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the humoral immune response
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Abstract

Despite the recent development of safe and highly effective direct-acting antivirals, hepatitis C virus (HCV) infection
remains a significant health problem. In 2016, the World Health Organization set out to reduce the rate of new HCV
infections by 90% by 2030. Still, global control of the virus does not seem to be achievable in the absence of an
effective vaccine. Current approaches to the development of a vaccine against HCV include the production of
recombinant proteins, synthetic peptides, DNA vaccines, virus-like particles, and viral vectors expressing various
antigens. In this review, we focus on the development of vaccines targeting the humoral immune response against
HCV based on the cumulative evidence supporting the important role of neutralizing antibodies in protection
against HCV infection. The main targets of HCV-specific neutralizing antibodies are the glycoproteins E1 and E2.
Recent advances in the knowledge of HCV glycoprotein structure and their epitopes, as well as the possibility of
getting detailed information on the human antibody repertoire generated by the infection, will allow rational
structure-based antigen design to target specific germline antibodies. Although obtaining a vaccine capable of
inducing sterilizing immunity will be a difficult task, a vaccine that prevents chronic hepatitis C infections, a more
realistic goal in the short term, would have a considerable health impact.

Keywords: HCV, Antibody, Vaccine, Humoral immune response, Glycoprotein E1, Glycoprotein E2, Virus
neutralization

Background
The hepatitis C virus
Hepatitis C virus (HCV) is an enveloped, positive-sense
single-stranded RNA virus that belongs to the Hepaci-
virus genus within the Flaviviridae family. Its genome of
9.6 kb is translated into a single large polyprotein, which
is processed by cellular and viral proteases into ten ma-
ture proteins, comprised of three structural (core, E1,
E2) and seven non-structural (NS) proteins (p7, NS2,
NS3, NS4A, NS4B, NS5A, and NS5B) [1]. HCV has high

genetic diversity with seven main genotypes and more
than 60 subtypes, of which genotype 1 is the most preva-
lent [2]. The difference at the nucleotide level is approxi-
mately 30% between genotypes and 15% between subtypes
of the same genotype. Additionally, HCV shows enormous
genetic diversity within an infected individual, where it ex-
ists in the form of quasispecies generated by the high error
rate of the HCV polymerase and the elevated replication
rate of the virus. These quasispecies can differ by up to
10% in their nucleotide sequence [2–4].

The natural history of hepatitis C infection
HCV is an important health problem that affects ap-
proximately 1% of the global population [5]. Blood trans-
fusions, nosocomial transmission, sharing equipment
between injecting drug users (IDU), and tattoos are rec-
ognized as common modes of HCV transmission. There
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is also evidence that HCV may be transmitted sexually
among men who have sex with men (MSM) [6]. Follow-
ing the initial HCV infection, a variable incubation
period follows, after which approximately 25% of sub-
jects clear the virus [7]. Fulminant hepatic failure due to
acute HCV infection is rare (< 1%), but is a dramatic
clinical syndrome with high mortality. The risk of
chronic hepatitis C (CHC) infection is high, and
around 75% of patients remain HCV RNA positive
after acute hepatitis C [7]. According to the World
Health Organization (WHO), 71 million people were
living with CHC infections worldwide in 2015, and
around 2 million new infections occur each year [5,
8]. The long-term natural history of CHC leads, after
many years of fibrosis, to liver cirrhosis in approxi-
mately 10–20% of patients within 20–30 years. Once
cirrhosis is established, decompensated cirrhosis, end-
stage liver disease, and hepatocellular carcinoma may
develop [9]. Inevitably, terminal liver disease leads to
death or the necessity for liver transplantation [9].

Worldwide elimination of HCV: the need for a
prophylactic vaccine
HCV treatment has changed substantially in the last
decade with the appearance of direct-acting antivirals
(DAAs) [6], which specifically inhibit the function of
various NS proteins essential for viral replication, such
as the serine protease (NS3/4a) and the RNA-dependent
polymerase (NS5b) [10]. After 2014, the second gener-
ation of DAAs was available and dramatically increased
the cure rate to more than 95% [11]. Moreover, DAA
therapy is safer, and its duration is shorter than inter-
feron therapy, the previous standard of care [12]. Fol-
lowing this therapeutic advance, in 2016 the WHO
set out to reduce the rate of new HCV infections by
90% by 2030. This initiative involves the scale-up of
HCV screening, risk behavior reduction, and unre-
stricted access to DAA treatment [13]. Based on this
strategy, lowering the total number of HCV-positive
people worldwide would therefore reduce de novo
infections.
However, in the absence of an effective vaccine,

there are some limitations to this approach [14, 15]:
1) HCV treatment itself has several unresolved prob-
lems. First, between 2 and 5% of HCV-infected pa-
tients are not cured of their HCV infection, and DAA
therapy can select for resistant variants that limit the
effectiveness of the treatment. Second, DAAs are still
expensive and inaccessible in most developing coun-
tries. 2) Both acute hepatitis C and CHC are largely
asymptomatic, and approximately 80% of people in-
fected worldwide are not aware of their infection.
Consequently, only 20% of HCV-infected patients are
diagnosed, and only 15% of those have been treated

[6]. All undiagnosed and untreated patients continue
to develop the disease and are potential transmitters
of the virus. Reaching treatment rates greater than
60–70% will be problematic, especially in underdevel-
oped countries. 3) Many subjects infected with HCV
and new HCV infections occur in marginalized popu-
lations that are difficult to access, such as people who
inject drugs (PWIDs), sex workers, MSM, and incar-
cerated people. These people have limited access to
HCV screening and treatment. 4) HCV clearance with
DAA therapy does not protect against reinfection.
The immunity generated against HCV during CHC is
not usually protective, and HCV reinfection after
DAA therapy can hamper elimination targets [16]. 5)
Finally, the diagnosis of HCV infection is usually per-
formed at advanced stages of liver fibrosis and, al-
though the HCV treatment is successful, severe liver
damage is often not completely reversed.
All these reasons make the development of a

prophylactic vaccine very likely necessary to control
HCV infection worldwide. Effective vaccination strat-
egies at the population level have been the only reli-
able method to control the transmission of different
viral infections by providing herd immunity [17]. Fur-
thermore, in the case of HCV, sterilizing immunity by
vaccination would not be necessary to control trans-
mission in high-risk groups. A vaccine reducing viral
titers would be sufficient [18]. Furthermore, it has
been modeled that a vaccine with only 30% efficacy
would have substantial effects on HCV transmission
when administered to a high number of high-risk un-
infected PWIDs [19–21].

Current vaccine approaches
Current approaches to the development of a vaccine
against HCV include the production of recombinant
proteins, synthetic peptides, DNA vaccines, virus-like
particles (VLPs) and viral vectors expressing various an-
tigens [22]. These vaccines are aimed to induce either
cellular, humoral, or both immune responses [23]. Inter-
estingly, VLPs are emerging as attractive candidates in
HCV vaccine design because they can induce high levels
of both cellular and humoral immune responses [24–
26]. Nevertheless, further studies are required to dis-
cover ways to induce long-lasting and highly protective
immune responses.
Vaccines inducing T cell-mediated immunity are

usually centered on relatively conserved HCV pro-
teins, such as the NS3, NS4, NS5, and core proteins,
which are targets of CD8+ T cells [27]. Some pre-
clinical assays and phase 1 vaccine trials targeting
only T-cell responses have been unsuccessful [23, 28].
A promising vaccine based on priming with chimpan-
zee adenovirus three coding NS proteins (ChAd3-NS)
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and boosting with modified vaccinia Ankara virus
(MVA-NS) was tested in human volunteers. This regi-
men induced broad HCV-specific memory CD4+ and
CD8+ T cells [29]. Subsequently, this vaccine was
tested in a phase 1/2 trial in PWIDs (clinicaltrials.gov
identifier NCT01436357), but no protection was
shown in patients with CHC infection [30], highlight-
ing the need for a vaccine that induces humoral im-
mune responses along with cell-mediated immunity.
Vaccines aimed to induce humoral immune responses
are based on the HCV glycoproteins E1, E2, or the
E1E2 heterodimer, which are the main targets of pro-
tective broad-spectrum neutralizing antibodies
(bnAbs). The current vaccines that induce humoral
responses against HCV in pre-clinical and clinical tri-
als have been the subject of recent seminal reviews
[23, 28], and are summarized in Table 1 [31–52].
Within this approach, the most effective candidate so
far is a recombinant E1E2 (rE1E2) purified protein
based on the HCV genotype 1a. This vaccine was
protective in chimpanzees after homologous challenge
[53], and reduced rates of persistence after heterol-
ogous challenge [54]. The rE1E2 protein in an oil-in-
water emulsion was safe in humans [43], and induced
bnAb response [44, 55], although only in three of 16
vaccinated individuals [44].
In this review, we focus on the development of vac-

cines targeting the humoral immune response against
HCV due to the cumulative evidence supporting the
important role of cross-reactive bnAbs in protection
against HCV infection. Moreover, recent crucial infor-
mation about the structure of HCV glycoproteins,
their epitopes, and the protective antibody response
in humans opens new and exciting expectations in
this field. A full description of potential vaccines in-
ducing T cell-mediated immunity and the role of T-
cell responses in HCV clearance and protection from
reinfection is beyond the scope of the present review.
Therefore, we refer the reader to recent excellent
seminal reviews for further reading [23, 56].

The humoral immune response against HCV
infection: evidence supporting antibody-based
vaccines
Animal models
There is ample evidence that passive immunization in
animal models with HCV-specific nAbs may protect
from infection by homologous and heterologous HCV
strains and completely clear the acute infection [37,
57–67]. The first in vivo studies demonstrating that
nAbs protect against homologous HCV were con-
ducted in chimpanzees. Rabbit hyperimmune serum
to the synthetic hypervariable region 1 (HVR1) of
HCV E2 glycoprotein, as well as plasma from a CHC

patient, neutralized the infectivity of homologous
HCV in chimpanzees [59, 60]. The administration of
the monoclonal nAb HCV1 (directed against the E2
glycoprotein) prevented the infection of a chimpanzee
with HCV genotype 1a, and reduced viral load in
acutely and chronically-infected animals [66]. A study
conducted by Bukh et al. found a prolonged suppres-
sion of HCV replication after challenge with homolo-
gous, but not heterologous genotypes, in chimpanzees
passively immunized with nAbs from an individual
with chronic HCV genotype 1a infection [57]. Protec-
tion against homologous challenge was also observed
in human liver chimeric mouse models after the infu-
sion of nAbs from CHC patients [65, 67], or a pool
of three monoclonal nAbs (AR3A, 3B and 4A) target-
ing the HCV E2 and E1E2 complex [58].
Due to the high genetic diversity across HCV ge-

nomes, the early development of bnAbs capable of
blocking infection with multiple heterologous HCV
strains is a challenge. Although several studies have
shown that active or passive immunization protects
against heterologous HCV challenge in chimpanzees
[62] and humanized mice [37, 61, 63, 64], this
phenomenon is not universal because not all genotypes
are blocked.
The use of chimpanzees as a model for the study of

humoral immune responses against HCV infection
has a great advantage due to its genetic similarity to
humans. However, high costs and ethical concerns
limit its use [68]. Thus, alternative animal models,
particularly humanized mice, are under development
to create the ‘ideal’ model fully mimicking clinical
settings. Some aspects that can be improved include
the humanization levels of hepatocytes and immune
cells, the elimination of host-specific factors that
block HCV infection, and the humanization of the
liver sinusoidal endothelium [69].

Humans
Beyond animal models, human studies are essential to
understand nAbs-mediated humoral immune re-
sponses against natural HCV infection and to develop
an effective vaccine. In this regard, substantial pro-
gress has been made in recent years. HCV-specific
nAbs can be detected in the serum of infected people
approximately 8–12 weeks after HCV infection [70,
71], although the range is flexible according to the
patient’s clinical history [72]. Several studies have
shown that nAbs-mediated humoral immune response
is long-lasting, necessary to control and clear HCV
infection, and can protect from HCV reinfection [22,
28, 46, 73–83]. High-titers and rapid nAb responses
have been detected in patients who have spontan-
eously resolved an acute HCV infection, while a
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delayed or absent nAb response is associated with
HCV persistence and chronicity [75, 78, 79, 82, 84,
85]. NAbs can also be developed during CHC, al-
though it usually takes a long time [86–89]. These
nAbs from CHC patients cannot clear the CHC infec-
tion spontaneously, likely due to HCV escape muta-
tions at nAb recognition sites [90, 91]. However, this
nAb-mediated humoral immunity is associated with
reduced liver fibrosis [81]. Interestingly, an excep-
tional case was observed in a patient with CHC infec-
tion who spontaneously cleared the HCV after a
strong development of cross-reactive nAbs [80].
BnAbs against HCV were also detected in human im-
munodeficiency virus (HIV)/HCV-chronic co-infected
patients, although they declined or disappeared in
many patients after HCV clearance with therapy [92].
Several recent findings have boosted interest in the

potential of protective nAbs against HCV, stressing
the importance of bnAbs to protect from different
HCV genotypes and to limit reinfections [93]. The ex-
istence of protective immunity against HCV reinfec-
tion with different genotypes remains controversial.
Although some studies reported only limited protec-
tion against heterologous reinfection [79, 94–96],
others showed an apparent cross-genotype immunity
[77, 97]. In any case, it is becoming clear that a di-
verse bnAb response can protect from HCV infections
of various genotypes and is associated with spontan-
eous HCV clearance [78, 79, 98, 99]. In this regard, it
has been shown that the combination of distinct

human nAbs had complementary and synergistic ef-
fects on the neutralization of diverse HCV strains [98,
100, 101]. Additional evidence comes from research
in which nAbs targeting multiple epitopes were iso-
lated from people who cleared HCV infection [84,
101], studies showing synergy between nAbs [102],
and experiments in a mouse model where HCV infec-
tion was eliminated by using a mixture of HCV-
specific nAbs [58].

The envelope glycoproteins E1 and E2
The main targets of HCV-specific nAbs are the glyco-
proteins E1 (aa192–383 of the polyprotein) and E2
(aa384–746). They are type-I transmembrane proteins,
highly glycosylated, with an N-terminal ectodomain and
a C-terminal hydrophobic domain anchoring them to
the membrane (Fig. 1). They form E1E2 heterodimers
that mediate the entry of HCV into the cell through a
complex process involving several receptors and co-
receptors, including tetraspanin CD81, the “scavenger”
receptor SRB1, and the tight junction membrane pro-
teins claudin 1 and occludin [103]. The virus is internal-
ized by clathrin-dependent endocytosis, and the viral
genome is released into the cytoplasm by fusion of the
viral membrane with the endosome at low pH, a process
also mediated by the E1E2 glycoproteins.
The E1 protein is smaller and less variable than E2. E1

is poorly characterized since only crystal structures for
two discrete fragments containing residues 192–271

Fig. 1 Hepatitis C E1 and E2 glycoprotein structures. a Linear diagram of HCV E1 (aa192–383) and crystal structures of E1 segments aa192–271
(PDB: 4UOI) and aa314–324 (PDB: 4N0Y). b Linear diagram of HCV E2 (aa384–746) and ribbon representation of the E2 crystal structure (PDB:
4MWF). E2 is divided into the following structural components: three hypervariable regions (HVR1, HVR2 and igVR), a front layer, two β-sandwich
regions, CD81 binding loop, a back layer followed by the stem region and transmembrane (TM) domain. The neutralizing face with epitopes I
(orange), II (violet) and III (blue) is indicated. a-b N-linked glycosylation sites as tree-like representations and well-defined regions containing α-
helices and β-sheets are shown in the linear diagram and X-ray crystallographic structure of both glycoproteins, respectively
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[104] and 314–324 [105] have been resolved so far (Fig.
1a).
In recent years, two groups have managed to

crystallize the ectodomain of E2 together with frag-
ments of two different antibodies, which has consti-
tuted a significant advance in the knowledge of the
structure of this protein [106, 107]. The two crystal
structures show that the E2 ectodomain contains a
central immunoglobulin-like β-sandwich highly stabi-
lized by conserved disulfide bonds. This central
region is flanked by an N-terminal “front layer”
consisting of a β-strand and a short α-helix, and a C-
terminal “back layer” containing antiparallel β-sheets
and short α-helices [106, 107] (Fig. 1b). However,
there are still many questions to be resolved in this field,
such as the fact that the crystallized structures differ in
the formation of disulfide bridges; important regions of E2
are missing in the structures; E2 was not entirely glycosyl-
ated; and, finally, E2 crystallization has been obtained in
the absence of E1.

E1 and E2 epitopes
The elucidation of the E2 structure has led to significant
progress in the identification of different antigenic do-
mains and regions of the protein, which will undoubt-
edly result in the more rational design of vaccines
capable of inducing nAbs [22]. E2 is the most variable
protein of HCV and the main target of nAbs. There-
fore, studies of B-cell based vaccines have focused on
this protein. Most of the E2 variability is located in
three hypervariable regions: the hypervariable region 1
(HVR1, aa384–409), the hypervariable region 2
(HVR2, aa460–485) and the intergenotypic variable
region (igVR, aa570–580) [108]. HVR1 is an immuno-
dominant motif located at the N-terminal end of the
protein that mutates during infection, generating es-
cape variants to HCV-specific nAbs.
In contrast, other regions of E2 show moderate

variability or are conserved across different genotypes,
including areas necessary for the interaction between
HCV and cellular receptors, mainly the CD81-binding
site. This site is composed of conserved residues from
three different regions of E2 that define three epi-
topes targeted by bnAb [109–111]: Epitope I is lo-
cated at the N-terminal region (aa412–423); epitope
II is at the front layer (aa428–446); and epitope III at
the CD81-binding loop (CD81bl) (aa518–542) (Fig.
1b). However, distinct nomenclature is used in differ-
ent laboratories to describe overlapping antigenic
parts of the protein, which may be confusing to the
reader. Thus, in addition to the above-mentioned epi-
topes, five antigenic regions (ARs1–5) [112], and five
domains (A-E) [113] have been described. Epitope I
shares key residues with domain E; epitope II with

domains B, D, and AR3; and epitope III with domain
B and AR3 [108, 111]. Furthermore, contact residues
on both E1 and E2 are required for some antibodies
mediating broad virus neutralization [112]. These resi-
dues lie in the AR4 and AR5 regions. In individuals
with acute HCV infection, nAb responses to AR3/do-
main B are dominant [114], and nAbs targeting this
region are usually isolated from B lymphocytes of
HCV-infected patients [89, 115, 116].
Less is known about the immunogenic regions on E1,

but bnAbs have also been described for this protein. The
N-terminus (aa192–202) [117] and the fragment encom-
passing residues 313–328 [105, 118] have been identified
as sites inducing nAbs.

Antibody-based vaccine development
Challenges for vaccine development: viral strategies to
evade antibody neutralization
HCV has evolved several mechanisms to counteract
antibody neutralization. Firstly, the high mutation rate of
HCV promotes the generation of many genetically and
antigenically different genotypes, subtypes, and quasispe-
cies [2–4]. Most of the variability is accumulated in the
E1 and E2 glycoproteins and contributes to evade the
host immune response [119]. As described before, hy-
pervariable regions of E2 are immunodominant and in-
duce isolate-specific or non-nAbs. These hypervariable
regions sometimes mask more conserved epitopes, pre-
venting their recognition by nAbs [120, 121]. What is
more, some conserved epitopes that participate in recep-
tor recognition show conformational flexibility, which
may facilitate escaping from cross-reactive nAbs [122]
(Fig. 2). Glycans also contribute to conserved epitope
shielding in E2 [123]. E2 contains 11 highly conserved
N-linked glycosylation sites, some of which mask the
binding site to the cellular CD81 receptor [124–126].
Host-derived lipoproteins, which form part of the ma-
ture HCV virion, also hide relevant nAb epitopes [127,
128]. Furthermore, HCV-infected cells in cell culture
generate lipid droplets containing the E2 glycoprotein
[129]. These droplets may act as antibody decoys, lower-
ing the number of antibodies available to neutralize the
virus. Yet another mechanism of HCV to evade antibody
recognition is its capacity to spread through direct cell-
to-cell transmission [130]. Finally, it has been shown that
the enhanced resistance to interferon-induced trans-
membrane proteins (IFITMs) observed in some HCV
variants favors escape from nAbs [131]. IFITMs block
viral entry by modulating membrane properties, which
improve antibody-mediated neutralization [131].

Rational immunogen design for antibody-based vaccines
Despite encouraging results, the goal of developing an
HCV vaccine remains a challenge. As stated previously,
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many reasons make it difficult to achieve. However, in-
creasing knowledge about the HCV glycoprotein epi-
topes offers the opportunity to design immunogens to
avoid the induction of isolate-specific or non-nAbs while
potentiating the induction of bnAbs. In this regard, an in-
teresting approach has been the generation of an E2 glyco-
protein with deleted HVR1, HVR2 and IgVR [132, 133].
This protein elicited bnAbs after immunization of guinea
pigs while inducing reduced levels of non-nAbs [38].
N-glycans in E1 and E2 mask epitopes targeted by

nAbs [123]. Therefore, the deletion of these glycans may
induce a more potent nAb response against HCV. Ac-
cordingly, the removal of different N-glycosylation sites
both in E1 and E2 improved its immunogenicity and led
to increased bnAb responses [134–137]. Interestingly,
the glycosylation pattern of E2 can also affect its im-
munogenicity. Thus, E2 expressed in insect cells showed
increased bnAbs as compared to E2 expressed in mam-
malian cells [64].
In recent years, conformational flexibility of some con-

served broadly neutralizing epitopes in HCV E2 has be-
come apparent [110, 138]. For example, the epitope I

(AS412) can adopt at least three distinct conformations
when complexed with different antibodies: extended
[139], β-hairpin [140], and an intermediate conformation
[141] (Fig. 2a). Epitopes II (AS434) (Fig. 2b) and III
(CD81bl) (Fig. 2c) also display structural flexibility [61,
142–145]. This flexibility appears to be a mechanism to
evade nAbs and has important consequences for vaccine
design [146]. Thus, future vaccines could require
stabilization of neutralizing epitopes, as has been pro-
posed for other viruses such as HIV [147, 148], respira-
tory syncytial virus (RSV) [149–151], and severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [152,
153]. A cyclic variant of the epitope I of E2 stabilized in
the β-hairpin conformation was designed first [154].
However, this variant was unable to induce nAbs. Subse-
quently, another version of the epitope I in the β-hairpin
conformation was generated based on the θ-defensin
structure [146]. This construct induced nAbs in mice,
but the response was still low. Further efforts are re-
quired to improve the immunogenicity of structure-
based HCV epitopes, including incorporation to virus-
like particles or nanoparticles [155].

Fig. 2 E2 epitopes (I to III) adopt distinct conformations when complexed with different antibodies. a Conformations of epitope I: (Upper) Closed
β-hairpin in complex with nAb HCV1 (PDB: 4DGY); (Middle) extended-coil conformation in complex with nAb 3/11 (PDB: 4WHY); and (Lower)
intermediate-coil conformation with an anti-parallel β-sheet in complex with nAb HC33.1 (PDB:4XVJ). b Conformations of epitope II: (Upper)
Preferred state of E2 in the viral particle containing a short 1.5-turn α-helix (aa437–442) and an extended conformation (aa443–446, not shown) in
complex with nAb HC84.27 (PDB: 4JZO); and (Lower) conformational changes through short α-helix flipping out (‘open state’) to expose aa437(W)
and aa438(L) residues for nAb mAb#8 (PDB: 4HZL). c Conformations of epitope III: (Upper) Open and stabilized strand in β-sheet conformation
with aa537(F) and aa539(L) residues flipped out into the hydrophobic part of the Ig-like domain in complex with AR3C Fab (PDB: 4MWF); and
(Lower) helical disordered conformation with aa537(F) and aa539(L) residues solvent-exposed in complex with non-nAb DAO5 (PDB: 5NPJ)
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Another important piece of information that is becom-
ing available is a detailed picture of the human humoral
immune response against HCV [86–89]. For example, it
is now known that bnAbs in HCV-infected patients are
predominantly induced by AR3/domain B and domain C
of E2 [155], and specific combinations of these anti-
bodies together with antibodies targeting the E1E2 com-
plex (AR4) are associated with natural HCV clearance
[98]. Thus, antigen design focused on eliciting antibodies
against these regions should be considered in a potential
vaccine. Moreover, the analysis of the interactions of the
natural antibody repertoire generated by the infection
with the E1E2 glycoproteins will aid the design of new
effective vaccines. In this regard, it has been reported re-
cently that potent anti-HCV cross-reactive nAbs with lit-
tle somatic hypermutations are derived from human
VH1–69 genes [74, 84, 156]. These germline-encoded
antibodies are also precursors of a large portion of spe-
cific nAbs against other viruses, such as HIV, influenza,
and RSV [157–159]. Structural has shown that the
cross-neutralizing activity of those antibodies is related
to their long complementarity-determining regions
(CDR) H3, which contain a disulfide motif that interacts
with conserved E2 epitopes [106, 160–162]. Additionally,
an ultralong CDRH2 favors extensive contact with E2
[163]. These results underline the potential advantages
of producing VH1–69-derived nAbs by vaccination.

Conclusions
Despite the impressive efficacy of DAA treatment
against HCV, it is unlikely that the virus will be con-
trolled entirely without a prophylactic vaccine. Cumula-
tive evidence from animal models and humans strongly

indicates that bnAbs can protect from HCV infection.
Recent advances in the knowledge of HCV E1 and E2
glycoprotein structure, and the human antibody reper-
toire generated by HCV infection, will allow rational
structure-based antigen design to induce bnAbs (Fig. 3).
Achieving sterilizing immunity by vaccination will be a
difficult task. However, a vaccine preventing CHC infec-
tions, a reasonable goal in the short term, would have a
substantial health impact.
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