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Abstract

Background: The emergence of Zika virus (ZV) in tropical and subtropical areas of the world has created an urgent
need for vaccines against ZV. However, approved vaccines that prevent ZV infection are not available. To develop
an effective vaccine against ZV infection, a lipidated form of ZV envelope protein domain Il that possesses an
intrinsic adjuvant property was rationally designed. Our goal was to examine the immunogenicity of recombinant
lipidated ZV envelope protein domain Ill (rLZE3) and evaluate its potential as a vaccine candidate against ZV.

Methods: Recombinant ZV envelope protein domain Ill (rZE3) and rLZE3 were prepared with an Escherichia coli-
based system. Dendritic cell surface marker expression and cytokine production upon stimulation were analyzed to
evaluate the function of rLZE3. Neutralizing antibody capacities were evaluated using focus reduction neutralization
tests after immunization. To investigate the protective immunity in immunized mice, serum samples collected from
immunized mice were adoptively transferred into AG129 mice, and then viremia levels and survival times were
examined after ZV challenge.

Results: rL.ZE3 alone but not rZE3 alone efficiently activated dendritic cells in vitro and was taken up by dendritic
cells in vivo. Immunization of C57BL/6 mice with rLZE3 alone (without exogenous adjuvant) could induce ZV-
specific neutralizing antibody responses. Furthermore, serum samples obtained from rLZE3-immunized mice
provided protection as indicated by a reduction in viremia levels and prolongation of survival times after ZV
challenge.

Conclusion: These results indicate that rLZE3 is an excellent vaccine candidate and has great potential that should
be evaluated in further preclinical studies.
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Background

Zika virus (ZV) belongs to the genus Flavivirus of the fam-
ily Flaviviridae. It can be spread by bites from virus-
infected mosquitoes, similar to dengue virus and Japanese
encephalitis virus in the same family. In recent years, the
outbreak of ZV in tropical and subtropical regions has
become a major public health issue [1, 2]. Infection of ZV
results in a self-limiting mild illness characterized by rash,
fever, conjunctivitis, arthralgia, and arthritis [3]. Recently,
evidence has indicated that ZV infection can be correlated
with the development of Guillain-Barré syndrome [4]. In
addition, the isolation of ZV from the fetal brain and epi-
demiological information provide strong evidence that ZV
infection is associated with microcephaly [5, 6]. At
present, there are no specific curative treatments for ZV
infection or approved vaccines to prevent ZV infection.
Therefore, it is very important to develop a therapeutic
approach or vaccine for ZV infection.

The emergence of ZV in different regions of the world
has created an urgent need for vaccines against ZV [7, 8].
ZV is in the same viral family as dengue virus. It has been
shown that the structure of mature ZV is arranged in a
herringbone pattern with 90 antiparallel envelope dimers
[9, 10], similar to the structure of dengue virus [11, 12].
The dengue virus envelope protein contains three do-
mains. This viral structural protein plays a key role in viral
entry. Envelope protein domain III (E3) of dengue virus
contains an immunoglobulin-like fold and contributes to
viral attachment [13, 14]. Our previous studies have
shown that E3 of dengue virus is a potential dengue vac-
cine candidate [15-23]. It is very likely that antibodies
against ZV E3 can neutralize ZV infection. Recently, ZV-
derived E3 [24, 25], ZV-derived E3 displayed on immuno-
genic virus-like particles [26, 27], or ZV-derived E3 fused
with the Fc region of human IgG [28] was found to induce
neutralizing immune responses against ZV when formu-
lated with adjuvants. The neutralizing immunogenicity on
neutralizing epitopes was further enhanced by masking of
a non-neutralizing epitope surrounding residue 375 of ZV
E3 [29]. Characterization of the human immune response
to ZV infection revealed that the highly cross-reactive
antibodies to envelope protein domain I/II induced by ZV
or DV infection were poorly neutralizing but potently en-
hancing may pose a risk for heterologous ADE [30]. Thus,
ZV E3 is a potential target for ZV vaccine development.

Modern subunit vaccines comprise two critical compo-
nents, an antigen and an immunostimulator. It has been
shown that both synthetic lipopeptides and bacterial-derived
lipoproteins are able to stimulate antigen-presenting cells
through the toll-like receptor signaling pathway and thus
enhance immune responses [31-33]. According to these
findings, we developed a technique for producing recombin-
ant lipoproteins with high yields and applied this technology
to the development of recombinant protein-based vaccines
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with superior immunogenicity [34]. In this study, we pro-
duced recombinant lipidated ZV E3 (rLZE3) and evaluated
the potential of rLZE3 as a vaccine candidate against ZV.
We demonstrated that rLZE3 alone stimulated durable neu-
tralizing antibody responses and produced protective effects.
Our results provide valuable evidence to move the rLZE3
vaccine candidate into clinical studies in the future.

Methods

Cloning and expression of rZE3 and rLZE3

The DNA sequence of ZV E3 was synthesized (Purigo
Biotechnology Co., Taipei, Taiwan) using Escherichia
coli codon usage according to the amino acid se-
quence of ZV E3 (GenBank Acc.No. AMC13911). To
construct the plasmid pZE3 for rZE3 expression, a
forward primer, 5'-ACTGCGCATAT Gaaaggcgtgagc-3°
(the Ndel site is underlined), and a reverse primer,
5 -TCATGAATCTCGAGggtgctgccgetg-3"  (the  Xhol
site is underlined), were used to clone the rZE3 se-
quence into the Ndel and Xhol sites of the plasmid
pET-22b(+) (Novagen, Madison, WI). A hexahistidine
tag (His-tag) was added to the C-terminus of rZE3.
For expression of rZE3, pZE3 was transformed into E.
coli BL21 (Invitrogen, Carlsbad, CA). After transform-
ation, the E. coli were cultured at 37 °C overnight. To
scale up protein production, 20ml of the overnight
culture was added to 1L of medium in a 2-L shaker
flask and incubated at 37°C for 4h. When cultured
to ODgqo = 0.6, isopropylthiogalactoside (IPTG; 1 mM)
was added, followed by an incubation for 20h at
20°C to induce protein expression. The D1 domain
and lipid signal peptide of the lipoprotein Ag473 [34]
were cloned into the Ndel and BamHI sites of the ex-
pression vector pET-22b(+) to obtain the plasmid
pLipo as previously described [35]. To construct the
plasmid pLZE3 for rLZE3 expression, a forward pri-
mer, 5- GAAGATCTaaaggcgtgagctatagect-3° (the
BgllIl site is underlined), and a reverse primer, 5'-
TCATGAATCTCGAGggtgctgecgetg-3° (the Xhol site
is underlined), were used to clone the rZE3 sequence
into the BgllIl and Xhol sites of the pLipo plasmid to
obtain pLZE3. The C-terminus of rLZE3 contained a
His-tag. For expression of rLZE3, pLZE3 was trans-
formed into E. coli C43 (Lucigen, Middleton, WI).
The other steps were the same as those performed
for rZE3 expression.

Production of rZE3 and rLZE3

Cells were harvested and then disrupted in a French
press (Constant Systems, Daventry, UK) at 27 Kpsi in a
homogenization buffer [20 mM Tris (pH 8.0), 50 mM su-
crose, 500 mM NaCl and 10% glycerol]. The cell lysate
was clarified by centrifugation (80,000Xg for 40 min) as
previously described [35]. The majority of rZE3 was
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present in the inclusion bodies. rZE3 was extracted with
an extraction buffer [0.02M Tris (pH 8.0), 0.05M su-
crose, 0.5 M NaCl, 10% glycerol and 3M GuHCI]. For
purification of rZE3, the solubilized portion was
loaded onto immobilized metal affinity chromatog-
raphy (IMAC) columns (QIAgen, Hilden, Germany).
The eluate from the IMAC column was further refined
using an anion exchange column (Ni-NTA super flow;
slurry). To eliminate endotoxin, the refined fraction
was passed through an E membrane (Pall Co., USA).
The levels of endotoxin in the purified rZE3 fraction
were evaluated by a Limulus amebocyte lysate (LAL)
assay (Associates of Cape Cod, Inc., Cape Cod, MA).
The residual endotoxin concentration was less than 10
EU/mg. After elimination of endotoxin, rZE3 was dia-
lyzed against 0.01 M dibasic sodium phosphate, lyoph-
ilized and stored at -20°C. Fractions collected
throughout this process were evaluated by SDS-PAGE
and immunoblotting with an anti-His-tag antibody.
For preparation of rLZE3, the target protein was ex-
tracted with an extraction buffer [0.02 M Tris (pH 8.0),
0.05M sucrose, 0.5 M NaCl, 10% glycerol, 1% TritonX-
100, and 3 M GuHCI]. rLZE3 was dialyzed against 0.01 M
dibasic sodium phosphate/0.01 M mannitol/3 mg/ml su-
crose. The other processes were the same as those used
for rZE3 purification.

Identification of the lipid moiety in rLZE3

After digestion of rLZE3 with trypsin (Sigma, St.
Louis, MO), the digestion mixture was further refined
with a ZipTip (Millipore, Massachusetts). The ZipTip-
refined trypsin-digested fragments (1 uL) were mixed
with 1 mL of an a-cyano-4-hydroxycinnamic acid satu-
rated solution in acetonitrile/0.1% trifluoroacetic acid
(1:3 vol:vol). The mixture (1 pL) was placed on the tar-
get plate of a MALDI micro MX mass spectrometer
(Waters, Manchester, UK) for analysis as previously
described [35].

Effect of rLZE3 on dendritic cell activation

Bone marrow was harvested from the femurs and
tibiae of C57BL/6 mice (n =2-3 in each independ-
ent experiment). After vigorous pipetting, red blood
cells were removed using a lysis buffer. The isolated
bone marrow cells (2-5 X 10° cells/mL) were cul-
tured in RPMI-1640 medium supplemented with p-
mercaptoethanol (0.05 mM), L-glutamine (2 mM), HEPES
(20mM), penicillin/streptomycin (100 units/mL), and
heat-inactivated fetal bovine serum (10%, v/v) at 37 °C in a
5% CO, atmosphere. Granulocyte macrophage colony
stimulating factor (200 units/mL) was added to the cul-
tures on days 0 and 3. On days 6-7, the cultured cells
were harvested and seeded in 24-well plates (1 X 10° cells/
mL/well) and stimulated with rZE3 or rLZE3 (100 nM).
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After stimulation for 20 h, the levels of TNF-q«, IL-6, and
IL-12p40 in the supernatants were examined using spe-
cific cytokine ELISA kits (eBioscience, San Diego, CA).
The expression of CD11c, CD40, and CD80 on the cell
surface was determined by staining with anti-CD11c, anti-
CD40, and anti-CD80 monoclonal antibodies for evalu-
ation by flow cytometry (FACSCalibur, BD Biosciences).
Data acquisition was performed by using CellQuest Pro
software, and data were analyzed using FACS 3 software
to evaluate gated CD11c" cell populations.

Antigen uptake by dendritic cells

To evaluate internalization of antigens in the vacci-
nated mice in vivo, rZE3 and rLZE3 were labeled by
Alexa Fluor 647 labelling kit (Thermo Fisher Scien-
tific, MA). Groups (4 mice/group) of C57BL/6 mice
(6—8 weeks of age) were treated with footpad injec-
tions of 100pg alexa647-labeled rZE3 or rLZE3
(100 pg into one side footpad). Single suspension lym-
phocytes were prepared from draining lymph nodes
which derived from mice 24 h after injection. The
LIVE/DEAD fixable dead cell stain kits (Thermo
Fisher Scientific, MA) was used to evaluate the viabil-
ity of lymphocytes by flow cytometry. B cells, T cells,
NK cells, and neutrophils were stained with FITC-CD19,
CD3e, NK1.1, and Ly6G (1A8) antibody. Dendritic cells
were defined with PerCP-Cy5.5 conjugated-MHCII and
BV421-CDl1l1c. Staining antibodies were obtained from
Biolegend. Lymphocytes in draining lymph node was ana-
lyzed by flow cytometry.

Experimental mice and immunizations

C57BL/6 mice were obtained from the National Labora-
tory Animal Breeding and Research Center (Taipei,
Taiwan). AG129 mice were bred at the Laboratory Animal
Center of the National Health Research Institutes. All the
mice were housed at the Laboratory Animal Center of the
National Health Research Institutes. Animals (6—8 weeks
old mice) were immunized with vaccine candidates via
subcutaneous injection at the indicated doses. Mice
(4-5 mice/group) received 2 vaccinations at a 2-week
interval with the same regimen. Serum samples were
collected by tail bleeding each mouse at different time
points as indicated.

Measurement of antibody titers

Anti-rZE3 IgG titers in the serum were determined by
titration as previously described with some modifica-
tions [21]. Serum samples were prepared in 3-fold
serial dilutions (starting at 1:30) and then added to
rZE3-coated 96-well plates. Bound IgG was identified
by a goat anti-mouse IgG Fc antibody conjugated with
horseradish peroxidase. After washing with PBS and
the addition of a 3,3",5,5'-tetramethylbenzidine
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Fig. 1 Production and purification of recombinant Zika virus envelope protein domain Ill (rZE3) and recombinant lipidated Zika virus envelope protein
domain Il (r(LZE3). The plasmid maps of pZE3 (a) and pLZE3 (d) for the production of rZE3 and rLZE3, respectively. The purification of rZE3 (b, ¢) and
rLZE3 (e, f) was monitored by 10% reducing Tricine-SDS-PAGE followed by Coomassie Blue staining and immunoblotting with anti-His-tag antibodies.
rZE3 and rLZE3 were expressed in the E. coli strains BL21 (DE3) and C43 (DE3), respectively. Lanes 1, 5,9, and 13: protein expression without IPTG
induction; lanes 2, 6, 10, and 14: protein expression after IPTG induction; lanes 3 and 7: extraction of rZE3 from inclusion bodies; lanes 11 and 15:
soluble fraction of rLZE3; and lanes 4, 8, 12, and 16: purified proteins. Lanes 5-8 and lanes 13-16 show the induction and purification processes for
rZE3 and rLZE3, respectively, evaluated by immunoblotting. The arrows show the electrophoretic positions of rZE3 or rLZE3. g Mass spectrum analysis
of rLZE3. The N-terminus of the rLZE3 fragments was obtained by trypsin digestion and further examined with a WatersR MALDI micro MX™ mass
spectrometer. MALDI-TOF MS spectra revealed lipid peptide signals with three m/z value peaks of 1452.129, 1466.144, and 1480.160
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substrate, the absorbance at 450 nm was determined
using an ELISA reader. The serum dilution that pro-
duced an OD value of 0.3 was defined as the ELISA
endpoint titer. Titers were calculated from the titra-
tion curve by interpolation unless the OD value was
less than 0.3 at the starting dilution (1:30).

Focus-forming assays

Plasma samples from challenged mice were diluted using
10-fold serial dilutions (starting at 1:10). Virus titers
were determined as previously described with some
modifications [21]. Diluted plasma was allowed to infect
a monolayer of Vero cells in 24-well plates at 37 °C.
After 3 h of incubation, an overlay of medium containing
2.5% fetal bovine serum and 0.8% methylcellulose in
DMEM was added at the conclusion of the infection
period. The infected monolayer was incubated at 37 °C
for 55h, and then the overlay medium was removed.
After washing with phosphate-buffered saline (PBS), the
cells were fixed for 15min in 3.7% formaldehyde/PBS,
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permeabilized with 0.1% nonidet P40/PBS for 15 min
and blocked with 3% bovine serum albumin/PBS for 15
min. ZV-infected Vero cells were identified by the HB122
anti-ZV antibody. After washing with PBS, antibody-bound
cells were identified using a horseradish peroxidase-
conjugated goat anti-mouse IgG (H + L) antibody. The in-
fected cells were visualized using TMB.

Focus reduction neutralization tests (FRNT)

Heat-inactivated serum samples were prepared in 2-fold
serial dilutions (starting at 1:8). Neutralizing antibody ti-
ters were determined as previously described with some
modifications [21]. ZV was incubated with the serum
samples at 4°C overnight in a final volume of 200 pL.
The mixture was added to monolayers of Vero cells in
24-well plates. Focus-forming units (FFUs) were deter-
mined by focus-forming assays. The FRNT5, neutralizing
antibody titer was defined as the highest dilution that re-
sulted in a 50% reduction in FFUs compared to the FFUs
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of negative control samples that contained virus alone.
Any neutralizing antibody titers below 8 were designated
as 4 for calculation purposes.

Animal challenge

AG129 mice (9-11 weeks old mice) were intraperito-
neally injected with 0.4 mL of serum from immunized
C57BL/6 mice. After 6 h, the AG129 mice were intra-
peritoneally injected with 50 FFUs of ZV
(PRVABC59) in 0.2mL of PBS. Blood samples were
obtained at 3 days post-ZV challenge. The blood sam-
ples (0.2mL) were instantly mixed with prechilled
3.8% sodium citrate (20 uL). The virus titers in the
plasma were determined using focus-forming assays
with Vero cells. If the virus titers were less than 2.0
logoFFU/mL (detection limit of the assay), a value of
1.0 was assigned for calculation purposes.
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Data analysis

Values are presented as the mean + SEM. The Kruskal-
Wallis test with Dunn’s multiple comparison test was per-
formed to compare differences among more than two
groups. GraphPad Prism software version 5.02 (GraphPad
Software, San Diego, CA) was used for statistical analysis.
Differences with p<0.05 were considered statistically
significant.

Results

Preparation and characterization of recombinant Zika
virus envelope protein domain Ill proteins

We constructed the plasmids pZE3 (Fig. 1a) and pLZE3
(Fig. 1d) to produce rZE3 and rLZE3, respectively. Con-
ditions for the preparation of rZE3 and rLZE3 were
tested, and purified rZE3 (Fig. 1b and c) and rLZE3
(Fig. le and f) were obtained. The concentrations of
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Fig. 3 Enhancement of antigen uptake by dendritic cells and elevation of the dendritic cell frequency in the draining lymph nodes mediated by
the injection of LZE3. a Gating strategy for the dendritic cell population in the draining lymph nodes. Alexa Fluor 647-labeled rZE3 or rLZE3 was
injected into the hind foot pads (100 ug/foot pad) of C57BL/6 mice. Mice injected with PBS were used as controls. Cells were harvested 24 h after
injection. Single cells were gated by FSC-W/SSC-A. Dead cells, B cells, T cells, NK cells, and neutrophils were excluded from the analysis by
staining with a Live/Dead® fixable dead cell stain dye and anti-CD19, anti-CD3e, anti-NK1.1, and anti-Ly6G (1A8) antibodies. The frequencies of
CD11c"MHC II* cells (b) and antigen-labeled CD11c"MHC I cells (c) were further analyzed. The results shown are from one of two representative
experiments. Statistical significance was determined using the Kruskal-Wallis test with Dunn’s multiple comparison test. *p < 0.05
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residual LPS in the rZE3 and rLZE3 preparations were
less than 10 EU/mg after removal of LPS. Next, the exact
mass of trypsin-digested rLZE3 N-terminal fragments
was examined. Three major peaks were identified with
m/z values of 1452, 1466, and 1480 (Fig. 1g). These
peaks are considered to be lipidation signatures that
have been confirmed in other recombinant lipidated
proteins [16, 18, 19, 22].

Functional assessment of recombinant lipidated Zika
virus envelope protein domain IlI

Recombinant lipidated proteins produced by bacteria are
able to stimulate antigen-presenting cells through toll-
like receptor signaling pathways. The functionality of the
rLZE3 lipid moiety was evaluated by stimulating bone
marrow-derived dendritic cells with rZE3 or rLZE3. The
expression levels of CD40 and CD80 on the bone
marrow-derived dendritic cells were examined by flow
cytometry. rLZE3 increased the CD40 and CD80 expres-
sion levels, while rZE3 (without lipidation) did not en-
hance CD40 and CD80 expression (Fig. 2a). In addition,
we added polymyxin B to the stimulation to eliminate
the effect of any minor residual endotoxin remaining
after rZE3 or rLZE3 purification. It was evident that
there were no substantial reduction effects of polymyxin
B on stimulation with rZE3 or rLZE3. In contrast, add-
ing polymyxin B abolished enhancing effects of LPS. The
mean fluorescence intensity of bone marrow-derived
dendritic cells cultured without stimulation (PBS) was
defined as the basal expression level. The relative mean
fluorescence intensities from three independent experi-
ments are summarized in Fig. 2b. These results indicate
that the lipid moiety of rLZE3 leads to enhancement of
the expression of CD40 and CD80. Furthermore, rLZE3
was able to stimulate the production of TNF-q, IL-6 and
IL-12p40 by bone marrow-derived dendritic cells. In the
presence of polymyxin B, the production of cytokines
was not eliminated. In contrast, rZE3 (the counterpart of
rLZE3 that lacks lipidation) was unable to enhance cyto-
kine production (Fig. 2c). These results support the con-
clusion that rLZE3 stimulates bone marrow-derived
dendritic cells.

To examine whether rLZE3 enhances antigen cap-
ture by dendritic cells, PBS or Alexa Fluor 647-
conjugated rZE3 or rLZE3 was injected into mouse
foot pads. The frequencies of CD11¢"MHC II" cells
and antigen-containing CD11¢"MHC II" cells in the
inguinal lymph nodes were analyzed by flow cytome-
try at 24h after injection. The gating strategy and
representative results are shown in Fig. 3a. Injection
of rLZE3 elevated the frequency of CD11¢"MHC II*
cells in the inguinal lymph nodes compared with in-
jection of rZE3 or PBS (Fig. 3b). Furthermore, the
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frequency of antigen-containing CD11c*MHC II*
cells also increased in the mice injected with rLZE3
(Fig. 3c). These results suggest that the injection of
rLZE3 can increase the dendritic cell frequency in
draining lymph nodes and enhance antigen uptake
by dendritic cells.
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Fig. 4 Antibody responses induced by rLZE3. C57BL/6 mice (n=5/
group) received two vaccinations with PBS, rZE3, or rLZE3 (10 ug per
dose) via the subcutaneous route at a two-week interval. Serum
samples were collected from vaccinated mice at the indicated time
points after the first vaccination. a The titers of anti-rZE3 IgG antibodies
were determined by ELISA. Serum samples were collected before
vaccination (week 0) and used to determine basal levels for
comparison. b The Zika virus-neutralizing capacity of the serum
samples was determined by FRNT. The neutralizing antibody titer was
defined as the reciprocal of the highest dilution that resulted in a 50%
reduction in FFUs compared to the FFUs of control samples containing
the virus alone. The data represent the mean + SE of the mean.
Statistical significance was determined using the Kruskal-Wallis test
with Dunn’s multiple comparison test. *p < 0.05; **p < 0.01
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Assessment of the antibody response to Zika virus
envelope protein domain lll in mice

The immunogenicity of purified rZE3 and rLZE3 was
evaluated in mice. Groups of C57BL/6 mice received
two immunizations with PBS, rZE3 or rLZE3 (10 pg per
dose) with a two-week interval between immunizations.
The immunized mice were bled to collect serum at the
indicated time points. We found that rLZE3 possessed
high immunogenicity. Mice immunized with rLZE3
alone exhibited superior antibody responses compared
with mice immunized with rZE3. In addition, antibody
responses were quickly generated in mice that received
one dose of rLZE3 (at 2weeks post priming). After a
booster vaccination, antibody titers were further in-
creased and sustained over 20 weeks after the first vac-
cination (Fig. 4a).

Next, we evaluated the neutralizing capacity of the
antibodies elicited by vaccination. As shown in Fig. 4b,
mice immunized with rZE3 were unable to generate sig-
nificant neutralizing antibody responses even when im-
munized twice. Remarkably, mice immunized with
rLZE3 exhibited significant neutralizing antibody titers
at 4 weeks after priming. The neutralizing antibody titers
were maintained for at least 20 weeks after the initial
priming immunization. These results suggest that mice
immunized with rLZE3 in an exogenous adjuvant-free
formulation develop long-lasting neutralizing antibody
responses.

To examine whether the neutralizing antibodies induced
by rLZE3 neutralize dengue-2 virus, we prepared serum
samples from mice immunized with rZE3 or rLZE3 or in-
fected with ZV or dengue-2 virus. We found that the
serum samples obtained from the mice immunized with
rLZE3 or infected with ZV could neutralize ZV but not
dengue-2 virus. In contrast, the serum samples obtained
from the mice infected with dengue-2 could neutralize
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dengue-2 virus but not ZV (Fig. 5). These results indicate
that the neutralizing antibody responses induced by rLZE3
do not cross-neutralize dengue-2 virus.

Induction of functional immunity against Zika virus in
mice

To evaluate the protective immunity in immunized mice,
serum samples were collected at 6—8 weeks after the first
immunization. The sera were adoptively transferred into
AG129 mice. These animals were challenged with ZV 6
h after receiving the sera. The viremia levels of the mice
that received the sera from rLZE3-immunized mice were
lower than those of the mice that received the sera from
rZE3- or PBS-immunized mice (Fig. 6a). In addition, the
mice that received the rLZE3-immunized mouse sera ex-
hibited prolonged survival times (Fig. 6b). These results
suggest that rLZE3 vaccination induces neutralizing anti-
bodies which are capable of neutralizing ZV in culture
and decrease viral replication in mice.

Discussion

In this study, we aimed to evaluate the possibility of apply-
ing rLZE3 as a potential ZV subunit vaccine candidate.
We showed that rLZE3 could be readily prepared with an
E. coli-based system (Fig. 1) and that immunization with
rLZE3 could elicit durable neutralizing antibody responses
in mice. Several studies have reported that ZV E3 contains
epitopes recognized by strong neutralizing monoclonal
antibodies [30, 36—39], suggesting that ZV E3 is a poten-
tial target that can trigger neutralizing antibody responses.
Consistent with these findings, our results show that
rLZE3 potently induces specific neutralizing antibodies
against ZV in mice (Figs. 4b and 5). Notably, we demon-
strated that passive transfer of rLZE3-immunized
mouse sera reduced viremia levels (Fig. 6a) and pro-
longed survival times (Fig. 6b) in recipient mice
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Fig. 6 Inhibition of viremia levels and prolongation of survival time
in rLZE3-immunized mice. Groups of C57BL/6 mice (n = 9-10/group)
were immunized subcutaneously with PBS, rZE3, or rLZE3 (50 ug per
dose) twice at a three-week interval. Serum samples were collected
at 8-10 weeks after the first immunization. AG129 mice were
intraperitoneally injected with 0.4 of mL sera from C57BL/6 mice
that received different immunizations. After 6 h, the AG129 mice

(n =10/group) were intraperitoneally injected with 50 FFUs of Zika
virus (PRVABC59) in 0.2 mL of PBS. a The mice were bled 3 days after
being challenged. The viral titers in the plasma were evaluated by
focus-forming assays using Vero cells. The plasma virus titers were
logarithmically transformed before statistical analyses. Data represent
the mean + SE of the mean. Statistical significance was determined
using the Kruskal-Wallis test with Dunn’s multiple comparison test.
*p < 0.05. b The overall survival of the mice is shown

challenged with ZV. Similar observations have been
made in other studies [40, 41]. Collectively, these re-
sults suggest that neutralizing antibodies play a critical
role in providing protective immunity against ZV
infection.

In general, purified recombinant proteins are not im-
munogenic. Adjuvants are often required in protein-
based subunit vaccine formulations to enhance the

Page 9 of 11

antigen-specific immune response. It has been shown
that E. coli-produced recombinant lipidated antigens are
efficiently captured by dendritic cells [35]. In addition,
these recombinant lipidated antigens can also stimulate
dendritic cell activation and further enhance antigen-
specific immune responses [18—20, 34, 35]. In agreement
with these findings, our results showed that rLZE3 but
not its nonlipidated counterpart could stimulate den-
dritic cells to increase the expression of CD40 and CD80
(Fig. 2a and b) and enhance the production of cytokines
(Fig. 2c). We further demonstrated that mice injected
with rLE3 exhibited increased frequencies of not only
dendritic cells in the draining lymph node but also
antigen-loaded dendritic cells (Fig. 3). All of the above-
mentioned features of rLZE3 conferred robust immune
responses. As a consequence, rLZE3 alone, without ex-
ogenous adjuvant, induced neutralizing antibodies super-
ior to those induced by rZE3. These results suggest that
use of a recombinant lipidated antigen is a potent strat-
egy for protein-based subunit vaccine development.

Both ZV and DV2 belong to the genus Flavivirus.
Sera from rLZE3-immunized mice can bind to recom-
binant dengue-2 E3 (rD2E3) and slightly bind to DV2
(Additional file 1: Figure S1). However, sera from rLZE3-
immunized mice did not neutralize DV2 (Fig. 5). It may in-
crease the infection of DV2 in the rLZE3-immunized hosts.
To address this issue, we further examined the capacities of
sera from rZE3-, rLZE3-, ZV-, and DV2-immunized mice to
mediate antibody-dependent enhancement (ADE) of DV2
infection. Our results show that ZV- and DV2-immunized
sera, but not rZE3- or rLZE3-immunized sera, exhibit great
ADE capacities of DV2 infection (Additional file 2: Figure
S2). In line with other studies, ZE3-based vaccines formu-
lated with adjuvant elicit neutralizing antibodies and little
ADE effects to DV [24—27]. Here, we show rLZE3 with in-
trinsic adjuvant also induces neutralizing antibodies and re-
duces risk of ADE. These results indicate that rLZE3 is a
potential vaccine candidate and superior to whole virion in
terms of minimal risk to induce ADE for DV.

Induction of a durable immune response is a key index
of a good vaccine candidate. We showed that the in-
duced neutralizing antibodies persisted for at least 20
weeks after priming without the use of exogenous adju-
vant in our formulation (Fig. 4b). These results suggest
that rLZE3 is a potent vaccine candidate against ZV.

Conclusions

In summary, our results show that rLZE3 can be robustly
produced in an E. coli-based system and that rLZE3 alone
potently induces neutralizing antibodies against ZV infec-
tion. Passive transfer of rLZE3-immunized sera reduced
viremia levels and prolonged survival times in recipient
mice challenged with ZV. Collectively, our results
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demonstrate that E. coli-produced rLZE3 is a potential ZV
vaccine candidate worthy of further development.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512929-020-00646-X.

Additional file 1: Figure S1. The capability of rLZE3 induced antibodies
bind to rDE3 and dengue-2 virus. C57BL/6 mice were immunized sub-
cutaneously with PBS (n=4), rZE3 (n=5), or rLZE3 (n=5) (10 ug per
dose) twice at a two-week interval. Serum samples were collected from
immunized mice at 8 weeks after the first immunization. ELISA was per-
formed by using rZE3 (A) or dengue-2 virus (B) as coating antigen. Data
represent the mean + SE of the mean.

Additional file 2: Figure S2. Assessment of rL.ZE3 induced antibodies
mediate antibody-dependent enhancement for dengue-2 virus infection.
C57BL/6 mice were immunized subcutaneously with PBS, rZE3, or rLZE3
(10 pg per dose) twice at a two-week interval. Live Zika virus or dengue-2
virus was injected intraperitoneally in parallel. Serum samples were col-
lected from immunized mice at 8 weeks after the first immunization.
Antibody-mediated enhancement of dengue virus infectivity was deter-
mined by flow cytometry in K562 cells. Sera were diluted via 4-fold serial
dilutions (starting at 1 : 4), and the sera were heatinactivated prior to
testing. Serially diluted sera and virus were mixed and incubated to form
immune complexes for 1 h at 37 °C. K562 cells were mixed with immune
complexes (MOl = 0.1) and then incubated for 1.5 h at 37 °C. After wash-
ing, the cells were resuspended in fresh medium and incubated for 3
days at 37 °C. Infections with and without virus were performed in paral-
lel as controls. Cells were stained for intracellular with monoclonal anti-
dengue antibodies (American Type Culture Collection, No. HB-114 for
dengue-2). Antibody-labeled cells were detected with a secondary anti-
body conjugated to FITC. The data were acquired with CellQuest Pro soft-
ware on a BD FACSCalibur flow cytometer and were analyzed with FCS
Express software.
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