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Abstract

Stress is deeply rooted in the modern society due to limited resources and large competition to achieve the
desired goal. Women are more frequently exposed to several stressors during their reproductive age that trigger
generation of reactive oxygen species (ROS). Accumulation of ROS in the body causes oxidative stress (OS) and
adversely affects ovarian functions. The increased OS triggers various cell death pathways in the ovary. Beside
apoptosis and autophagy, OS trigger necroptosis in granulosa cell as well as in follicular oocyte. The OS could
activate receptor interacting protein kinase-1(RIPK1), receptor interacting protein kinase-3 (RIPK3) and mixed lineage
kinase domain-like protein (MLKL) to trigger necroptosis in mammalian ovary. The granulosa cell necroptosis may
deprive follicular oocyte from nutrients, growth factors and survival factors. Under these conditions, oocyte
becomes more susceptible towards OS-mediated necroptosis in the follicular oocytes. Induction of necroptosis in
encircling granulosa cell and oocyte may lead to follicular atresia. Indeed, follicular atresia is one of the major
events responsible for the elimination of majority of germ cells from cohort of ovary. Thus, the inhibition of
necroptosis could prevent precautious germ cell depletion from ovary that may cause reproductive senescence and
early menopause in several mammalian species including human.
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Background
Stress has affected physical, social and psychological
status of a person in the modern society [1, 2]. Although
both genders are exposed to various kinds of stressors,
females are more frequently exposed to one or other
type of stressors during their reproductive life [3–5].
Several factors such as lifestyle, pressure and demands
may generate psychological stress [2]. The psychological
stress triggers the release of cortisol and generation of
reactive oxygen species (ROS) in the body. Further, accu-
mulation of ROS in the ovary results in oxidative stress
(OS) [1, 6]. Studies suggest that high level of cortisol as
well as OS induce granulosa cell death [2, 6, 7]. The
granulosa cell death deprives follicular oocytes from
nutrients, growth factor, survival factors and reduces
estradiol biosynthesis [6]. The reduced level of estradiol-
17β affects folliculogenesis and deteriorates oocyte qual-
ity by inducing various cell death pathways in somatic
cells as well as in follicular oocyte [6–8]. Studies suggest

that estradiol-17β could act as an antioxidant [9, 10] and
protect OS-mediated apoptosis in pig [11] and ovine
follicles [10, 12]. Although ovary is a dynamic organ and
has its own antioxidant enzymes to scavenge ROS
during final stages of folliculogenesis, depletion of
antioxidants system could result in the accumulation of
ROS and thereby OS in the ovary [13].
ROS affects oocyte physiology by modulating meiotic

cell cycle resumption/arrest and cell death depending
upon its level [6, 7, 14–21]. For instance, a moderate
level of ROS triggers oocyte meiotic resumption from
diplotene as well as M-II arrest [19, 22], while supple-
mentation of antioxidants inhibits spontaneous resump-
tion under in vitro culture condition [16, 17, 23].
Further, high level of ROS generates OS and induces
meiotic cell cycle arrest and thereby apoptosis in rat
oocytes cultured in vitro [6–8, 24–27]. The extremely
high level of ROS induces necrosis in oocytes of several
mammalian species including mouse [28], rat [29], ewe
[30] and human [31].
Necrosis is morphologically characterized by organelle

swelling, increase of cell volume and rupture of cell
membrane [32]. Studies suggest that regulated form of
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necrosis so called necroptosis shows morphological
features similar to necrosis [33]. A few studies indicate
the occurrence of OS-mediated necroptosis in cow [34]
and human ovary [35]. The OS-mediated necroptosis in
granulosa cells and oocyte remains ill understood. This
review article updates the information on stress-medi-
ated necroptosis and proposes a possible molecular
mechanism underlying OS-mediated necroptosis in
mammalian ovary.

Stress and necroptosis in granulosa cells
Increase of ROS in the follicular fluid under physiological
range is beneficial for follicular oocyte. For instance, a
moderate increase of ROS is associated with spontaneous
meiotic resumption, fertilization rate and reproductive
outcome in rat [16] and human [16, 17, 23]. However,
sustained high level of ROS generates OS and increased
OS trigger granulosa cell death in rat [6, 7, 13]. The pos-
sible source for the increased level of ROS in the follicular
fluid seems to be macrophages and the extracellular ROS
together with TNF-α produced by macrophages, may
trigger necroptosis of encircling granulosa cells [34]. The
granulosa cell death subsequently starves oocyte and
results in more vulnerable to cell death. The elevated
intracellular ROS would trigger apoptosis, necrosis or
necroptosis in response to the extent of insult and differ-
ent stress conditions. In addition, ROS is cell permeable
and it can easily enter in granulosa cells from follicular
fluid. Thus, it is not possible to distinguish the necroptosis
triggered by extracellular or intracellular ROS within the
follicular microenvironment.
The prolonged starvation causes generation of ROS

and induces necroptosis in human granulosa cells [35].
The increased level of ROS has been reported to inhibit
cleavage of caspase and result in necroptosis in human
ovary [33, 35]. The high level of ROS increases receptor
interacting protein kinase 1 (RIPK1) and receptor inter-
acting protein kinase 3 (RIPK3) in human granulosa cells
[35]. Dehydroepiandrosterone (DHEA) reduces ROS
production and RIPK expression in starvation-mediated
necroptosis in human granulosa cells [35]. DHEA has
been reported to improve oocyte quality probably by its
antioxidant property [36]. The OS increases the expres-
sion of few enzymes that induce necroptosis in human
granulosa cells [37]. Read-through acetylcholinesterase
(AChE-R) is a stress form of acetylcholinesterase (AChE)
and its expression increases in response to OS [38, 39].
The acetylcholine (ACh) is cleaved by AChE-R and
triggers granulosa cell necroptosis in human [37]. The
phosphorylated mixed lineage kinase domain-like protein
(p-MLKL) has been reported during necroptosis in mouse
and human ovary [40]. This is supported by the observa-
tion that the p-MLKL triggers granulosa cell necroptosis.

The use of necrosulfonamide reduces necroptosis in
human granulosa cells cultured in vitro [37, 41].
The increased number of macrophages has been

reported during luteolysis in bovine corpus luteum [34,
42] and produce tumor necrosis factor alpha (TNF-α) as
well as interferon-γ (IFNG) [34, 43]. The high level of
cytokines triggers expression of RIPK1 and RIPK3 in
luteal cell of cow ovary [34], human T-cells [44] and
mouse dendritic cells [45]. The RIPK1 and RIPK3 act as
stress sensors that promote necroptosis in cow ovary
[34, 46]. On the other hand, necrostatin-1 treatment
inhibits TNF-α and IFNG-mediated increase of RIPK-1
as well as RIPK-3 expression in granulosa cells of cow
ovary [34]. These studies suggest that the increase of
ROS generate OS in the follicular fluid of ovary. The
OS triggers necroptosis in encircling granulosa cells
through RIPK as well as MLKL-signaling pathways. The
OS-mediated granulosa cell necroptosis could increase
susceptibility of follicular oocyte in several mammalian
species including human.
Environmental pollutants including cadmium (Cd)

have been reported to trigger necroptosis in chinese
hamster ovary (CHO) cells [47]. The Cd exposure
increases intracellular calcium [(Ca2+)i] and generation
of ROS and thereby calpain activity [47, 48]. Increased
calpain activity reduces mitochondrial membrane poten-
tial (MMP), while increased level of ROS inhibits NF-κB
activity [47]. The reduced level of MMP and NF-κB ac-
tivities lead to Cd-induced necrotic cell death possibly
through necroptosis. This possibility is further supported
by the observations that the specific inhibitor of necrop-
tosis, necrostatin-1, attenuates Cd-induced necroptosis
by restoring the NF-κB activity in CHO cells [47].

Stress and necroptosis in oocyte
The endogenous burst of internal calcium stores result
in extremely high level of [(Ca2+)i] that induce necrotic
cell death through the generation of ROS in oocyte [22].
The follicular oocyte secretes GDF-9 that helps in the
cumulus cell expansion and granulosa cell proliferation
[49–51]. The possible involvement of necroptosis in oo-
cyte comes from the observations that the necrostatin-1
treatment increases GDF-9 and mitotic arrest deficient 2
(Mad2) expressions required for meiotic competency of
mouse oocyte [49]. Further, necrostatin-1 also increases
Bcl-2 expression that ensures oocyte survival in mouse
[49]. In addition, necrostatin-1 prevents OS-mediated
deterioration of oocyte quality in mouse by modulating
RIPK1 activity [49].
Immune suppression causes necrotic cell death in

follicular oocyte and depletes ovarian reserve in mouse
[52]. The death of oocyte under compromised immune
system could be a programmed necrosis due to the
involvement of a cytokine such as TNF-α [53, 54]. The

Chaudhary et al. Journal of Biomedical Science           (2019) 26:11 Page 2 of 6



TNF-α binds to it’s receptor and triggers necroptosis
through RIPK1-mediated pathway [33, 55]. The increased
TNF-α attenuates the development of ovary [56], decreases
number of mature follicles in ovary and impairs oocyte
meiotic maturation in mouse [52]. This is further supported
by the observation that inhibition of TNF-α protein synthe-
sis prevents spontaneous meiotic maturation in mouse
oocyte cultured in vitro [52]. Thus, ROS-mediated TNF-α
signaling may induce necroptosis in follicular oocytes in the
ovary as described in granulosa cells.
Oocyte is one of the major sources for TNF-α [57, 58]

and its receptors are reported on oocyte as well as
granulosa cells of rat ovary [58]. TNF-α binds to its re-
ceptor (TNFR) and triggers trimerization of cytoplasmic

domain of TNFR1 containing TNFR1-associated death
domain protein (TRADD). The TRADD binds to RIPK1
as well as TNFR associated factor 2 (TRAF2) forming
complex-I [59, 60]. Cylindromatosis (CYLD) deubiquiti-
nates RIPK1 [60, 61] and helps in the dissociation of
complex-I from plasma membrane. The complex-I get
associated with Fas-associating protein with death
domain (FADD) and caspase-8 forming complex-II in
the cytoplasm [62, 63]. Caspase-8 cleaves RIPK1 and
RIPK3 resulting in apoptotic signals [55, 60, 64–66]. On
the other hand, inhibition of caspase-8 results in RIPK1
and RIPK3 association and their autophosphorylation
induces necroptosis [67, 68]. Activated RIPK3 then
phosphorylates MLKL that finally leads to rupture of

Fig. 1 Pathological conditions, environmental pollutants, starvation and lifestyle changes generate stress in the body. Stress increases extracellular
ROS production from macrophages, OS and cytokines level in the granulosa cell of mammalian ovary. Stress as well as enhanced OS generates
TNF-α that binds to its receptor present on the granulosa cell membrane and induces conformational changes that results a binding of TRADD
with death domain of a receptor. TRADD recruits RIPK1 as well as TRAF2 forming complex-I. CYLD deubiquitinates RIPK1 allowing complex-I to
dissociate from membrane. Complex-I moves into cytoplasm and associates with FADD as well as caspase-8 forming complex-II. Complex-II is
responsible for the induction of apoptosis. Inhibition of caspase-8 allows the formation of necrosome and association of RIPK1 with RIPK3 that
induce autophosphorylation of RIPK1 as well as RIPK3. RIPK1-RIPK3 complex phosphorylates MLKL that triggers damage of cell membrane
resulting in necroptosis. Granulosa cell death deprives oocyte from survival factor, nutrients and cyclic nucleotides that lead to generation of ROS
and thereby OS. The OS as well as increased level of intracellular calcium triggers oocyte necroptosis following a similar pathway as described for
granulosa cell necroptosis
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plasma membrane [40, 60, 69–72] (Fig. 1). The plasma
membrane rupture is one of the important morpho-
logical features of necroptosis. The disruption of transfer
of nutrients and signal molecules from dying granulosa
cells to the oocyte is sufficient to trigger necroptosis.
Further, nutrient deprivation may generate ROS in the
oocyte and calcium burst from internal stores may trig-
ger TNF-α signaling to induce oocyte necroptosis. The
cross-talk between granulosa cells and oocyte decide the
fate of each other, hence it is not yet clear which path-
way is responsible for oocyte necroptosis.

Beneficial impact of necroptosis in pathological ovary
Growing body of evidences suggest the beneficial role of
necroptosis in controlling tumor growth in pathological
ovary [73]. The majority of patients (60–85%) respond
to primary therapy initially but later disease recurrence
has been observed [74, 75]. This could be due to the
evasion of apoptosis [76]. Studies suggest that the inhibi-
tors of apoptosis protein (IAP) antagonism triggers
necroptosis in apoptosis-resistant ovarian cancer cell
[73]. It has been observed that necroptosis selectively
occurs in apoptosis resistant cells [73]. The oncolytic
vaccinia virus has been used to induce programmed ne-
crosis in ovarian cancer cell [77]. The inhibition of
RIPK1 and its substrate MLKL attenuate ovarian cancer
cell death [77]. This is supported by the observations
that the inhibition of RIPK1 and MLKL protect from
vaccinia-mediated necroptosis in ovarian cancer cell
[78]. These studies suggest that the induction of necrop-
tosis in pathological ovary having ovarian cancer could
be beneficial to control the cancer cell proliferation and
may be used in the therapeutic design of ovarian cancer
management [73].

Conclusions
Stress is frequently observed at each level of society and
affecting day to day as well as social life of a person.
Stress not only increases the cortisol production but also
induce generation of ROS. High level of ROS causes OS
that negatively affects physiology of mammalian ovary. An
increased OS induces granulosa cell and oocyte necroptosis
by operating RIPK as well as MLKL-mediated signaling
pathways. Although necroptosis could be beneficial to pre-
vent tumor growth in pathological ovary, its involvement in
granulosa cell and oocyte may cause precautious depletion
of germ cells from the cohort of ovary. Thus, prevention of
necroptosis in normal and healthy ovary may prevent re-
productive senescence as well as early menopause in several
mammalian species including human.
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