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Cancer immunotherapy by targeting
immune checkpoints: mechanism of T cell
dysfunction in cancer immunity and new
therapeutic targets
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Abstract

Immune checkpoints or coinhibitory receptors, such as cytotoxic T lymphocyte antigen (CTLA)-4 and programmed
death (PD)-1, play important roles in regulating T cell responses, and they were proven to be effective targets in
treating cancer. In chronic viral infections and cancer, T cells are chronically exposed to persistent antigen
stimulation. This is often associated with deterioration of T cell function with constitutive activation of immune
checkpoints, a state called ‘exhaustion’, which is commonly associated with inefficient control of tumors and
persistent viral infections. Immune checkpoint blockade can reinvigorate dysfunctional/exhausted T cells by
restoring immunity to eliminate cancer or virus-infected cells. These immune checkpoint blocking antibodies have
moved immunotherapy into a new era, and they represent paradigm-shifting therapeutic strategies for cancer
treatment. A clearer understanding of the regulatory roles of these receptors and elucidation of the mechanisms of
T cell dysfunction will provide more insights for rational design and development of cancer therapies that target
immune checkpoints. This article reviews recent advance(s) in molecular understanding of T cell dysfunction in
tumor microenvironments. In addition, we also discuss new immune checkpoint targets in cancer therapy.
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Background
Cancer evades antitumor immune attacks via both inhibit-
ing recognition of cancer specific antigens by T cells and
causing dysfunction of CD8 cytotoxic T cells (CTL). Re-
cent breakthroughs and encouraging clinical results with
various immune checkpoint inhibitors, such as anti-PD-1
monoclonal antibodies (mAbs) and anti-CTLA-4 mAbs,
have demonstrated tremendous potential to control can-
cer by immune activation [1–9]. Immune checkpoint
blockade is able to reinvigorate dysfunctional/exhausted T
cells by restoring tumor-specific immunity to eliminate
cancer cells. In addition to melanoma, inspiring results
were reported in other cancers including lung cancer,

renal cell carcinoma, bladder cancer, and additional ap-
provals are expected, indicating the great promise held by
these mAbs. All these results clearly indicate that a new
era of immunotherapy has arrived. Long-term control of
cancer with durable treatment response now seems
achievable. These mAbs have added a new cornerstone to
immunotherapy, making it,another key pillar for cancer
treatment in the near future. Immune checkpoint block-
ade has greatly expanded our knowledge of antitumor im-
munity and has introduced radical changes and new
trends in cancer therapy. Moreover, multiple new immune
checkpoints that represent potential new targets for can-
cer therapy are now under active development. This art-
icle reviews advance(s) in recent molecular understanding
of T cell dysfunction within tumor microenvironments
and of developments of new immune checkpoint thera-
peutic targets for cancer.
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Immune checkpoints or coinhibitory receptors play
critical roles in immune homeostasis
To eradicate tumor cells and induce antitumor immun-
ity, T cells are able to recognize tumor antigens pre-
sented to T cell receptors (TCRs) by antigen-presenting
cells (APCs). After binding to TCR, a second signal (sig-
nal two, also called costimulatory signal) is needed for T
cell activation. The costimulatory signal comes from the
binding of CD28 molecule on T cells with its ligand, B-7
molecules (CD80 and CD86) on APCs. CTLA-4, an im-
mune checkpoint or coinhibitory receptor is induced
after T cell activation. CTLA-4 has a higher binding af-
finity for B-7 ligands than CD28, and CTLA-4 can bind
to B7 and displace CD28, leading to attenuation and
termination of T cell responses and establishment of tol-
erance, to minimize the development of autoimmunity.
Immune checkpoints or coinhibitory receptors have a
central role in regulating autoimmunity, and deficiency
of CTLA-4 develops profound lymphoproliferation and
systemic autoimmune disease [10, 11]. PD-1 pathway
was recognized to play a regulatory role in inhibiting T
cell activation and restraining T cell function [12, 13],
and PD-1 knockout mice developed proliferative arthritis
and a lupus-like autoimmune diseases [14]. Many check-
point receptors have been genetically associated with auto-
immunity and inflammatory diseases [15–18], suggesting
that immune checkpoints or coinhibitory receptors play a
critical role in immune tolerance and regulating homeosta-
sis. Therefore, immune checkpoints in regulating T cell ac-
tivation and immune tolerance have been widely studied.
More recently, a new frontier in anticancer [6, 19–21] and
antiviral therapy [22] has emerged, in which these receptors
are being targeted to improve T cell responses [23–25].

CTLA-4 as a coinhibitory receptor for T cell activation
The process of T cell activation is tightly regulated by
costimulatory signals for full activation, and it is also
regulated by coinhibitory signals [26]. The main costi-
mulatory signals for T cell activation are from the B7-1
or B7-2 molecules on antigen presenting cells, which
can bind to CD28 on T cells. After binding to its specific
antigen ligand, the resulting TCR signals in conjunction
with the costimulatory signals from CD28/B7 interaction
lead to fully activation of T cells and production of cyto-
kines [27]. CTLA-4 is a major coinhibitory receptor in
regulation of T cell response during the priming phase
[28]. In contrast to CD28, CTLA-4 delivers an inhibitory
signal, and it has a much higher affinity for B7 than CD28
[29, 30]. Thus, CTLA-4 competes for binding to B7, and
thereby prevents CD28-mediated T cell costimulation,
and also inhibits T cell activation [29, 31, 32]. Moreover,
CTLA-4 can capture B7, which induces the degradation
of these ligands within the cell via trans-endocytosis [33].
All these effects dampen T cell activation and enhance

immune tolerance. In addition, CTLA-4 is essential for
the regulatory T cells (Tregs) function [34, 35]. Tregs re-
quire CTLA-4 to maintain their function to suppress im-
mune responses, and deficiency of CTLA-4 results in
development of profound systemic autoimmune diseases
[10, 11]. The concept of using immune checkpoint inhibi-
tors to break T cell dysfunction in tumor patients appears
to be an intriguing approach in cancer therapy. This was
first demonstrated by the success of Ipilimumab, an anti-
CTLA-4 mAb, resulting in the approval of Ipilimumab by
the FDA for advanced melanoma [2]. All these results
indicate a major conceptual breakthrough in cancer
immunotherapy. Immune checkpoint blockade is game-
changing and revolutionary in at least in two senses. First,
the target for therapy is on immune cells but not tumor
cells. Second, the approach is not to attack tumor-specific
antigens but to remove an inhibitory pathway.

PD-1 plays a key role in inhibiting the effector function of
antigen-specific CD8 T cells in chronic viral infections and
cancer
In chronic viral infections and cancer, T lymphocytes are
under persistent exposure to antigen stimulation. This is
commonly associated with progressive deterioration of T
cell effector function with constitutive coinhibitory recep-
tor expression by T lymphocytes, a state called ‘exhaus-
tion’. It usually manifests as a gradual loss of effector
functions and cytokine production, as well as persistently
increased expression of multiple inhibitory receptors
[36–38]. T cell exhaustion was demonstrated in chronic
viral infections such as human immunodeficiency virus
(HIV), hepatitis C virus (HCV), and hepatitis B virus
(HBV), and in cancer conditions [36, 38–41]. Exhausted T
cells are characterized by deficits in proliferation and in
the activation of effector functions (cytotoxicity and cyto-
kine production) upon antigen stimulation [42]. Coinhibi-
tory receptors are highly expressed on dysfunctional or
exhausted T cells. The inhibitory ligands that regulate T
cell function and induce T cell exhaustion/dysfunction in
tissues usually exhibit increased expression on cancer cells
and virus-infected cells within tissue microenvironments.
The immune checkpoint molecule PD-1 was originally

identified from a T-cell line as a novel member of the
immunoglobulin gene superfamily with an immunologic
receptor tyrosine-based inhibitory motif (ITIM) [43]. Ini-
tially, PD-1 was demonstrated to be a receptor for cell
death; however, the PD-1 pathway was later found to
play a regulatory role in inhibiting T cell activation and
restraining T cell function [12, 13]. Accumulating evi-
dence indicates that the PD-1 pathway is critical in inhi-
biting viral antigen-specific CD8 T cells in chronic HIV
[44], HCV [45], and HBV infections [25, 46]. Recent
studies demonstrated that the interaction between PD-1
on T cells and its ligands plays an important role in
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inducing T cell exhaustion and dysfunction. Restoration
of T cell function by PD-1 blockade supported the im-
portance of this inhibitory pathway in animal models of
viral infection [25, 41, 47, 48]. Moreover, it was shown
that targeting PD-1 and other immune checkpoints is
able to reverse this dysfunctional state and reinvigor-
ate T cell activity in chronic viral infections and cancer
[6, 24, 36, 38, 41, 49, 50].

Multiple inhibitory receptors are expressed by
“exhausted” T cells in cancer and chronic viral infections
Whereas inhibitory receptors can be transiently
expressed by effector T cells during the activation stage;
persistent overexpression of inhibitory receptors is a
hallmark of exhausted T cells [51–54]. So far, the
molecular mechanisms by which inhibitory receptors
regulate T cell exhaustion are still unclear. In addition to
PD-1, exhausted T cells also express multiple inhibitory
receptor molecules on their cell surface [42]. These in-
hibitory receptors include the lymphocyte activation
gene 3 (LAG-3) protein, T cell immunoglobulin- and
mucin-containing molecule-3 (Tim-3), CTLA4, and many
other inhibitory receptors [49]. In fact, a core set of inhibi-
tory receptors, including PD-1, LAG-3,Tim-3, and the T
cell immunoglobulin and ITIM domain (TIGIT, also
known as Vstm3 and WUCAM), is also expressed on
tumor-infiltrating lymphocytes (TILs). Other combinations
of inhibitory receptors, such as PD-1 and Tim-3 [55, 56]
are also co-expressed in exhausted/dysfunctional T cells to
regulate their function. Taken together, the accumulating
results on these inhibitory receptors in co-regulation of T
cell dysfunction suggest that these coinhibitory pathways
may play different roles in T cell exhaustion.
Recent genomic studies exploring the transcriptional

profile underlying T cell exhaustion revealed that exhausted
T cells have a transcriptional profile with major alterations
in the expression of inhibitory receptors, cytokine and che-
mokine receptors, signaling molecules, transcription fac-
tors, and genes involved in T cell metabolism [37, 57, 58].
Although considerable advances in mechanistic study have
been made in the past few years, the molecular mecha-
nisms of T cell dysfunction/exhaustion are still not clear. In
addition, there still lacks a clear understanding of the intri-
guing molecular pathways involved in the reversal of T cell
exhaustion/dysfunction. In fact, we have only just begun to
understand the transcriptional coordination of T cell ex-
haustion. Moreover, accumulating studies have emphasized
the pivotal importance of T cell metabolism in regulating T
cell dysfunction/exhaustion [59–61]. This has prompted in-
tense exploration into the targeting of other immune
checkpoints or coinhibitory receptors besides PD-1 and
CTLA4. Among them, LAG-3, Tim-3, and TIGIT are
emerging immune checkpoints under preclinical and clin-
ical development for cancer therapy.

LAG-3
Among the new immune checkpoints, LAG-3 was ori-
ginally cloned in 1990 as a membrane protein upregu-
lated on activated T lymphocytes, and natural killer
(NK) cells [62]. LAG-3 gene has high homology with
CD4 and structurally resembles the CD4 molecule. Simi-
larly, LAG-3 binds to MHC class II with a higher affinity
[63]. In addition to MHC class II, LSECtin, a DC-SIGN
family molecule, was suggested to be another ligand for
LAG-3 [64]. The most well known feature and function
of LAG-3 are its role in the negative regulation of T cell
response, and this makes it a potential target for im-
mune modulation. LAG-3 is highly expressed on both
activated natural regulatory T cells (nTreg) and induced
FoxP3+ Treg (iTreg) cells [65]. Blockade of LAG-3 abol-
ishes the suppressor function of Treg cells. Moreover,
LAG-3 is crucial for Treg cell-mediated T cell homeostasis
[66, 67]. All these results support a functional role for
LAG-3 in Treg cell function. In cancer and chronic viral
infections, expression of LAG-3 is increased in exhausted
T cells [49]. PD-1 and LAG-3 are co-expressed on dys-
functional or exhausted virus-specific CD8+ T cells [68],
and on both CD4+ and CD8+ tumor infiltrating lympho-
cytes (TILs) in animal models of cancer [69]. Blockade of
LAG-3 can enhance anti-tumor T cell responses [70]. Co-
blockade of the LAG-3 and PD-1 pathways is more effect-
ive for anti-tumor immunity than blocking either molecule
alone [69, 71]. Therefore, in both chronic viral infections
and cancer, PD-1 and LAG-3 signaling pathways function-
ally cooperate to inhibit T lymphocytes responses. The po-
tential for LAG-3-driven immuno-modulatory responses
are currently being explored for clinical cancer therapy.

Tim-3
Tim-3, another newly defined immune checkpoint, was
first identified as a T cell surface molecule expressed se-
lectively in interferon (IFN)-γ-producing T cells [72]. It
is also expressed in innate immune cells (DCs, NK cells,
and monocytes) and Treg cells [73]. Tim-3 blockade was
shown to exacerbate experimental autoimmune enceph-
alomyelitis (EAE) [72]. Studies with Tim-3 knockout
mice and wild-type mice treated with Tim-3-blocking
antibody demonstrated that Tim-3 signaling is required
for tolerance induction and that Tim-3 blockade en-
hances the development of autoimmunity [74, 75].
Galectin-9, a C-type lectin, was first discovered as a
Tim-3 ligand [76]. Triggering of Tim-3 by galectin-9 in-
duced the death of Tim-3+ T cells and reduced EAE dis-
ease severity [76]. Most recently, CEACAM-1 was also
identified as a novel cell surface ligand for Tim-3 [77].
CEACAM-1 co-immunoprecipitates with Tim-3, and it
is co-expressed with Tim-3 on CD8+ TILs that exhibit
the dysfunctional/exhausted phenotype. The regulatory
function of Tim-3 is abrogated in the absence of
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CEACAM-1, suggesting a requirement of CEACAM-1/
Tim-3 co-expression and interaction for optimal Tim-3
function [77].
The interleukin (IL)-27/NFIL3 axis was identified as a

crucial regulator of effector function of T lymphocytes via
induction of Tim-3 and the immunosuppressive cytokine
IL-10 [78]. Tim-3's function in T cell exhaustion was
recently examined in both chronic viral infections and
cancer. The observation that Tim-3+ CD8+ T cells exhibit
the dysfunctional/exhausted phenotype raised the ques-
tion of whether PD-1 expression can be used as the sole
hallmark for identifying dysfunctional/exhausted CD8+ T
cells in chronic viral infections or cancer. In HIV infec-
tion, Tim-3 was found on dysfunctional/exhausted T cells
that lacked PD-1 expression. Furthermore, Tim-3 was
expressed in the most dysfunctional/exhausted population
among CD8+PD-1+ T cells in several chronic viral (HCV
and HBV) infections in humans and also in animal models
[55, 79–81]. All these observations suggest that PD-1 and
Tim-3 have non-redundant and synergistic functions in
inhibiting effector T cell activity. In addition, studies on
Tim-3 also indicate the presence of dysfunctional/
exhausted CD8+ T cells in cancer. It was shown that popu-
lations of CD8+ TILs expressing both Tim-3 and PD-
1display different functional phenotypes. Among these
populations, Tim-3+PD-1+ double-positive TILs exhibit
more dysfunctional or exhausted phenotypes than do
Tim-3+ or PD-1+ single-positive TILs. In contrast, Tim-3-
PD-1 double-negative TILs exhibit good effector function
[56]. In support of these observations, co-blockade of the
PD-1 and Tim-3 pathways was shown to be a more effect-
ive approach than blocking PD-1 alone for improving an-
titumor function and suppressing tumor progression in
preclinical models of cancer. Taken together, the current
data suggest that Tim-3 plays a crucial role in regulating
antitumor T cell immunity [56, 82, 83].

TIGIT
TIGIT, a recently defined new immune checkpoint, was
first identified as a novel CD28 family molecule [84–87].
TIGIT is an immunoglobulin (Ig) superfamily receptor that
functions as a coinhibitory receptor, and is specifically
expressed by immune cells [85–87]. TIGIT is expressed by
activated T cells, and is also expressed on Treg cells, mem-
ory T cells, NK cells, and follicular T helper (Tfh) cells
[84–89]. TIGIT binds two ligands, CD112 (PVRL2, nectin-
2) and CD155 (PVR), and these ligands are expressed by T
cells, APCs, and tumor cells [84–86, 90, 91]. Genome-wide
association studies have linked TIGIT to multiple human
autoimmune diseases including type 1 diabetes, multiple
sclerosis, and rheumatoid arthritis [92, 93]. The function of
TIGIT was therefore initially investigated in autoimmunity
and tolerance. In addition to its protective role in auto-
immune diseases, TIGIT was also explored in cancer and

chronic viral infections. The TIGIT ligands, CD112 and
CD155, are expressed in many tumor cells. In addition, the
positive counterpart of this costimulatory pathway, CD226,
promotes cytotoxicity and enhances antitumor responses
[94, 95]. The TIGIT-deficient mice showed significantly
delayed tumor progression in different tumor models,
suggesting that TIGIT negatively regulates antitumor re-
sponses [96]. TIGIT is highly expressed on TILs in the
tumor microenvironment across a broad range of tumors
[96–98]. TIGIT+CD8+ TILs co-express PD-1, LAG-3, and
Tim-3 and exhibit the most dysfunctional phenotype
among CD8+ TILs in murine tumors [96]. TIGIT syner-
gizes with PD-1 and also with Tim-3 in impairing antican-
cer immunity [96]. Therefore, co-blockade of either TIGIT
plus PD-1 or TIGIT plus Tim-3 enhances anti-cancer im-
munity and induces tumor regression. Taken together,
these results indicate that TIGIT synergizes with other in-
hibitory molecules to suppress effector T cell responses
and promote T cell dysfunction.

Immune effector cells acquire inhibitory receptors in the
tumor microenvironment
The ligands and inhibitory receptors that regulate T cell
effector functions are mostly overexpressed on tumor-
infiltrating immune cells or on tumor cells in the tumor
microenvironment. Therefore, targeting these ligands and
receptors is relatively specific to tumors compared to nor-
mal tissues. It is within these tumor microenvironments
that immune effector cells acquire inhibitory receptors,
resulting in T cell dysfunction. Soluble molecules include
cytokines with immunosuppressive activity, such as IL-10,
transforming growth factor (TGF)-β, and IL-27, which
regulate immune responses to tumor cells and induce T
cell dysfunction within the tumor microenvironment
[99–102]. The IL-10 pathway has been intensively studied
for its role in T cell dysfunction in chronic viral infections
and cancer [99, 100]. IL‑10 promotes T cell exhaustion,
and IL‑10 blockade reverses T cell dysfunction during
chronic viral infections [99]. Co-blockade of both IL-10
and the PD1 reverses CD8+ T cell exhaustion and en-
hances viral clearance, which supports a role for IL-10 in
T cell exhaustion [101]. Moreover, inhibition of TGFβ sig-
nalling in CD8+ T cells in vitro restores the dysfunction of
exhausted T cells [103]. However, systemic blockage of
TGFβ by treatment with its inhibitor or blocking antibody
had only little benefit [104]. The type I IFNs (IFNα/β) are
crucial in innate antiviral effects; however, recent reports
demonstrated that type I IFNs signaling paradoxically fa-
cilitated viral persistence by enhancing immune suppres-
sion during chronic infection, and IFNα/β blockade
reversed T cell exhaustion in chronic viral infection
[105, 106], All these data suggest a possible role for
IFNα/β in promoting exhaustion. Thus, chronic exposure
to IFNα/β enhances T cell exhaustion/dysfunction during
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chronic infections. In recent studies, it has been demon-
strated that the immunosuppressive cytokine, IL-27, is a
potent inducer of Tim-3+ exhausted/dysfunctional T
cells and a promoter of tumor growth in mice model
[78]. Furthermore, IL-27 signaling directly controls ex-
pression of Tim-3 via induction of NFIL3, a transcription
factor, which is critical for the development of exhausted/
dysfunctional T cell phenotype [78]. Moreover, IL-27 is an
inducer of the “coinhibitory” gene module in effector T
cells. IL-27 induces inhibitory molecules including PD-1,
Tim-3, LAG-3, TIGIT, and IL-10, which overlap with the
mediators of T cell exhaustion, in chronic viral infections
and cancer [101, 102]. From these observations, IL-27 sig-
naling pathway may regulate the suppression program
that drives the development of T cell exhaustion in cancer
and chronic viral infections.
Besides inhibitory receptors on the cell surface, there

are other soluble immune-inhibitory molecules within
the tumor microenvironment. These soluble immune in-
hibitory molecules include certain metabolic enzymes,
such as arginase produced by myeloid-derived suppressor
cells (MDSCs), and indoleamine 2,3‑dioxygenase (IDO),
which are expressed by both cancer cells and tumor-
infiltrating myeloid cells [107–110]. Moreover, FOXP3+

CD4+ Treg cells also influence effector T cell function in
the microenvironment within tumor. However, exactly
how Treg cells affect the induction of T cell dysfunction
has not been well defined. Besides FOXP3+CD4+ Treg
cells, other immune cell types, such as NK cells, immuno-
regulatory APCs, MDSCs [111, 112], and CD8+ regulatory
cells [113, 114], may affect tumor progression and directly
or indirectly enhance T cell dysfunction.
CTLA4 and PD-1, the two immune checkpoint targets

that have been extensively studied in clinical immuno-
oncology, regulate anticancer T cell responses via different
mechanisms and at different levels. This implies that anti-
cancer immunity can be enhanced at multiple levels and
by different mechanisms. It also implies that combination
strategies for cancer immunotherapy can be wisely de-
signed based on mechanisms and on results obtained from
preclinical models. A better understanding of the special-
ized regulatory roles of these receptors and definition of
the mechanisms of T cell dysfunction will provide more in-
sights for rational design and development of cancer im-
munotherapy that target these receptors.

Conclusion
Recent studies demonstrated that immune checkpoint
inhibitors are able to induce durable, long-lasting cancer
control. These antibodies have moved immuno-oncology
therapy into a new era and indicate that modulation of
immune response is a crucial therapeutic strategy for
cancer treatment. Although current immunotherapies
targeted at the immune checkpoints, PD-1 and CTLA-4,

exhibit enormous potential to control cancer, there are
still some tumor types and many patients that remain
largely refractory to these therapies. This has prompted
intense investigation into the targeting of other immune
checkpoints or coinhibitory receptors in order to in-
crease the therapeutic repertoire. A diverse array of T
cell co-receptors are now being explored for developing
new potential targets for clinical cancer therapies. There
are multiple additional immune checkpoints which rep-
resent new potential targets for cancer immunotherapy,
and they are now under active development. These in-
clude antibodies targeting new immune checkpoints,
particularly LAG-3, Tim-3, and TIGIT [73]. They also
include agonist antibodies against activating receptors
such as CD137, CD27, ICOS, GITR, B7-H3, and others.
Rational combinations of immune checkpoint inhibitors
with other immunotherapies are also tested in ongoing
studies [19]. In addition, new biomarkers that help to se-
lect patients for particular types of immune checkpoint
therapy are under intense investigations. A clearer un-
derstanding of the regulatory roles of these immune
checkpoints and elucidation of the mechanisms of T cell
dysfunction will shed insights on the development of
new therapies for cancer treatment.
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