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of mesenchymal stem cells‑derived exosomes
Jana Janockova*  , Lucia Slovinska, Denisa Harvanova, Timea Spakova and Jan Rosocha 

Abstract 

Mesenchymal stem cells (MSCs) have been demonstrated to have a great potential in the treatment of several 
diseases due to their differentiation and immunomodulatory capabilities and their ability to be easily cultured and 
manipulated. Recent investigations revealed that their therapeutic effect is largely mediated by the secretion of 
paracrine factors including exosomes. Exosomes reflect biophysical features of MSCs and are considered more effec-
tive than MSCs themselves. Alternative approaches based on MSC-derived exosomes can offer appreciable promise 
in overcoming the limitations and practical challenges observed in cell-based therapy. Furthermore, MSC-derived 
exosomes may provide a potent therapeutic strategy for various diseases and are promising candidates for cell-based 
and cell-free regenerative medicine. This review briefly summarizes the development of MSCs as a treatment for 
human diseases as well as describes our current knowledge about exosomes: their biogenesis and molecular compo-
sition, and how they exert their effects on target cells. Particularly, the therapeutic potential of MSC-derived exosomes 
in experimental models and recent clinical trials to evaluate their safety and efficacy are summarized in this study. 
Overall, this paper provides a current overview of exosomes as a new cell-free therapeutic agent.
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Background
Nowadays, multipotent mesenchymal stem cells (MSCs) 
have been extensively examined because of their usage 
in clinical trials. Their effective influence in cellular 
therapy and regenerative medicine is known for their 
strong immunosuppressive, immunomodulatory and 
regenerative activity [1, 2]. In addition, their considerable 
potential was demonstrated in the treatment of immune-
mediated, inflammatory and degenerative diseases [3–9].

MSCs generally are multipotent, somatic progenitor/
stem cells first isolated from adult bone marrow [10, 11] 
and successfully differentiated from marrow hematopoi-
etic cells according to their adherent nature in in  vitro 
cell lines and fibroblastic morphology. They are able to 
self-recover and retain variable differentiation potency 

toward multi-lineages [12, 13]. The International Society 
for Cellular Therapy has officialy defined minimal criteria 
for MSCs, following as (a) being plastic-adherent cells, 
(b) having adipogenic, osteogenic and chondrogenic tri-
lineage mesenchymal differentiation capacity and (c) 
being positive (> 95%) for surface antigens CD73, CD90 
and CD105 and negative (< 2%) for hematopoietic mark-
ers CD34, CD45, CD14 or CD11b, CD79α or CD19 and 
HLA-DR (typical markers of hematopoietic cells) [14]. 
Human MSCs were described in many tissues (Fig. 1), not 
only in those of mesodermal origin (bone marrow, bone, 
adipose, synovial membrane and muscle) but also in skin, 
heart, lungs, brain, kidneys, thymus, liver and pancreas 
[14, 15]. Another excellent sources of human MCSs are 
umbilical cord tissue and placenta [16–18]. However, it 
was revealed that MSCs obtained from various tissues 
have differences in gene expression, proliferation activity 
and differentiation potencial. In addition, some variations 
in surface antigens expression compared to requirements 
of minimal criteria were reported. Existing variances 
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indicate specific features of MSCs from different tissues 
and organs or are related with isolation and cultivation 
protocols [19]. MSCs from different tissues can be cul-
tured prior to clinical use. They can grow easily in the cul-
ture dish which leads to an easy manipulation in terms of 
isolation and cultivation. Subsequently, prepared MSCs 
suspensions may be introduced intravenously or trough 
local injection to obtain the required therapeutic effects 
directly or indirectly [20]. Further characteristics include 
typical plasticity, intrinsic tropism towards injured or 
inflammed area (known as homing) and an extensive 
release of numerous useful growth factors, cytokines and 
another bioactive soluble factors as important indication 
of their potential clinical applications in tissue repair and 
regeneration [21].

There is an evidence of tissue alteration by MSCs 
through secretion of paracrine factors contained in extra-
cellular vesicles (EVs). EVs are a group of cell-derived 
structures (composed of lipid bilayer membranes), which 
play an essential role in intercellular communication via 
transfer of bioactive proteins, lipids and RNAs and repre-
sent a potential source for circulating biomarkers of dis-
eases [22]. EVs are generally divided, depending on their 
biogenesis, into subgroups, like exosomes (40–150  nm 
in diameters), microvesicles (150–1000 nm in diameter) 
and apoptotic bodies (50–2000  nm in diameter) [23]. 
Recent studies suggest possible substitution of the bio-
logical MSCs activity with MSC-derived exosomes [24–
26]. Therefore, exosomes could represent a considerable 
alternative to cell therapy.

This review is focused on the characterization of 
MSCs-derived exosomes and their perspective using in 

cell-free therapeutic applications, as well as on the sum-
marization of important facts about general MSCs´ par-
acrine secretion.

Paracrine secretion of MSCs
MSCs perform their immunomodulatory activity not 
only through cell–cell interactions but also via strong 
paracrine impact. The MSCs´ paracrine effect was firstly 
described by Heynesworth et al. They notified secretion 
of a large spectrum of cytokines, chemokines and growth 
factors by MSCs with possible significant effects on cells 
in their periphery [27]. However, precise mechanism of 
action is still unknown and under examination. Numer-
ous studies confirmed that factors secreted by MSCs 
could regenerate injured myocardium and improve car-
diac function in porcine model [28], ameliorate acute 
renal failure and protect against limb tissue injury [29], 
promote in vitro and in vivo arteriogenesis [30] or sup-
port neovascularization [31].

One of the main pattern representing MSCs secre-
tion of biological factors is by EVs which are classified as 
membrane vesicles filled with plenty of different proteins, 
microRNAs or/and messenger RNAs and have been pro-
gressively studied as the therapeutic agent in MSCs secre-
tion [32]. The lipid bilayer of EVs encloses their bioactive 
capacity and protects them from enzymatic degradation. 
EVs are nowadays defined by their size, sedimentation 
rate, biogenesis pathway or protein delivery, but most 
of these parameters are neither terminal nor specific for 
any of EVs type. They have different structural and bio-
chemical properties depending on their intracellular site 
of origin, which can affect their given functions [33]. 
Regardless of their origin, EVs are circular membrane 
particles possesing the characteristics of the origin cells, 
containing cytosol. In regard to their intracellular origin 
and the mechanisms of formation, EVs may be classified 
as exosomes, microvesicles and apoptotic bodies [23].

Apoptotic bodies are released as products of an 
appoptotic cell disassembly into subcellular fragments. 
There is an evidence that EVs generated during apop-
tosis have an important immunoregulatory role in 
autoimmunity, infection and cancer [34]. Microvesi-
cles, also called as ectosomes or shedding vesicles, rep-
resent a  heterogenous population formed by external 
budding and cleavage of the cell membrane. There is 
a large volume of phosphatidylserine on their surface 
and great number of proteins associated with lipid 
rafts (cholesterol-rich microdomains). Assembling of 
microvesicles is related to an increase of calcium ions 
which by calpain activation supports the cytoskeleton 
reorganization leading to the separation of plasma 
membrane protrusion from the cortical actin [35, 36]. 
Microvesicles may contain several plasma proteins 

Fig. 1  The most common sources of MSC isolation. (Created with 
BioRender.com.)
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depending on the type of the cell they originated and 
therefore specific markers are required for their identi-
fication. The generic marker is Anexin V. CD45 is used 
to identify leukocyte-derived microvesicles, CD42b/
CD31− and CD62P for plateled-derived microvesicles, 
and CD31+ /CD42−, CD62E and CD144 are used for 
characterization of endothelial-derived microvesicles 
[37]. In addition, microvesicles may contain selectins, 
integrins, metalloproteinases and CD40 ligand [38]. 
On the other hand, exosomes are smaller and homog-
enous, have an endosomal origin and are formed by the 
internal budding of the multivesicular body membrane. 
The mechanism of their assembling and separation is 
still unknown [31]. Lipid bilayer of exosomes contains 
sphingomyelin, phosphatidylserine, phosphatidylcho-
line, phosphatidylethanolamine, phosphatidylinosi-
tol and monosialotetrahex-osylganglioside, which are 
similar to the cell plasma membrane composition [39]. 
Considered markers of exosomes are tetraspanins 
(CD9, CD63, CD81 and CD82), TSG101 (tumour sus-
ceptibility gene 101), heat shock proteins HSP70 and 
HSP90 and ALIX [39].

In general, it was shown that EVs are able to effec-
tively copy the therapeutic effect of MSCs, mainly in tis-
sue repair and regeneration in some preclinical models, 
e.g. exosomes potentially applied in wound healing and 
cutaneous regeneration [40], human adult liver stem 
cells—derived microvesicles increased hepatocyte prolif-
eration associated with an accelerated morphological and 
functional recovery in a rat model [41] or human bone 
marrow MSCs—derived microvesicles increased prolif-
eration and reduced apoptosis of tubular cells in a mice 
model [42].

Exosomes
Presently, the best characterized EVs are exosomes, which 
secretion into extracellular area by hematopoietic cells, 
more specifically by reticulocytes, was firstly described 
in late 1980s [43–45]. Initially, exosomes secreted from 
cells were considered as homeostasis secondary products 
or cellular waste from cell injury without any significant 
influence on cells nearby. Nowadays, exosomes are con-
sidered as a special agent of intracellular communica-
tion, playing a major role in cellular processes including 
immune response [46], antigen presentation [47] and 
signal transduction [48]. It was indicated that exosomes 
are produced and released by various types of healthy 
cells involving adipocytes, epithelial cells, fibrolasts, 
neurons, astrocytes and Schwann cells. In addition, they 
were found in numerous types of body fluids including 
cerebrospinal, synovial and amniotic fluid, urine, sperm, 
saliva, blood, ascites, vitreous and brest milk [49].

The biogenesis/formation and secretion of exosomes
In general, the biogenesis of exosomes begins within the 
endosomal system (Fig. 2) during which early endosomes 
(generated by internal budding) are unfolded into the 
late endosomes or multivesicular bodies (MVBs) and the 
endosomal membrane is invaginated to form intralumi-
nal vesicles (ILVs) in the lumen of the organelles. The 
MVBs can either fuse with lysosomes to degrade their 
content or fuse with the plasma membrane to secrete the 
volume of ILVs as exosomes [50].

The endosomal sorting complex required for transport 
(ESCRT) machinery is very important for the MVBs/
ILVs formation, vesicle budding and protein cargo sorting 
[51]. Ubiquitin is a  relevant signal agent that transports 
membrane proteins and/or damaged cellular elements 
to lysosomes for degradation. It is also known as signal 
molecule for exosomal cargo sorting on the endosome 
membrane [52]. ESCRT machinery is composed from 
four multiprotein complexes, namely ESCRT-0, -I, -II, 
-III and the associated AAA ATPase VPS4 complex [51]. 
Separation of proteins to MVBs includes segregation of 
the ubiquitinated proteins into lipid rafts with ESCRT-
0. TSG101 (ESCRT-I protein) is able to bind to ubiquit-
inated cargo proteins and sorts endocytic ubiquitinated 
cargos into MVBs. Subsequently, ESCRT-II complex is 
activated, which starts the oligomerization and produc-
tion of the ESCRT-III complex. This complex is involved 
in proceeding of the budding process responsible for the 
sequestration of MVBs proteins, sends the deubiquitinat-
ing enzyme to remove the ubiquitin label from the cargo 
proteins and then sorts them into ILVs. Finally, ESCRT-
III complex is separated from MVB membrane by sort-
ing protein VPS4 and is unfolded by ATPase [53, 54]. 
The precise role of ESCRT machinery in the generating 

Fig. 2  Schematic characterization of EVs (exosomes and 
microvesicles) formation. (Created with BioRender.com.)
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of ILVs secreted later as exosomes is still unclear. In the 
screening study of RNA interference targeting ESCRT 
associated proteins in HeLa cells was shown that the 
depletion of Hrs, TSG101 and STAM1 proteins can 
reduce the exosomes secretion [55]. It was examined by 
nanoparticle tracking analysis that knockdown of Hrs 
reduced exosome secretion from head and neck squa-
mous cell carcinoma cells [56]. Likewise, exosome secre-
tion was increased by knockdown of the ESCRT-III and 
associated proteins ALIX, VTA1, VPS4B and CHMP4C 
[55]. Specifically, increase of exosomal level and typical 
exosomal markers (CD63, HSP70) was confirmed after 
syndecan – syntenin – ALIX depletion in MCF-7 cells 
[57].

Alternatively, sorting of exosomal cargo into MVBs and 
following ILVs formation can occur via ESCRT independ-
ent mechanism. Proteolipid protein containing exosomes 
requires for their secretion ceramide which is able to ini-
tiate the exosome budding into MVBs [58]. Expression of 
tetraspanins (transmembrane proteins rich in exosomes) 
CD9 and CD82 increased the exosomal release of 
β-catenin (involved in regulation and organization of 
cell–cell adhesion and gene transcription) from HEK293 
cells [59]. The oligomerization of oligomers could play 
a significant role in exosome biogenesis based on CD43 
exosomal sorting in Jurkat T-cells [60]. Observably, there 
are various possible mechanisms for separation of bioac-
tive molecules into exosomes, either ESCRT dependent 
or independent, allow to work depending on the cell type 
and/or cellular homeostasis. In addition, it was shown 
that numerous diseases and other pathological condi-
tions enhance exosome secretion. Increased quantity of 
exosomes were noticed in tumor cells, by progression of 
inflammation, angiogenesis and coagulation [61–63].

Molecular composition of exosomes
The molecular structure of exosomes is related not only 
to the cell type of origin but also to the microenviron-
ment involving mechanical properties, biochemical 
impulses and topography, which could influence protein 
cargo regulation of the secreted exosomes [39]. Exosome 
secretion and their composition can also be modulated 
by other environmental factors such as oxygen level, type 
of disease, mechanical stress or media composition [64].

Exosomes are composed of various macromolecules 
involving unique lipid and protein structures and nucleic 
acids (Fig.  3). Exosomes are characterized by abundant 
amount of miRNAs with majority in the form of pre-
miRNAs, which are inactive until their conversion to 
mature miRNAs [65]. Considering the endosomal origin 
of exosomes, they contain proteins participating in mem-
brane transport and fusion (e.g. annexins, Rab, flotillin, 
GTPases), MVBs biogenesis (e.g. ALIX, TSG101) and 

also proteins associated with lipid microdomains (inte-
grins and tetraspanins). Besides that, another frequently 
determinated proteins are associated with cytoskel-
eton (e.g. tubulin, myosin, actin) and metabolism (e.g. 
GADPH) [54], heat shock proteins (HSC70, HSC90), tis-
sue specific proteins (e.g. MHC II located on the surface 
of exosomes secreted by dendritic cells or by B-lympho-
cytes) or proteins specific for cancer cell lines (e.g. glioma 
EGFR, breast cancer HER2, ovarian cancer CD24) [66].

Specifically, numerous studies on the protein and 
RNA composition of MSC-derived exosomes have been 
reported. Lai et  al. investigated the proteome of HPLC-
purified human embryonic stem cells—derived exosomes 
using mass spectrometry and cytokine array. They iden-
tified more than 850 proteins and detected total protein 
complement of a 20S proteasome with very high reli-
ability [67]. Kang´s group realized proteomic analysis of 
the nanoscale size-based fractionation of exosomes from 
human neural stem cells and identified 103 proteins. 
Results from their study confirmed, that exosomes larger 
than ∼50 nm were morphologically different from those 
which were smaller than ∼50  nm [68]. MSC-derived 
exosomes were found to contain also all five enzymes 
involved in the ATP synthesis of glycolysis, namely 

Fig. 3  Exosome´s composition briefing: MHC I, II—major 
histocompatibility complex I, II); MFGE8 -milk fat globule EGF factor 
8 protein; ICAM-1—intercellular adhesion molecule 1; LAMP 1, 2—
lysosomal-associated membrane protein 1, 2; proteins involved heat 
shock proteins (HSP60, HSP70, HSP90), MVB biogenesis proteins (Alix, 
TSG101, Ubiquitin, Clathrin), cytoskeleton proteins (profilin, cofilin, 
tubulin, actin, myosin, tropomyosin), signaling proteins (G protein, 
syntenin, MAPK, ERK ½, Rho); to enzymes belong pyruvate kinase, 
ATPase, PGK1, GADPH, aldolase, enolase; nucleic acids include mRNA, 
miRNA, siRNA, tRNA, DNA. (Created with BioRender.com.)
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glyceraldehyde 3-phosphate dehydrogenase, phospho-
glycerate kinase, phosphoglucomutase, enolase and 
pyruvate kinase m2 isoform [69]. Furthermore, Arslan´s 
group detected enzymatically active CD73 in MSC-
derived exosomes responsible for the generating of extra-
cellular adenosine from released adenine nucleotides 
[69]. Exosomes are able to activate adenosine receptors 
and thus generate adenosine-affected phosphorylation of 
ERK1/2 and Akt in H9C2 cardiomyocytes [70].

The genetic information in RNAs of exosomes which 
are endocytosed by acceptor cells is allow to influence 
the protein expression in those cells. Exosomes contain 
RNAs mostly in size range less than 700 nt. Chen et al. 
identified the presence of small RNAs (less than 30 nt) 
in human embryonic stem cells-derived MSCs´ condi-
tioned medium, which were encapsulated in cholesterol 
rich phospholipid vesicles [65]. Plethora of miRNAs 
responsible for post-transcriptional maintainig of gene 
expression were detected in MSC-derived exosomes 
which are active in acceptor cells [71] and participate 
in physiological and pathological processes. Research 
group of Ratajczak et  al. reported that embryonic stem 
cells – derived exosomes are highly enriched in mRNA 
(for numerous transcription factors, receptors and 
cytokines) [72]. Furthermore, Valadi et al. identified dif-
ferent miRNAs including let-7, miR-1, miR-15, miR-16, 
miR-181 and miR-375 in exosomes isolated from mast-
cell line (MC/9), primary bone marrow-derived mast 
cells (BMMC) and human mast-cell line (HMC-1) [73], 
which have been suggested to play an important role in 
exocytosis, tumorigenesis, angiogenesis and haemat-
opoiesis [74]. Ono et al. reported that miR-23b promotes 
dormancy in breast cancer cells [75]. Exosomal miRNAs 
derived from umbilical cord MSCs, mainly represented 
by let-7f, miR-145, miR-199a and miR-221 supported the 
suppression of hepatitis C virus RNA replication [76]. 
Results of several sequencing studies also demonstrated, 
that exosomes isolated from human blood serum and 
urine contain marked amount of other RNA types, such 
as tRNA, rRNA, snRNA snoRNA, piRNA and scaRNA 
[77].

The current studies of the structure and composition 
of exosomes have relevant importance and are still under 
examination. Wang et  al. compared paracrine functions 
in  vivo and exosomal profiles of human endometrium-, 
bone marrow- and adipose-derived MSCs in a rat model 
of myocardial infarction. Analyses of exosomal micro-
RNAs showed that miR-21 expression was improved in 
exosomes derived from endometrium [78], suggesting 
that innate differences of various MSC-derived exosomes 
have substantial influence on their clinical efficacy. The 
importance of exosomes has long been recognized also 
due to their capability to transfer important cellular 

cargoes (proteins, DNA, mRNA, miRNAs) to target cells. 
Recent evidences suggest that exosomes are involved 
both in normal physiological functions and in pathologi-
cal conditions. Deeper understanding of the exosomes 
content may influence the study of various diseases. 
Some research groups demonstrated that tetraspanin 
complexes significantly contributes to selective target 
binding of exosomes to target cells [79, 80]. Thakur et al. 
showed that the presence of dsDNA in exosomes repre-
sented the whole genomic DNA and could be used for 
identification of mutations in parental tumor cells. They 
determined that tumor-derived exosomes carry dsDNA 
and may be use as a circulating biomarker in the early 
detection of cancer and metastasis [81]. Liang et al. used 
engineered exosomes for co-delivery of chemothera-
peutic drug 5-fluorouracil and chemoresistance miR-21 
inhibitor oligonucleotide to reduce the drug resistance 
in colorectal carcinoma and thus to improve the efficacy 
of cancer treatment [82]. Yang et  al. demonstrated the 
capability of brain endothelial cell-derived exosomes to 
deliver siRNA across the brain-blood barrier in zebrafish 
and thus inhibit VEGF [83]. Results suggested potential 
application of natural exosome vesicles in the treatment 
of brain disease [83]. Raposo et  al. showed that both 
human and murine B-lymphocytes secrete exosomes to 
induce antigen-specific MHC (major histocompatibility 
complex) II-restricted T cell responses, reffering to exo-
some usefulness as biological instruments in immuno-
therapy [84].

The therapeutic effect and biodistribution of exosomes 
is also greatly affected by the origin of exosome produc-
ing cells. MSC-derived exosomes regarding to their inner 
properties and source of origin may play a relevant role 
in their clinical efficiency and represent an ideal delivery 
system for intermediate processes in specific target cells.

Therapeutic potential of MSC‑derived exosomes
MSC-derived exosomes increasingly play an impor-
tant role in intracellular communication mechanism 
and tissue repair and their clinical use may supply sub-
stantial advantages in comparison with their live cells 
due to potential to reduce undesirable side effects after 
application as well as infusional toxicities, uncontrolled 
cell growth and possible tumor formation. Moreover 
exosomes transplantation seems to be less risky and may 
have several advantages in contrast to cell applications. 
Exosomes are neither able to mutate and duplicate, nor 
induce metastasis. They have been tested in various ani-
mal models (Table  1) for human diseases (e.g. hypoxic 
pulmonary hypertension [85], acute kidney injury [86], 
liver fibrosis [87]) and it was detected that their functions 
are very similar to MSCs. First therapeutic potential of 
MSC-derived exosomes was described in a Langendorff 
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heart model of acute myocardial ischemia/reperfusion 
injury in mice, where their cardioprotective effect was 
identified by myocardial infarct size reducing [88]. In this 
study, authors identified exosomes as cardioprotective 
elements in the MSCs´ paracrine secretion [88].

Several preclinical studies compared the beneficial 
effects of cell therapy based on MSCs and cell-free ther-
apy based on MSC-derived EVs/exosomes and showed 
that they had similar therapeutic outcomes. Comparative 
analyses of MSCs and their EVs demonstrated different 
genetic cargo and protein content that play a significant 
role in biological processes, including angiogenesis, adi-
pogenesis, apoptosis, regulation of inflammation, blood 
coagulation and extracellular matrix remodeling. Appli-
cation of mice adipose MSCs in comparison with its 
conditioned medium had the same effect on sympotms 
of chronic colitis mouse model. Clinical symptoms and 
tissue damages were suppressed in treated mice [89]. 
Zhi et al. indicated that the application of umbilical cord 
MSC-derived exosomes (200  µg) resulted in ameliora-
tion of clinical symptoms, reduction of colonic damage 
and decrease of the inflammatory state in mice colitis 
when compared with MSCs (1 × 106 cells) administra-
tion [90]. Shao et al. compared activity of rat bone mar-
row MSCs and MSC-derived exosomes in a  rat acute 
myocardial infarction model. It was showed a superior 
beneficial effects of MSC-derived exosomes in contrast 
to MSCs in cardiac repair. There were observed differ-
ences in expression profiles of several miRNAs from that 
of MSCs detected through miRNA sequence analysis 
[91]. A recent cutaneous wound model study in rabbits 
reported that intradermal injection of EVs derived from 
adipose and bone marrow MSCs were superior to MSCs 
injection in vivo. Furthermore, adipose MSC-derived EVs 
enhanced wound healing better than EVs from bone mar-
row [92]. In the study by Gatti et al. intravenous admin-
istration of human bone marrow MSC-derived EVs had 
the same efficacy as MSCs on the treatment of acute 
kidney injury in rats by inhibiting apoptosis and stimu-
lating tubular cell proliferation [93]. In an induced exper-
imental autoimmune encephalomyelitis murine model of 
multiple sclerosis, both human placental MSCs and its 
MSC-derived EVs showed regenerative effects and pre-
vented oligodendroglia degradation and demyelination 
[94]. Another preclinical study showed that MSC-derived 
exosomes could be a  promising cell-free therapeutic 
strategy for the treatment of Alzheimer’s disease. It was 
demonstrated that 28  days after intervention of mice 
groups with 10 μg exosomes and 1 × 106 MSCs separately 
had similar beneficial effects in improvement of neuro-
genesis and cognitive functions [95].

From the preclinical studies of MSC-derived exosomes 
therapy to the clinical application, many critical 

parameters should be resolved and determined, includ-
ing clarification of important factors and conditions, 
defining optimal MSC culture conditions and protocols 
for precise monitoring of exosome formation, isolation, 
its characterization and storage. The biological effect of 
MCS-derived exosomes is mainly affected by the source 
of MSCs. The ideal source would be a high-exosome-
yielding cell with a high expansion capacity [96, 97]. Fur-
ther relevant requirement is the age of the donor tissue 
considering the exosome production might be indirectly 
connected with mentioned factor. Isolated exosomes 
are routinely identified by vesicle size and expression 
of typically tetraspanin markers CD63, CD9 and CD81. 
Production of exosomes could be enhanced by chang-
ing of several cell cultivation conditions, like increasing 
of intracellular calcium, or serum starvation. The long 
lasting donor HEK293 cell cultivation and maintaining 
cells at acidic pH could results in considerably increased 
production of exosomes [98]. Pre-conditioning of MSCs 
with hypoxia [99, 100], cytokines [101, 102] and another 
biomoleculs or chemicals (e.g. LPS [103], thrombin 
[104], NO [105], H2O2 [106]) also evoked the increase 
of exosomes activity, directly or indirectly by increasing 
MSCs function. Further important requirements for exo-
some preservation is an adequate storage. Sokolova et al. 
detected that the exosomes diameter decreased within 
4  days at 4  °C and 2  days at 37  °C, indicating a struc-
tural change or degradation of exosomes, but storage 
at − 20 °C did not affect their size [107]. Extensive ques-
tions concerning of clinical grade exosomes production 
in sufficient quantity and of influence of different strate-
gies on exosome potency are still under examination.

Bone marrow MSC‑derived exosomes
Improvement of liver regeneration by BM MSC‑derived 
exosomes
The potential of bone marrow (BM) MSC-derived 
exosomes for the treatment of various disease pathologies 
seems to be obvious. Rong et al. demonstrated the abil-
ity of human BM MSC-derived exosomes to reduce liver 
fibrosis in a carbon tetrachloride (CCl4)-induced liver 
fibrosis model of Sprague Dawley (SD) rats through the 
Wnt/β-catenin pathway. They also indicated the recovery 
of markers related to improved liver features, increasing 
hepatocyte regeneration and inhibition of inflammation 
process (significantly decreased inflammatory cytokines) 
[108]. Damania et  al. studied the capability of rat BM 
MSC-derived exosomes present in fractionated MSC 
secretome to reduce liver injury in vitro in both 2D and 
3D culture conditions of HepG2 cells and in in vivo rat 
models of acute liver injury caused by CCl4. Anti-apop-
totic, anti-oxidative and prosurvival effects were shown 
in in vitro models of liver injury. In addition, the exosome 
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rich fraction of conditioned media improved liver regen-
eration and recovery in vivo [109].

Cardioprotection by BM MSC‑derived exosomes
The multiple therapeutic effects of BM MSC-derived 
exosomes have also been detected in cardiovascular, 
ischemic and reperfusion diseases. Currently, Chen 
et  al. established significant protection of myocardium 
against hypertrophy, inhibition of myocardial apopto-
sis and reduction of cardiac fibrosis by using mice BM 
MSC-derived exosomes in the murine pressure overload 
induced cardiac hypertrophy model [110]. Teng et al. in 
their study hypothesized about a significant role of rat BM 
MSC-derived exosomes in the cardioprotection through 
angiogenesis and anti-inflammation in SD rats with acute 
myocardial infarction. They shown an efficacious action 
of exosomes in cardiac remodeling post-myocardial 
infarction in vivo. Accordingly, obtained results indicated 
that exosomes supported angiogesesis in vitro in human 
umbilical vein endothelial cell line (HUVEC). Further-
more, the proliferation of CD3 stimulated T-cells was 
reduced after exosome treatment, which means decrease 
in proliferation of spleen lymphocytes [111]. The rat 
myoblast cell line H9c2 was used to study myocardial 
pathogenic processes as cellular hypoxia‑reoxygenation 
model. Inhibition effect of cell proliferation, migration 
and also of suppresion of cardiomyocyte apoptosis during 
hypoxia-reoxygenation was revealed after rat BM MSC-
derived exosome treatment [112]. In addition, quantity 
of both apoptosis- and autophagy-competent functional 
proteins and Apaf1 (apoptotic protease activating fac-
tor 1) and ATG13 (autophagy-related protein 13) gene 
expression in these treated H9c2 cells exhibited modu-
lations in accordance with SD rat myocardial ischemia/ 
reperfusion model. Apaf1 expression was consider-
ably suppressed and ATG13 expression was significantly 
increased in vivo after exosome treatment. Authors con-
cluded, that myocardial injury associated with myocar-
dial infarction could be inhibited with BM MSC-derived 
exosomes, alternatively throught regulation of autophagy 
mechanism [112].

BM MSC‑derived exosomes and recovery after stroke 
and traumatic brain injury
In a stroke model (middle cerebral artery occlusion 
model) in Wistar rats, Xin et al. indicated that systemic 
administration of rat BM MSC-derived exosomes signifi-
cantly enhanced functional recovery and improved neu-
rite remodeling, neurogenesis and angiogenesis [113]. 
Therefore, exosomes could be effectively used for stroke 
treatment. Zhang et  al. used human BM MSC-derived 
exosomes for the treatment of experimental traumatic 
brain injury in controlled cortical impact model in Wistar 

rats. Similarly, the improvement of functional recovery 
and promotion of neurovascular remodeling were dem-
onstrated [114]. Administration of BM MSC-derived 
exosomes could regenerate cognition functions and 
memory impairment in neurological and neurodegen-
erative diseases. Exosomes derived from MSCs precon-
ditioned by hypoxia supressed amyloid β accumulation 
and enhanced the synaptic protein expression in the 
brains of transgenic APP/PS1 mice (Alzheimer´s disease 
mice). Furthermore, reduced activation of astrocytes 
and microglia and changes in levels of inflammatory fac-
tors (increase of anti-inflammatoty cytokines IL-4, IL-10 
and decrease of pro-inflammatory cytokines TNFα and 
IL-1β) were observed [115].

Anti‑inflammation mediated by BM MSC‑derived 
exosomes
Another promising therapeutic feature of porcine BM 
MSC-derived exosomes was evaluated by Casado et  al. 
They showed the anti-inflammatory effect of exosomes 
in porcine model (large white pigs) of antigen-triggered 
synovitis. The local inflammation in animals caused by 
intra-articular injection of BSA leads to an elevated level 
of white blood cells in synovial fluid. Interestingly, there 
were found no differences of white blood cells in joints 
after exosome administration, but significant decrease 
in the lymphocytes accompanied by a noteworthy 
decline of only one (TNFα) from eight tested inflamma-
tory cytokines in synovial fluid was revealed [116]. It is 
interesting, that TNFα antagonists (e.g. infliximab, goli-
mumab, etanercept) are generally used for the treatment 
of rheumatoid arthritis [117].

Influence of BM MSC‑derived exosomes on bone 
regeneration
Osteogenically differentiated human BM MSCs and sub-
sequently derived EVs were used in the study of Martins 
et al.. They demonstrated, that human BM MSC-derived 
vesicles have osteoinductive potential characterized by 
early activation of alkaline phosphatase, early overexpres-
sion of the activator bone morphogenetic protein 2, tran-
sient increase in expression of Sp7 transcription factor 
(osterix) and secretion of phosphoprotein 1 (osteopon-
tin) and integrin-binding sialoprotein (bone sialoprotein) 
[118]. Qin et  al. tested the BM MSC-derived exosomes 
in the regulation of osteoblast activity in vitro and bone 
regeneration in vivo. Osteoblasts treated with miR-196a 
exhibited the best osteogenic activity in comparison 
with miR-27a and miR-206 treatment. Mentioned miR-
NAs are typical osteogenic related RNAs and are highly 
enriched in BM MSC-derived exosomes [119]. They 
also generated calvarial bone defects in SD rats and then 
applied hydrogel with EVs, which resulted in accelerated 
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bone regeneration and indicated obvious improvement 
of the defect repair in comparison with hydrogel with-
out EVs [119]. Narayanan et al. confirmed that exosomes 
from osteogenic human marrow MSCs are able to trigger 
lineage-specific differentiation of undifferentiated human 
BM MSCs [120]. Moreover, Shimbo et  al. showed that 
the introduction of synthetic miR-143 into BM MSCs 
leads to an increase in not only the extracellular miR-143 
but also increased secretion of exosomes. Such exosome-
formed miR-143 was transferred to human osteosarcoma 
cell line 143B and caused suppression of their migration. 
It seems, that BM MSC-derived exosomes are also able to 
act as effective delivery system [121].

Umbilical cord MSC‑derived exosomes
Reduction of liver fibrosis and liver injury by UC 
MSC‑derived exosomes
Umbilical cord (UC) MSCs and their exosomes have 
also extensive potential in regenerative medicine, but 
their fundamental mechanism of action is still unknown. 
Li et  al. used UC MSC-derived exosomes to treat 
CCl4-induced mouse liver fibrosis on Kunmingbai strains 
mice. It was shown that transplantation of human UC 
MSC-derived exosomes caused successful decrease of 
the serum fibrotic marker hyaluronic acid, TGF-β1 and 
serum aspartate aminotransferase and reduced hepatic 
inflammation and collagen deposition. Entire improve-
ment after liver injury was confirmed [87]. Likewise, 
Jiang et  al. identified hepatoprotective activities of 
human UC MSC-derived exosomes throught antioxi-
dant defenses in mouse models (BALB/c female mice) of 
acute and chronic liver injury and liver tumor induced 
by CCl4 injection. They detected suppression of the liver 
tumor development, inhibition of oxidative stress in liver 
tumor, reduction of oxidative stress, inhibition of apop-
tosis in liver fibrosis and accordingly, reduction of oxida-
tive stress and inhibition of apoptosis in acute liver injury 
after human UC MSC-derived exosome administra-
tion [71]. Shao et al. described large production of miR-
455-3p enriched exosomes by human UC MSCs and their 
ability to suppress macrofage activation and reduce acute 
liver injury in mice model by inhibiting IL-6 signaling 
pathway [122].

Influence of UC MSC‑derived exosomes on treatment 
of kidney injury
Furthermore, Zhou et  al. studied the influence of 
human UC MSC-derived exosomes in  SD rat model 
of kidney injury induced by cisplatin and in rat NRK-
52E cells treated with or without cisplatin in  vitro. 
There was indicated activation of the p38MAPK path-
way followed by the increase of caspase 3 in NRK-52E 
cells after cisplatina treatment. Increase of apoptotic 

cells and oxidative stress were also observed. By con-
trast, these parameters were significantly reduced after 
human UC MSC-derived exosome administration. 
Accordingly, human UC MSC-derived exosomes mod-
erated tubular oxidative damage, suppressed renal cell 
apoptosis and promoted renal cell proliferation in vivo 
in rats [123]. The major reason of acute kidney injury 
is ischemia/reperfusion injury in hospitalized patients. 
Therefore, Zou et al. in other study showed, that a sin-
gle intravenous administration of human UC MSC-
derived exosomes in rats with acute kidney injury 
induced by ischemia/reperfusion injury elevated renal 
capillary vessel density and alleviated renal fibrosis by 
increase of proangiogenic vascular endothelial growth 
factor (VEGF). In this process, reduction of HIF-1α 
(hypoxia inducible factor) was also observed. Exosomes 
were able to reduce cell apoptosis and improve prolif-
eration after kidney injury [124].

Enhancement of fracture healing and wound healing 
by UC MSC‑derived exosomes
Zhang et  al. demonstrated intensive support of cuta-
neous wound healing and angiogenesis in  vivo in a 
rat model of skin-deep second degree burn wound by 
human UC MSC-derived exosomes [125]. The Wnt 
signaling pathway plays an important role in angio-
genesis mediated with the endothelial cell prolifera-
tion modulation, migration, vascular sprouting and 
remodeling, and vascular system maturation. UC-
MSC-derived exosomes promote the tube formation, 
proliferation and migration of endothelial cells in vitro. 
In addition to that, applied exosomes improved angio-
genesis by delivering Wnt4 to activation of Wnt/β-
catenin in endothelial cells which could be one of the 
possible mechanism for tissue repair [125]. Likewise, 
Zhou et  al. investigated the role of human UC MSC-
derived exosomes in the Wnt signaling and their influ-
ence on femoral fracture healing in SD rats. Increase of 
β-catenin and Wnt3 expression indicating presumed 
participation of injected exosomes in repairing of the 
fracture was identified [126]. An important knowl-
edge in this area is the study of Fang et  al., in which 
they found that UC MSC-derived exosomes, especially 
exosomal microRNAs, decreased scar formation and 
myofibroblast accumulation in a skin-defect ICR mouse 
(Swiss-Hauschka mice) and nude mouse (BALB/c-υ) 
model. Myofibroblast formation can generally result 
in abnormal scarring. It was shown, that specific exo-
somal microRNAs (miR-21, miR-23a, miR-125b, and 
miR-145) inhibited redundant α-smooth muscle actin 
(α-SMA) and collagen I deposition and also suppressed 
TGF-β/SMAD2 signaling pathway [127].
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UC MSC‑derived exosomes relieve bowel diseases
UC MSC-derived exosomes have high potential in 
the treatment of inflammatory bowel diseases involv-
ing chronic inflammation of the gastrointestinal tract, 
both Crohn´s disease and ulcerative colitis in the future. 
Mao et  al. demonstrated decrease of pro-inflammatory 
cytokines IL-6, IL-1β, TNF-α expression and increase 
of anti-inflammatory cytokine IL-10 expression after 
UC MSC-derived exosomes treatment in inflammatory 
bowel disease in a mice model. Interestingly, significant 
inhibition of IL-7 expression was also observed in the 
colon mucosa tissues and spleens in a mice model [128]. 
The serum cytokine level of IL-7 is normally increased 
in inflammatory bowel disease patients [129]. Similarly, 
single intraperitoneal injection of UC MSC-derived 
exosomes resulted in a significant reduction of the clini-
cal symptoms and colonic damages in the mouse model 
of dextran sodium sulfate-induced colitis through sup-
pression of inflammation mechanism [90].

Adipose MSC‑derived exosomes
Attenuation of kidney inflammation by AD MSC‑derived 
exosomes
Adipose (AD) MSC-derived exosomes as well as 
exosomes derived from BM and UC MSCs present 
a  multipotent and rich therapeutic role in the improve-
ment of the injury repair of many tissues. AD MSC-
derived exosomes are more abundant and have lower 
risk of side effects. A single intrarenal delivery of pig AD 
MSC-derived exosomes in a porcine model of metabolic 
syndrome and renal artery stenosis resulted in reduction 
of renal inflammation, enhancement of the reparative 
macrophages number and elevation of anti-inflamma-
tory cytokine IL-10 expression. Furthermore, exosome 
administration lowered renal vein level of pro-inflamma-
tory cytokines TNF-α, IL-1β and IL-6 [130]. Results in 
the study of Eirin et al., established attenuation of renal 
fibrosis and improvement of stenotic kidney function 
after AD MSC-derived exosome treatment [130].

Cardioprotection by AD MSC‑derived exosomes
It was observed, that AD MSC-derived exosomes are able 
to protect myocardium against acute ischemia/reperfu-
sion induced necrosis and apoptosis in SD rat myocardial 
ischemia/reperfusion model. Ischemia/reperfusion injury 
in rats was accompanied with a remarkable decrease of 
Bcl-2 and an obvious increase in Bax expression. Both 
were eliminated after exosome administration. It was also 
observed, that AD MSC-derived exosomes attenuated 
hypoxia/reoxygenation induced apoptosis and promoted 
cell survival in H9c2 cell line [131]. In addition, Cui et al. 
hypothesized that AD MSC-derived exosome admin-
istration could protect ischemic myocardium through 

activation of Wnt/β-catenin signaling in  vivo [131]. Liu 
et  al. determined the protective influence of mouse AD 
MSC-derived exosomes on cardiomyocytes under oxida-
tive stress in vitro [132].

Potential of AD MSC‑derived exosomes for Alzheimer´s 
disease treatment
Interestingly, Katsuda et  al. demonstrated remarkable 
potential of AD MSC-derived exosomes for Alzheimer´s 
disease therapy [133]. They showed that AD MSC-
derived exosomes exhibited neprilysin specific enzyme 
activity. Neprilysin is the most essential enzyme that 
degrade amyloid beta peptide in the brain. In addi-
tion, transfer of mentioned exosomes to neuroblastoma 
N2a cells resulted in a decrease of both intracellular and 
extracellular amyloid beta peptide grades, suggesting 
a  promising therapeutic approach for exosome-based 
Alzheimer´s disease treatment [133].

Role of AD MSC‑derived exosomes in tumor progression
Recently, the influence of MSC-derived exosomes on 
tumor progression in both inhibiting and supporting 
mode was intensively described. Reza et al. indicated that 
human AD MSC-derived exosomal miRNAs have sig-
nificant inhibitory influence on the regulation of differ-
ent ovarian cancer cells [134]. Exosomes collected from 
human AD MSC-derived conditioned medium inhib-
ited the growth and proliferation of ovarian cancer cells 
A2780 and SKOV-3. Decreased cell viability and wound 
healing of cancer cells were also observed after exosome 
treatment. Furthermore, collected exosomes caused 
apoptosis by increasing of pro-apoptotic signalling mol-
ecules Bax, caspase 3 and caspase 9 and by decreasing of 
anti-apoptotic bcl-2 protein [134].

Clinical perspectives
Clinical applications using exosome technology as cell-
free therapy has become an important field of research 
over the last years. Currently, 91 clinical trials involving 
exosomes are listed on www.​clini​caltr​ials.​gov. Exosomes 
used in these trials are mainly derived from several body 
fluids and are used as early diagnostic tools in prediction 
of various diseases.

The clinical use of human MSC-derived exosomes is 
limited due to rigorous resolution of critical parameters 
involved in the translation process of preclinical studies 
to the clinical ones. These paramaters include the optimal 
MSC culture conditions and protocols for exosome pro-
duction, isolation, and storage with a considerable effect 
on the uniformity of optimal dose, exosome administra-
tion and efficacy evaluation [2, 24]. Various approaches 
to optimize the therapeutic efficacy of exosomes are 
being developed. In general, the substantial requirement 

http://www.clinicaltrials.gov
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Table 2  List of clinical trials of MSC-derived exosomes-based therapies  (source: www.​clini​caltr​ials.​gov)

NCT number Study title Study start Condition Intervention Phase Status

NCT04602104 A Clinical Study of 
Mesenchymal Stem 
Cell Exosomes 
Nebulizer for the 
Treatment of ARDS

October 2020 Acute Respiratory 
Distress Syndrome

Allogenic human
MSC-Exos

Phase 1
Phase 2

Not yet recruiting

NCT04602442 Safety and Efficiency 
of Method of Exo-
some Inhalation in 
COVID-19 Associated 
Pneumonia (COVID-
19EXO2)

October 1, 2020 Covid19;
SARS-CoV-2 PNEU-

MONIA

MSC-Exos Phase 2 Enrolling by invitation

NCT04173650 MSC EVs in Dystrophic 
Epidermolysis Bul-
losa

September 2020 Dystrophic Epider-
molysis Bullosa

AGLE 102 Phase 1
Phase 2

Not yet recruiting

NCT04356300 Exosome of Mesenchy-
mal Stem Cells for 
Multiple Organ Dys-
funtion Syndrome 
After Surgical Repaire 
of Acute Type A 
Aortic Dissection

September 1, 2020 Multiple Organ Failure UC MSC-Exos Not Applicable Not yet recruiting

NCT04491240 Evaluation of Safety 
and Efficiency of 
Method of Exosome 
Inhalation in SARS-
CoV-2 Associated 
Pneumonia

July 20, 2020 Covid19;
SARS-CoV-2 PNEU-

MONIA

MSC-Exos Phase 1
Phase 2

Completed
has results

NCT04544215 A Clinical Study of 
Mesenchymal 
Progenitor Cell 
Exosomes Nebulizer 
for the Treatment of 
Pulmonary Infection

July 1, 2020 Drug-resistant Human AD
MS progenitor cell-

Exos

Phase 1
Phase 2

Recruiting

NCT04388982 the Safety and the 
Efficacy Evaluation 
of Allogenic Adipose 
MSC-Exos in Patients 
With Alzheimer’s 
Disease

July 1, 2020 Alzheimer´s Disease allogenic
AD MSC-Exos

Phase 1
Phase 2

Recruiting

NCT03608631 iExosomes in Treating 
Participants With 
Metastatic Pancreas 
Cancer With 
KrasG12D Mutation

March 2020 Pancreatic cancer with 
KrasG12D mutation;

Metastatic Pancreatic 
Adenocarcinoma;

Pancreatic Ductal 
Adenocarcinoma;

Stage IV Pancreatic 
Cancer AJCC v8

MSC-Exos with KRAS 
G12D siRNA

Phase 1 Not yet recruiting

NCT04313647 A Tolerance Clinical 
Study on Aerosol 
Inhalation of Mesen-
chymal Stem Cells 
Exosomes In Healthy 
Volunteers

March 16, 2020 Healthy Allogenic
AD MSC-Exos

Phase 1 Recruiting

NCT04213248 Effect of UMSCs 
Derived Exosomes 
on Dry Eye in 
Patients With cGVHD

February 18, 2020 Dry Eye UC MSC-Exos Phase 1
Phase 2

Recruiting

NCT04276987 A Pilot Clinical Study 
on Inhalation of Mes-
enchymal Stem Cells 
Exosomes Treating 
Severe Novel Coro-
navirus Pneumonia

February 15, 2020 Coronavirus Allogenic
AD MSC-Exos

Phase 1 Completed

http://www.clinicaltrials.gov
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is a standardization of the classification and extraction 
method of exosomes from various body fluids, includ-
ing definition of using of lower biofluid volume, higher 
purity and yield. Also the identification and better char-
acterization of specific EVs subgroups is needed because 
different EVs could involve different biological effects. 
Whereas actual extraction methods of exosomes are 
too diverse for confirmation of its purity, it is necessary 
to standardize the protocols and characterization meth-
ods before application of exosomes in clinical trials. In 
addition, determination of the optimal dose, adequate 
time and appropriate method for exosome administra-
tion with maximal targeted efficacy, biological safety and 
without adverse effects must be confirmed before their 
clinical use.

Up to date, there are 15 clinical trials related to MSC-
derived exosomes, registered on Clinicaltrials.gov, 
which are summarized in Table  2. Some of these stud-
ies have been completed or are recruiting/about to open 
to accrual. The trial NCT04491240 is focused on the 
evaluation of safe and effective method of MSC-derived 
exosomes aerosol inhalation in SARS-CoV-2 associated 
pneumonia and is only one trial which has been posted 
the results. Similar issue is performed in the completed 
pilot clinical trial NCT04276987 where the safety and 
efficiency of allogenic AD MSC-derived exosomes inha-
lation in the treatment of patients hospitalized with 
new coronavirus pneumonia is investigated. In com-
pleted trial NCT03562715 peripheral blood exosomes´ 
miRNA136, miRNA494 and miRNA495 genes expression 
in comparison to UC MSC conditioned media exosomes 
in patients with pre-eclampsia (pregnancy complica-
tion) was indentified. Based on the received and pub-
lished data, MSC-derived exosomes are going to be great 

biological tools for diabetes, stroke, Alzheimer´s Disease 
and cancer therapy. Actually, it is hopeful to delve deeper 
into the potential of MSC-exosomes among SARS-CoV-2 
pneumonia therapy and provide effective treatments with 
the highest safety.

Conclusion
MSCs mainly exert their therapeutic effects through the 
secretion of paracrine factors to reduce inflammation, 
cellular injury and enhance cell and tissue repair. MSC-
derived exosomes probably work in a similar manner 
and have the capacity to interact with multiple cell types, 
enabling the cells to recover, repair and regenerate within 
the tissue. Due to their ability to deliver genetic material, 
immunomodulatory proteins, enzymes, and growth fac-
tors directly to the recipient cells, they also represent an 
ideal multifunctional delivery system. MSC-derived exo-
some therapy may be an emerging and a promising tool 
for the treatment of various diseases, mainly of those 
with an inflammatory component. Whats more, encour-
aging results of preclinical and clinical data predicted 
that MSC-derived exosome treatment could be supe-
rior to cell-based therapy in the meaning of safety and 
versatility.
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NCT number Study title Study start Condition Intervention Phase Status

NCT03384433 Allogenic Mesen-
chymal Stem Cell 
Derived Exosome in 
Patients With Acute 
Ischemic Stroke

April 17, 2019 Cerebrovascular 
Disorders

Allogenic
MSC-Exos enriched by 

miR-124

Phase 1
Phase 2

Recruiting

NCT03437759 MSC-Exos Promote 
Healing of MHs

March 1, 2017 Macular Holes MSC-Exos Early Phase 1 Recruiting

NCT03562715 microRNAs Role in Pre-
eclampsia Diagnosis

November 28, 2016 Pre-eclampsia Completed

NCT02138331 Effect of Microvesi-
cles and Exosomes 
Therapy on β-cell 
Mass in Type I Diabe-
tes Mellitus (T1DM)

April 2014 Diabetes Mellitus 
Type 1

UC blood MSC-Exos Phase 2
Phase 3

Unknown

NCT number, ClinicalTrials.gov identifier; MSC-Exos, mesenchymal stem cells-derived exosomes
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