification and suggested SNHG1 as an-
other indicator of neuroblastoma patient’s outcome
and/or as an option for therapeutic targeting.

Fig. 2 Flow chart of Omics data integration for personalised treatment. At the top of the figure, schematic presentation of Omics data
processing, the assortment and analyses is shown. Once collected, omic technologies data obtained by studying tumor material or CTC from
blood, have to be integrated to allow the extraction and selection of the druggable single target or molecular pathways. This step proceeds by
the screening of the most reliable drug or drug combination that would assure optimal chances for tumour defeating. Some of the compounds
are listed in the figure: MYCN, ALK, AURORA A, TrkB. In the lower part of the figure is shown the liquid biopsy as a procedure to use at the
follow-up in order to understand how disease behaves due to treatment. In the case of neuroblastoma, integration of liquid biopsy for the
follow-up of molecular biomarkers during therapy might be a winning strategy for early detection of possible drug resistance that could allow
clinicians to change current therapeutic strategy

Esposito et al. Journal of Biomedical Science  (2017) 24:14 Page 11 of 16



Liquid biopsy as a useful technique for Omics
studies
In recent years, liquid biopsy has been used as a biological
sample that enables diagnosis and monitoring of disease
status. Blood liquid biopsy contains circulating tumour
cells, which can be studied by Omics technologies. In
neuroblastoma, liquid biopsy is very useful, particularly if
tumour cells are not available from the primary tumour or
are not sufficient for genomic studies. The importance of
liquid biopsy for tumour studies was realised when it is
discovered that the levels of cell-free circulating DNA
(ctDNA; small, double-stranded fragments of DNA) in the
blood were much higher in patients with cancer than in
those of healthy individuals. These findings provide a basis
for the possibility of using liquid biopsy to monitor the
disease in a simpler and faster way [153]. In neuroblast-
oma, liquid biopsy is useful in evaluating ALK and
PHOX2B mutations, MYCN expression etc. As far as
neuroblastoma is concerned, some research groups
have already begun testing whether liquid biopsy
could mirror the genetic profile obtained directly
from tumours [154, 155]. The first data obtained by
the use of liquid biopsy at neuroblastoma diagnosis
are promising. They suggest that this non-invasive
approach could serve as a detection method of neuro-
blastoma at early time points of disease, allowing an
immediate and suitable treatment. Liquid biopsy is
also useful for the evaluation of the response to
therapy by allowing for more frequent follow-up mea-
surements of specific molecular markers persisting in
liquid biopsies. A diagram of the workflow of liquid bi-
opsy use in neuroblastoma and its integration with Omics
technologies is shown in Fig. 2. Because the clinical utility
of this approach has been already demonstrated for other
types of cancer [156], its use in neuroblastoma provides
new prospects for more accurate and faster diagnosis of
the disease and eventual determination of the correct
approach in personalised therapy.

Conclusions
In this review we provided an update of the pharmaco-
logical achievements proposed for neuroblastoma treat-
ment during the last years. Moreover, we discussed the
way that neuroblastoma management could be influenced
by the findings obtained from Omics technologies. We
also reported the importance of high-throughput Omics
data for better risk’s stratification of the neuroblastoma
patients in order to provide a more efficient targeted
therapy. From these techniques, it is expected to allow, in
a rapid and strict way, a generation of the list of possible
druggable targets that clinicians should consider to im-
prove patients health. Indeed, these techniques will lead to
the increased number of successful clinical trials which

will contribute to increasing cure rates of neuroblastoma
patients.
In conclusion, we believe that the use and integration of

Omics data within other clinical and biological informa-
tion already defined for neuroblastoma is the right
direction toward precision medicine. Under this scenario,
the Omics profiles should allow a more accurate charac-
terisation of neuroblastoma phenotype providing a sup-
port for an efficient therapy against this pediatric tumor.
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