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Abstract 

The discovery of various noncoding RNAs (ncRNAs) and their biological implications is a growing area in cell biol‑
ogy. Increasing evidence has revealed canonical and noncanonical functions of long and small ncRNAs, including 
microRNAs, long ncRNAs (lncRNAs), circular RNAs, PIWI-interacting RNAs, and tRNA-derived fragments. These ncRNAs 
have the ability to regulate gene expression and modify metabolic pathways. Thus, they may have important roles as 
diagnostic biomarkers or therapeutic targets in various diseases, including neurodegenerative disorders, especially 
Parkinson’s disease. Recently, through diverse sequencing technologies and a wide variety of bioinformatic analyti‑
cal tools, such as reverse transcriptase quantitative PCR, microarrays, next-generation sequencing and long-read 
sequencing, numerous ncRNAs have been shown to be associated with neurodegenerative disorders, including Par‑
kinson’s disease. In this review article, we will first introduce the biogenesis of different ncRNAs, including microRNAs, 
PIWI-interacting RNAs, circular RNAs, long noncoding RNAs, and tRNA-derived fragments. The pros and cons of the 
detection platforms of ncRNAs and the reproducibility of bioinformatic analytical tools will be discussed in the second 
part. Finally, the recent discovery of numerous PD-associated ncRNAs and their association with the diagnosis and 
pathophysiology of PD are reviewed, and microRNAs and long ncRNAs that are transported by exosomes in biofluids 
are particularly emphasized.
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Background
After Alzheimer’s disease (AD), Parkinson’s disease (PD) 
is the second most common neurodegenerative dis-
ease worldwide. Gross pathology shows excessive loss 
of dopaminergic neurons in the substantia nigra (SN) 
at the midbrain and subsequent dopamine deficiency in 
the nerve terminals of the basal ganglia. Conventionally, 
if more than 50% of dopaminergic neurons are damaged 
[54], individuals show motor deficits such as bradykinesia 

(slow movement), limb rigidity, tremor at rest, gait dis-
turbance (small stepped gait), and postural instability 
[147]. Currently, various brands of levodopa and dopa-
mine agonists have been developed to alleviate motor 
symptoms, but none of them can slow the progression 
of the disease [55, 82]. Moreover, dopaminergic agents 
have little effect on controlling nonmotor symptoms of 
PD, such as anxiety, depression, sleep disorders, auto-
nomic dysfunction, constipation, or cognitive decline 
[169]. The hallmark of the pathological findings of PD is 
the formation of eosinophilic inclusions called Lewy bod-
ies (LBs) in the cytoplasm of dopaminergic neurons in 
the midbrain. In recent years, biochemical experiments 
have revealed the transformation of normal soluble α-syn 
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monomers into pathological insoluble oligomer and fibril 
forms, resulting in large aggregates in the LBs. Increasing 
evidence suggests that these α-syn aggregates can spread 
from cell to cell through various transport routes [15, 64, 
185] and extend remotely even from the gut to the brain 
via the highway-like vagus nerve or olfactory bulb [14].

In addition, α-syn pathology (synucleinopathy) is found 
in other central nervous system diseases. The deposition of 
α-syn in oligodendrocytes is the hallmark of multiple sys-
tem atrophy (MSA), which is characterized by cerebellar 
ataxia, pyramidal signs, and autonomic dysfunction [53, 
62]. Patients who suffer from dementia with Lewy bod-
ies (DLB) were found to have early cognitive decline and 
prominent psychiatric symptoms such as hallucinations 
along with parkinsonism [122]. However, patients with 
tau-related pathological deposition in the central nervous 
system, termed tauopathy, also suffer from parkinsonism 
and other clinical manifestations, such as gaze palsy in pro-
gressive supranuclear palsy (PSP) [76, 205], or asymmetric 
parkinsonism and high cortical dysfunction in corticobasal 
degeneration (CBD) [6]. Those diseases that show atypical 
parkinsonism are overall classified as parkinsonism plus 
syndromes, as shown in Table 1 [206]. In clinical practice, 
how to precisely differentiate patients who have similar 
clinical features of parkinsonism is a major challenge to 
physicians. Hence, an objective, clear-cut and robust diag-
nostic biomarker of PD remains an unmet need. Although 
multiple biochemical and imaging biomarkers have been 
proposed for PD, none of them are convincing [107].

Recently, dysregulation of noncoding RNA (ncRNA) 
levels has been reported in several neurodegenerative 
disorders such as AD, PD and Huntington disease (HD) 
[179]. Although ncRNAs are not transcribed into pro-
teins, ncRNAs still play several key roles in fundamental 
and complex biological processes such as development, 
inflammation, ageing, and degeneration [163]. Recent 

advances in sequencing technologies have further identi-
fied PD-associated ncRNAs and the function of ncRNAs 
in PD. In this review article, we will first introduce the 
biogenesis of different ncRNAs, including microRNAs 
(miRNAs), PIWI-interacting RNAs (piRNAs), circular 
RNAs (circRNAs), long noncoding RNAs (lncRNAs), and 
transfer RNA (tRNA)-derived fragments (tRFs). Then, we 
will discuss the pros and cons of the detection platforms 
and reproducibility of bioinformatic analytical tools due 
to their major impact on data consistency. In the final sec-
tion, we will summarize the recent discovery of numerous 
PD-associated ncRNAs that may serve as novel biomark-
ers in the differential diagnosis of PD and play important 
roles in the pathophysiology of PD.

Classification of noncoding RNAs
A substantial variety of ncRNAs have been uncovered 
in recent decades. In ncRNA history, transfer RNAs 
(tRNAs) and ribosomal RNAs (rRNAs) were first discov-
ered in the 1950s and were also recognized as ncRNAs. 
The generic term ncRNA was not officially proposed 
until the discovery of small nuclear RNAs (snRNAs) 
and their neighbours, small nucleolar RNAs (snoR-
NAs), in the 1980s [20, 42]. However, in the early 2000s, 
the discovery of miRNAs finally attracted the attention 
of researchers worldwide because of their potential in 
orchestrating human gene expression mainly through 
post-transcriptional regulation [192]. Despite consider-
able scientific breakthroughs in the biological and medi-
cal aspects of miRNAs, our understanding of ncDNA 
continues to expand as ncRNAs are continuously identi-
fied. We recommend comprehensive reviews published 
in Cell in 2014 [27] and J Biomed Sci in 2020 [209]. Here, 
we focus on updated findings of miRNAs and recent 
studies introducing the biogenesis of novel categories of 

Table 1  The overview of Parkinson disease and parkinsonism plus syndrome

PD Parkinsons’s disease, MSA multiple system atrophy, PSP progressive supranuclear palsy, CBD corticobasal degeneration, DLB dementia with Lewy bodies, α-syn 
alpha-synuclein

Disease Pathological change Major involved 
brain regions of 
Synucleinopathies

Levodopa 
response

Clinical features

PD α-syn in neurons Midbrain Good Asymmetric parkinsonism including rigidity, bradykinesia, or 
resting tremor

MSA α-syn in oligodendrocytes Cerebellum, striatum Poor Autonomic dysfunction, cerebellar ataxia, less asymmetric 
parkinsonism than PD

DLB α-syn in neurons Neocortex, limbic areas Poor Fluctuating consciousness and cognition, recurrent visual hal‑
lucination, symmetric parkinsonism

PSP Tau in neurons Brainstem, subcortex Poor Vertical supranuclear palsy, axial rigidity, cognitive impairment, 
symmetric parkinsonism, early fall

CBD Tau in neurons and astrocytes Frontoparietal cortex Poor Akinetic rigidity, limb apraxia, speech and language deficits, 
asymmetric parkinsonism, myoclonus, dystonia
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ncRNAs, including PIWI-interacting RNAs (piRNAs), 
circular RNAs (circRNAs), long noncoding RNAs (lncR-
NAs), and tRNA-derived fragments (tRFs), in the first 
section.

MicroRNA
MicroRNAs are small noncoding RNAs of approximately 
21–25 nucleotides (nt) in length. The first miRNA, “lin-4 
RNA”, was discovered in Caenorhabditis elegans and 

Fig. 1  The biogenesis of miRNA, lncRNA, piRNA, circRNA and tRNA-derived fragments. A Several steps are required to produce mature miRNA, 
including A-to-I nucleotide editing by ADAR, 5’ and 3’ end trimming by Drosha and DGCR8, cleavage of double-stranded precursor miRNA 
(pre-miRNA) by Dicer through Dicer-dependent pathway or by AGO through Dicer-independent pathway, and finally, formation of miRNA-induced 
silencing complex (miRISC) with AGO proteins to bind other DNA or RNA targets. Some miRNAs will be modified by the adenosine deaminase 
(ADAR) proteins which act on double-stranded RNA to do A-to-I editing [148]. Next, two essential enzymes including protein DiGeorge syndrome 
critical region 8 (DGCR8) and Drosha forms the microprocessor complex and alternatively excise a pre-miRNA and remove the 5’ and 3’ terminals 
to produce a pre-miRNA duplex [105]. Pre-miRNA duplex in the nucleus is exported to the cytoplasm and is bound by Dicer to cleave the terminal 
loop to generate a mature miRNA duplex. Therefore, this process produces the isomirs, including 3p, 5p or polymorphic isomirs, which are classified 
by the arm of their pre-miRNAs [145]. A Genomes transcribed by RNA polymerase II (Pol II) produce mRNA but also lncRNA in both the sense and 
antisense directions. Most lncRNAs remain in the nucleus, while some of them are exported to the cytoplasm.  C The piRNA clusters are a locus 
that can generate a family of piRNAs from the same single-stranded RNA transcript. PiRNA precursors are cleaved by PIWI proteins. Similar to the 
AGO protein in miRNAs, PIWI proteins also have three domains: MID, PIWI, and PAZ.  D CircRNAs are preferentially generated by the noncanonical 
head-to-tail splicing of single or multiple exons, a mechanism called “alternative back-splicing (ABS)” by the depleted spliceosome.  E Precursor tRNA 
(pre-tRNA) encoded from the tRNA gene is first trimmed by the endonucleases RNase P and RNase Z at its 5’ and 3’ ends, forming a cloverleaf-like 
tertiary structure composed of three stem loops (D loop, anticodon loop, and T loop), undergoing aminoacylation, and ultimately exporting out of 
the nucleus as a mature tRNA
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shown to participate in aberrant temporal regulation in 
the early developmental stage of C. elegans larvae [100, 
204]. Since then, mounting evidence has demonstrated 
that miRNAs are expressed heterogeneously in different 
tissues [98] and translocate between subcellular compart-
ments to mediate translational repression in numerous 
cellular processes, such as the regulation of cell differen-
tiation, cell death and homeostasis [59].

The biogenesis of miRNAs comprises a series of pro-
cesses, generally including canonical and noncanonical 
pathways [135]. Both pathways are sometimes closely 
interlinked and use the same factors. In brief, as shown 
in Fig.  1A, miRNA genes are first transcribed into pri-
mary miRNAs (pri-miRNAs) and processed into precur-
sor miRNAs (pre-miRNAs) [96]. Both the 5’ and 3’ arms 
of pre-miRNA can generate functional mature miRNAs. 
The passenger strand of miRNA (termed miRNA-star or 
miRNA* was once thought to be useless and doomed to 
be degraded. More recently, both miRNA and miRNA* 
were shown to coexist and function [139, 216]. Addi-
tionally, the ratio of 5p and 3p strands was found to be 
tissue-specific in mice [157]. Hence, the nomenclature 
of miR-#-5p or miR-#-3p is recommended. Since the 
mechanism of miRNA strand selection is still unclear 
[124], the role of miRNA*s in gene regulation is still 
under debate, and thus, the physiological relevance of 
some passenger strands has been assumed to be under-
estimated [139]. How the cell decides or selects which 
miRNA strands to be dominant, called “arm switching”, 
requires further study [67, 124]. Owing to the complex-
ity of nomenclature, readers should note which target 
miRNA is selected from previous studies when assessing 
the biological function.

In addition, the mechanisms by which miRNAs pro-
mote gene silencing through the inhibition of translation 
and the degradation of target mRNAs are continuously 
being discovered. Recent studies have focused on the 
mechanisms of miRNA-mediated post-transcriptional 
regulation [135], mostly by RNA binding proteins (RBPs) 
and other lncRNAs, the latter will be described in the 
next section. Since the regulation of miRNA function is 
still unclear and remains to be uncovered, we will not 
introduce all the cellular pathways and detailed mecha-
nisms here. However, as miRNAs were also found to be 
secreted in extracellular fluids, probably through packing 
into exosomes [116], they have potential to serve as bio-
markers for various diseases, including PD [80] (Table 2).

Long noncoding RNA
Similar to mRNAs in many ways, lncRNAs have a 5’ 
terminal methyl guanosine (5’mG) cap and a 3’ ter-
minal polyadenylated tail, contain exons and introns, 
include several alternative splicing sites, and have no 

open reading frame (ORF) [145]. Genomes transcribed 
by RNA polymerase II (Pol II) produce mRNA but also 
lncRNA in both the sense and antisense directions 
(Fig. 1B). The length of lncRNAs is generally defined as 
longer than 200 nucleotides [77]. Most lncRNAs remain 
in the nucleus, while some of them are exported to the 
cytoplasm. Increasing evidence has shown the many bio-
logical functions of lncRNAs in cell biology, including 
direct DNA or mRNA binding, chromatin modifier regu-
lation, post-transcriptional modification, and chroma-
tin 3D structure formation, which have been thoroughly 
reviewed previously [183, 223].

Given that the mammalian brain contains up to 40% 
heavily transcribed lncRNAs [16], many aspects of lncR-
NAs are deeply involved in neuronal development and 
play a role in the pathophysiology of various neurological 
disorders, such as AD, PD, and HD [201]. Here, we briefly 
introduce lncRNAs and present the whole picture of the 
complex interplay of lncRNA-DNA and lncRNA-protein 
interactions and the complicated RNA machinery net-
work, which is reviewed elsewhere [129]. Nonetheless, 
PD-related studies will be highlighted in the last section 
of this review.

PIWI‑interacting RNA
Various researchers found a novel-at-the-time class of 
ncRNAs that is abundant in the fly [5] and mouse tes-
tes [3], later termed PIWI-interacting RNA (piRNA) 
[63]. A mature piRNA is typically 25–32 nucleotides in 
length after cleavage from a premature long sequence 
of a piRNA cluster. Increasing studies of piRNAs have 
revealed the delicate interactions of piRNAs with trans-
poson elements (TEs), so-called jumping genes, which 
account for 90% of the repeated sequences (approxi-
mately 45% of the total genome) in noncoding regions 
and can stabilize the genome in a wide variety of species 
by regulating epigenetic modification and maintaining 
genome integrity [51]. Currently, our understanding of 
piRNA biology has substantially deepened. The piRNA 
clusters are a locus that can generate a family of piRNAs 
from the same single-stranded RNA transcript. Unlike 
miRNA processing with Dicer, piRNA precursors are 
cleaved by PIWI proteins. Similar to the AGO protein in 
miRNAs, PIWI proteins also have three domains: MID, 
PIWI, and PAZ (Fig.  1C). The difference between PIWI 
and AGO is that PIWI preferentially binds to the 3’ termi-
nal 2’-O-methyl group of piRNA, resulting in a closer link 
of PIWI to piRNA processing. PiRNAs can be roughly 
divided into two sets: one in gonad cells and another in 
somatic cells. Gonad-derived piRNAs typically follow the 
principle of “1U-10A” on their RNA transcripts, which 
enables these sets of piRNAs to undergo a unique self-
amplification process named the “ping-pong cycle [4, 70] 
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using transposon transcripts as templates. Notably, the 
unique 1U-10A template on the first 10th nucleotides of 
piRNA transcripts provides an opportunity to computer-
ize and detect putative piRNAs by sequencing datasets. 
The second but relatively limited set of piRNAs is gener-
ated by “primary processing” of somatic cells.

In fact, the abundance of PIWI proteins and their 
homologues in animals, at least in pigs, is highest in the 
gonad, the kidney, and finally the brain [93]. Emerg-
ing data reveal the unexplored link of piRNAs in neural 
development, axonal regeneration, and memory forma-
tion, as described in a review [81], probably reflecting the 
fact that a set of TEs has a higher level in neuronal cells 
[128]. In recent decades, research on piRNAs has shifted 
from germline cell development to neurological disor-
ders, including brain tumours [160], AD [151, 161], HD 
[49], and ageing, and this subject is increasing in popu-
larity. These studies have only profiled piRNA identities 
in various neurological diseases. More issues merit a 
detailed investigation, including complete piRNA data-
bases across various species and cells and the time- and 
space-specific expression pattern in tissues. All these 
works and valuable efforts can help elucidate aberrant 
piRNA biological networking in diseases with unmet 
medical needs, including PD.

Circular RNA
Circular RNAs were first reported as a plant viroid 
RNA structure in 1976 [164]. Typically, the eukaryotic 
proteome is translated from canonical linear mRNA 
transcribed by Pol II, while some isoforms of protein 
products can be generated by alternative splicing [133]. 
It has been proposed that when downstream mRNA pro-
cessing is limited under certain conditions, circRNAs are 
preferentially generated by the noncanonical head-to-tail 
splicing of single or multiple exons, a mechanism called 
“alternative back-splicing (ABS)” by the depleted spliceo-
some [105] (Fig. 1D).

The first study describing the biological function of 
circRNAs in human brain development was published 
in 2013, proposing that a circRNA that is antisense to 
cerebellar degeneration-related protein 1 (CDR1as) can 
sponge many miRNAs, particularly miR-7, and there-
fore achieve post-translational gene regulation [125]. 
Since then, increasing evidence has shown that circR-
NAs are abundant in human tissues, particularly in the 
brain [162]. Furthermore, a comprehensive analysis 
revealed that circRNAs are highly enriched in the fron-
tal cortex, hippocampus, and cerebellum [65], and the 
expression of circRNAs is highly spatially and tempo-
rally dynamic in the central nervous system (CNS) [230]. 
Accumulating data have promoted interest in studying 

the transcriptomic regulatory networks of circRNAs in 
various neuropsychiatric disorders [115]. To date, most 
circRNAs are being studied in the field of cancer [217], 
with some in cardiovascular diseases or dementia, but 
these molecules have rarely been explored in the field of 
PD. For more information on the functional impact of 
circRNAs, some comprehensive reviews are worth read-
ing [30, 214].

Transfer RNA‑derived fragments
Transfer RNA is transcribed by RNA polymerase III 
and highly abundant, accounting for up to 15% of all 
RNA in tissues and cells [144]. Precursor tRNA (pre-
tRNA) encoded from the tRNA gene is first trimmed 
by the endonucleases RNase P and RNase Z at its 5’ 
and 3’ ends, forming a cloverleaf-like tertiary struc-
ture composed of three stem loops (D loop, anticodon 
loop, and T loop), undergoing aminoacylation, and ulti-
mately exporting out of the nucleus as a mature tRNA 
(Fig. 1E). The demographic summary in a recent review 
is worth reading [186]. After export out of the nucleus, 
tRNA canonically pairs triplet anticodons with the 
complementary codon on mRNA and facilitates pep-
tide elongation and protein translation.

Accumulating evidence has revealed that fragments 
of mature and precursor tRNAs, including tRFs and tiR-
NAs, once considered redundant in cell biology, have 
additional noncanonical functions, such as miRNA 
gene silencing, post-translational modification of 
mRNA, protein interactions, epigenetic modification, 
cellular stress responses, and sperm maturation [172]. 
However, most studies on disease-relevant tRNA-
derived fragments are in the field of cancer. We refer 
readers to some excellent reviews [211]. In PD, tRFs are 
still a growing field waiting to be explored.

Techniques for noncoding RNA detection and analysis
Total RNA, when originally isolated, is composed of 
multiple RNA species, including rRNA, precursor mes-
senger RNA (pre-mRNA), messenger RNA (mRNA), 
and several types of ncRNAs. Noncoding RNAs are 
highly heterogeneous in terms of their length and con-
formation. These molecules can be separated into 3 
categories: (1) small ncRNAs (< 50 nt), including micro-
RNAs (miRNAs; 19–25 nt), small interfering RNAs 
(19–29 nt), PIWI-interacting RNAs (piRNAs, 25–31 
nt), and other functional small RNAs, such as transcrip-
tion initiation RNAs (tiRNAs, 17–18 nt), tRNA-derived 
fragments (tRFs, 14–36 nt), snoRNA-derived RNAs 
(17–24 nt or > 27 nt), and sectional ribosomal RNA-
derived fragments (rRFs, 15–81 nt); (2) intermediate-
sized ncRNAs (50–500 nt), including 5S rRNAs (~ 120 
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nt), 5.8S rRNA (~ 150 nt), tRNAs (76–90 nt), snoRNAs 
(60–300 nt), and small nuclear RNAs (snRNAs, ~ 150 
nt); and (3) long noncoding transcripts greater than 
500 nt, including linear lncRNAs and circular circRNAs 
[189]. Over 90% of the total RNA molecules present in 
a cell are rRNAs and tRNAs, while small RNAs account 
for ∼1% or less [235]. These ncRNAs can regulate gene 
expression by directly or indirectly binding to specific 
DNA or RNA sequences.

Because many of these ncRNAs are tissue- and disease-
specific, the expression profile (the RNA sequences and 
expression levels) of these ncRNAs can be used as bio-
markers for diseases. Different platforms can provide 
different information about the sequence and expres-
sion level of ncRNAs. Sometimes a combination of these 
platforms could be used to obtain a more comprehensive 
view of the expression profiles of multiple RNAs. In this 
part of the review, the basic principle of five common 
platforms, microarray, RT-qPCR, Illumina NGS, PacBio 
and Nanopore, will be discussed. We will focus on how 
each platform can be used to generate the expression 
profiles of ncRNAs, including known and unknown tran-
scripts. Non-coding RNAs include small RNAs (miR-
NAs, piRNAs and tRFs) and long RNAs (lncRNAs and 
circRNA).

Small ncRNAs
When total RNA is extracted from biological materials 
(e.g., cells or tissues), subsets of RNA molecules need to 
be isolated or enriched using specific protocol, such as 
a ribodepletion protocol to remote ribosomal RNAs or 
size selection by electrophoresis, to filter out unwanted 
transcripts [97]. RNA isolation and library preparation 
strongly affect the detection of target species of ncRNAs 
[189].

With a mixture of small RNAs, since miRNAs (19–25 
nt), piRNAs (25–31 nt), and tRFs (14–36 nt) are all simi-
lar in size, they cannot be easily distinguished by exam-
ining their sizes. Luckily, most of the time these small 
RNAs could be identified in the database that contains 
previously reported transcripts. In some cases when the 
database or reference sequences are not available, spe-
cific characteristics of miRNAs, piRNAs and tRFs need 
to be considered to aid the identification of the novel 
transcripts.

Characteristics of miRNAs, piRNAs and tRFs
Typical miRNAs have the following characteristics: (1) 
their length distribution is narrow and often between 
21 and 23 nt; (2) their precursor forms a hairpin struc-
ture; therefore, the genomic sequencing flanking a 
miRNA sequence contains a highly complementary 
20- to 30-nt segment; (3) in most cases, pre-miRNA 

processing results in asymmetric strand accumulation; 
(4) a miRNA 5’ end is most often uridine; (5) a 3’ end 
is usually variable and, at low frequency, can be post-
transcriptionally modified by the addition of adeno-
sine or uridine; and (6) mature miRNAs, and often 
pre-miRNA sequences, are often conserved in closely 
related species; (7) in most cases, miRNAs originate 
from nonrepetitive genomic sequences [95]. During 
tRNA maturation, the 3′- trailer sequences are removed 
from pre-tRNA, which results in the production of 
1-tRF [60]. The other two classes of tRFs are gener-
ated from mature tRNAs: 5′-tRF as produced by cleav-
age of the 5′ end in the D-loop and 3′- tRF as produced 
through cleavage of the 3′ end in the T-loop [227]. 
Since tRFs are fragments of tRNAs, a tRF should par-
tially resemble to the tRNA sequence [196]. There is no 
common features for all piRNAs yet. Therefore multiple 
features if often employed when identifying piRNA. For 
example, several K-mers based features had been pro-
posed [109]. Some position-specific properties include 
a preference for uridine at the 5′ end (75.81%), which is 
a main characteristic of primary piRNAs, and an A-bias 
at the 10th nucleotide position (40.61%) [40]. Since 
there is no consistent characteristics of all piRNAs, the 
analysis of piRNAs is often done after the depletion of 
other types of small RNAs [108].

Microarray
To determine the expression profile of these small 
RNAs, researchers can use different platforms. Micro-
array is often chosen if the sequences of the sample 
are known and we want to determine the differential 
expression.

Microarrays are a major high-throughput (reads per 
run) tool that can simultaneously provide the relative 
concentration or expression levels of hundreds of target 
RNA templates [18] based on the computed scores of 
image intensity. The array platform consists of antisense 
DNA oligonucleotide probes, spotted or printed onto 
glass slides or nylon membranes, are designed to hybrid-
ize with the appropriate RNAs (small or long RNAs) 
[95]. Microarray data can immediately identify target 
molecules with up- or downregulated expression. None-
theless, array technology has several limitations. For 
example, background hybridization limits the accuracy 
of expression measurements, particularly for transcripts 
present in low abundance. Furthermore, cross-hybridi-
zation, nonspecific hybridization and limited detection 
range of individual probes may occur. There are also 
issues associated with probe redundancy and annotation 
[233]. Specificity and sensitivity can be compromised 
in small RNAs with high sequence similarity due to the 
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nature of short hybridization sequences [177]. Array 
hybridization methods normally require relatively large 
amounts (micrograms) of RNA therefore not sufficiently 
sensitive to profile miRNA expression in a single cell or 
few cells. Theoretically, reverse transcription quantitative 
real-time PCR (RT-qPCR) can provide a more sensitive 
method of profiling [95]. For the pros and cons of micro-
array, please refer to Fig. 2 and Additional file 1.

RT‑qPCR
RT-qPCR is another platform that has often been used to 
analyse RNA or DNA expression profiles. Because RT-
qPCR can provide high sensitivity and specificity for tran-
scripts with various sizes, it is suitable for quantitative 
study. This method is also widely used in most research 
labs and by researchers. In fact, RT-qPCR is currently the 
gold standard method to verify data obtained by micro-
arrays or next generation sequencing (NGS) approaches 
[177]. However, several drawbacks exist. Because prim-
ers are required for RT-qPCR, nonspecific primer design, 
inconsistent data analysis and normalization can nega-
tively affect the reproducibility of this method [177]. Like 
microarrays, RT-qPCR can only interrogate a limited set 
of variants with known sequences and has limited discov-
ery power. The capacity for the number of reactions it can 
perform each time is also limited. For the pros and cons 
of RT-qPCR, please refer to Fig. 2 and Additional file 1.

Illumina Next Generation Sequencing (NGS)
NGS is a good tool if we do not know the sequence of 
the target RNAs or want to study minor mutations or 
polymorphisms. We will focus on Illumina NGS since it 

is the major NGS platform currently in the market. NGS 
has been widely tested and used by many lapidaries, and 
the bias and error profiles are well understood. A large 
catalogue of compatible methods and computational 
workflows is also available. RNA-seq has considerable 
advantages for examining transcriptome fine structure, 
such as the detection of novel transcripts, allele-specific 
expression and splice junctions [233].

NGS is a very high throughput (reads per run) platform 
and currently provides 100–1000 times more reads per 
run than long-read platforms. NGS can not only pro-
file the expression of known RNA sequences but is also 
suitable for identifying various unknown variants [177] 
and can read degraded or truncated RNA. These frag-
ments or short transcripts will be turned into cDNA 
libraries through cDNA synthesis. Fragmentation is not 
required when sequencing small RNAs. Because each 
fragment can be sequenced repeatedly, NGS has the 
highest accuracy in detecting the sequence of the tran-
scripts. Low error rates are particularly important for 
sequencing miRNAs, whose relatively small sizes could 
result in misalignment or loss of reads if error rates are 
too high. Because of its high throughput, this method is 
also suitable for minor variant detection, human axon 
and genomic sequencing, genome-wide association 
studies, and gene expression studies [2]. For detection 
of RNA transcripts with moderate to high abundance, 
30–40 million reads are required to accurately quantify 
their expressions. For coverage over complex transcript 
libraries, including rare and lowly expressed transcripts, 
up to 500 million reads are required [56]. The unbiased 
data acquisition, sequence coverage and depths of NGS 

Fig. 2  RNA sequencing technologies and workflows of qPCR, microarray, Illumina NGS, PacBio and ONT (Oxford Nanopore Technology). A cDNA 
is synthesized by reverse transcription of extracted RNAs. Fluorescent signals are emitted and detected by the qPCR instruments during PCR. The 
figure shows the basic principle of SYBR green detection. The quantitative real-time PCR amplification plot is shown at the bottom. The number of 
PCR cycles is shown on the x-axis, and the fluorescence from the amplification reaction, which is proportional to the amount of amplified product 
in the tube, is shown on the y-axis. B After the extracted RNA targets are converted to cDNA /cRNA templates, they can hybridize with the cDNA 
probes on the chips. The cDNA / cRNA samples would carry signals and are labeled with fluorescent tags. When target cDNA / cRNA templates bind 
to the complementary oligonucleotide probes, the signals will be released. The signal intensities correspond to the abundance of cDNA / cRNA 
binds to the probes. Each dot observed in the bottom figure represents a cumulative hybridization reaction. Red color denotes higher expression 
levels of experimental groups while green color denotes higher expression levels of the control group. cDNA arrays typically involve two channels 
(two colors in the B), but single channel (one color) is also available [178]. C After cDNA library preparation, individual cDNA molecules are clustered 
on a flow cell. Illumina NGS detects the sequences by synthesis using fluorescent labelled nucleotides. In each small step of sequencing, the 
growing DNA strand will emit signals from one of the four fluorophores when the nucleotide has been incorporated (images are modified from 
[202]. The emission wavelength and intensity are used to identify the bases. D After PacBio SMRT-adaptor ligation, circularized cDNA molecule is 
formed. The individual molecules are loaded into a sequencing chip, where they bind to a polymerase immobilized at the bottom of a nanowell. 
As each of the fluorescently labelled nucleotides is incorporated into the growing strand, the fluorescent signals are emitted and detected by the 
PacBio instrument (images are modified from [202]. cDNA sequencing on the PacBio platform enables full-length sequencing from 5’ cap to the 
3’ RNA cleavage site. (E) After library preparation, individual molecules attached with motor protein during adaptor ligation are loaded into a flow 
cell. The motor protein controls the translocation of the RNA strand through the nanopore, causing a change in current that is characteristic for the 
subsequent bases and will serve as the basis for basecalling. The figure at the bottom shows the corresponding electrical currents (in the pA-range) 
to nucleotides. The pros and cons of all platforms are listed in the Additional file 1. The numbers of 1, 2, 3 correspond to very good, good and fair 
performance of each platform. N.A. non-available

(See figure on next page.)
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are unparalleled by any other available method, and this 
technique is the only discovery-based approach allowing 
the identification of novel small RNAs [177].

RNA-seq analysis is vulnerable to the general biases 
and errors inherent in the NGS technology. Because 
library preparation includes sequence fragmenta-
tion, adaptor ligation, cDNA synthesis and PCR 

amplification, errors can occur [175]. Uneven read 
coverage, complex splicing and potential sequencing 
bias could complicate the sequencing even more [138, 
233]. The fragments are not uniformly sampled and 
sequenced, as there is variability in sequencing depth 
across the transcriptome due to preferential sites of 
fragmentation and variable primer and tag nucleotide 

Fig. 2  (See legend on previous page.)
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composition effects [73, 121]. For the pros and cons 
of Illumina NGS, please refer to Fig. 2 and Additional 
file 1.

Expression profile by NGS
The expression level of each RNA unit is measured by 
the number of sequenced fragments that map to the ref-
erence transcript, which is expected to correlate directly 
with its abundance level. RNA-seq data (counts of 
mapped reads) are fundamentally different from micro-
array data (computed scores of image intensity) in terms 
of the expression level analysis. In RNA-seq, the expres-
sion signal of a transcript is dependent on the sequenc-
ing depth and the expression levels of other transcripts, 
whereas in array-based methods, probe intensities are 
independent of each other [153]. Normalized RNA-seq 
data, therefore, must be modeled statistically using dis-
crete distributions.

The nature of the features encompassed by read count 
data depends on what the mapping reference (database) 
is and what type of aligner tool was used. Some types of 
analytical software are designed to handle isoform dif-
ferences [101, 191], and others analyse generic features 
of the transcriptome [153]. To accurately estimate gene 
expression, read counts must be normalized to cor-
rect for systematic variability, such as library fragment 
size and read depth [97, 140, 158]. This issue, as well as 
other technical differences, has motivated the develop-
ment of a growing number of statistical algorithms that 
implement a variety of approaches for normalization 
and differential expression (DE) detection [153].

Long RNAs
There are currently three main platforms for long RNA 
sequencing and expression profiling: Pacific Biosciences 
(PacBio) and Oxford Nanopore Technologies (ONT). 
For long RNA sequencing, including lncRNA and cir-
cRNA sequencing, similar to short-read RNA sequenc-
ing, the target ncRNAs will firstly be specifically enriched 
as much as possible to reduce interference signals from 
other transcripts [66, 189]. Library preparation is first 
dependent on rRNA depletion methods, then reverse 
transcription (RT) with random primers and size selec-
tion by gel electrophoresis, leading to the deficiency of 
small ncRNAs [193]. Depletion of linear RNAs can be 
done by RNase R treatment, leading to the enrichment of 
circRNAs.

Characteristics of lncRNA and circRNA
Like small RNAs, databases are available for most of the 
lncRNAs and circRNAs. If certain lncRNAs or circRNAs 
cannot be found in the database, specific characteristics 

of lncRNAs and circRNAs should be considered to aid 
the identification of novel lncRNAs and circRNAs.

CircRNAs are a type of long RNA formed by covalent 
binding of the 3′ and 5′ ends after reverse splicing [207, 
208]. The junction between two related exons in the 
opposite order is called the back-sliced junction (BSJ), 
which represent a molecular signature of circRNA [28, 
57]. Many tools recognize circRNA by identifying the 
BSJ read. Most algorithms embedded in tools are based 
on splitting the reads (reads spanning BSJs are split into 
segments and are aligned to the reference sequence in 
reverse order) (called segmented-read-based), while 
several other tools are based on a pre-defined BSJ and 
flanking sequence of a circRNA (pseudo-sequences to 
recognize BSJ reads). These tools then map the read 
directly to that pseudo-reference for discovering a BSJ 
[28, 31, 57].

LncRNAs are non-coding RNAs with lengths greater 
than 200 nt [207, 208]. LncRNAs can be preliminar-
ily defined as long RNA transcripts that are capable of 
autonomous transcription and are longer than 200 nt but 
lack the capacity to encode proteins [152]. The predic-
tion of new lncRNAs includes two steps: basic screen-
ing and potential coding ability screening. Transcript 
lengths, exon numbers, ORF length and expression level 
are considered in the basic screening step [218]. Next, all 
transcripts with protein-coding potential are filtered out 
(CPC, CNCI, CPAT and Pfam software) [83].

NGS
Although microarrays and RT-qPCR can be used in long 
RNA expression analysis [102], since the primer or probe 
binding region is relatively short in the full-length tran-
script, some information, such as minor mutations, iso-
forms and structural variances, can be overlooked. NGS 
can also be used to determine the expression profiles of 
long RNAs. One major benefit of ensemble-based plat-
forms if low sequencing error rates (< 1%) dominated by 
single mismatches [ref ]. The long RNAs are fragmented, 
reverse transcribed into cDNA by random primers, and 
undergo end repair, sequencing adaptor ligation, and size 
selection for subsequent sequencing. In this way, not only 
lncRNAs but also mRNAs, circRNAs, and some interme-
diate-sized ncRNAs can be analysed by NGS. However, 
the reconstruction of transcripts from short-read data is 
difficult. Short RNA-seq reads capture only small frag-
ments of transcripts. RNA-seq data, therefore, lack clear 
isoform data, leading to the inference of many erroneous 
isoforms. Most algorithms can identify discrete tran-
script components, but the assembly of complete tran-
script structures remains a major challenge [97, 184]. 
On the other hand, long-read full-length cDNA captures 
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transcripts end-to-end, making isoform inference unam-
biguous [21].

PacBio
The two main long-read platforms are PacBio and Oxford 
Nanopore Technology (ONT). Long-read sequencing is 
more accurate and sensitive in structural variation and 
isoform detection [1]. Because it loads full-length cDNA 
sequences, this technique can capture many full-length 
transcripts (1–50  kb), including new isoform structural 
variations. Because reading results do not need to be 
reassembled, the computational methods for de novo 
transcriptome analysis are simplified. These methods 
are also suitable for studies of minor variations, novel 
assembly, epigenetics, and RNA isoforms [2]. However, 
the technology features low to medium throughput: cur-
rently, only 500,000 to 10 million reads per run (NGS 
obtains 100–1000 times more reads per run) [182]. Thus, 
this method requires high throughput to reach the same 
accuracy in terms of short-scale variations or low-fre-
quency detections.

PacBio single-molecule real-time (SMRT) isoform 
sequencing (Iso-Seq) can capture the full length of tran-
scripts, thereby presenting an easier and more accurate 
method for gene annotation, isoform identification, and 
lncRNA discovery [39]. Due to the large amount of tem-
plate required for PacBio sequencing, large-volume PCR 
is performed. cDNA size selection is optional but highly 
recommended, as PacBio has weak power in detecting 
short RNA sequences or degraded RNA templates. After 
PCR end repair and PacBio SMRT-adaptor ligation, long-
read sequencing is performed [182]. Another advantage 
of this sequencing approach is the ability to produce 
extraordinarily long reads (average lengths of 4200 to 
8500  bp), which greatly improves the identification of 
novel transcript structures [7, 97, 173]. The extremely 
long reads generated by the PacBio platform are ideal for 
de novo transcriptome assembly in which the reads are 
not aligned to a reference transcriptome. Longer reads 
can facilitate the accurate detection of alternative splice 
isoforms, which may not be discovered with shorter 
reads.

The limitation of lower throughput and higher error 
rate is most obvious when performing the large-scale dif-
ferential expression analysis. In these studies, the expres-
sion of ncRNA needs to be precisely profiled to attain 
sufficient statistical power to have confidence in the tran-
scriptome fold changes. For the pros and cons of PacBio, 
please refer to Fig. 2 and Additional file 1.

Oxford Nanopore Technology (ONT)
ONT sequencers measure changes in ionic current 
when the DNA fragments translocate through protein 

nanopores in a semisynthetic insulated membrane; this 
process does not require enzyme-based nucleotide incor-
poration or detection of fluorescence signals [39].

Since PCR amplification is optional and direct cDNA 
sequencing is possible, some errors during DNA poly-
merase could be avoided (e.g., incorrect nucleotides 
might be added to the sequence during polymerase), 
leading to higher-quality results. However, the sequenc-
ing yields (numbers of reads) were higher for PCR-ampli-
fied cDNA libraries. If PCR is performed, users could 
start with much smaller amounts of input RNA [182]. 
Similar to that of PacBio, because it does not go through 
RNA fragmentation, the structure of the noncoding RNA 
is retained and can avoid computational algorithm error 
during template assembly. Thus, this method is suit-
able for detecting structural variations and isoforms (e.g., 
[188]. Because ONT can process cRNA directly without 
cDNA synthesis, RNA modification and epigenetic infor-
mation are also retained, similar to methylation and other 
modifications [1, 182]. Expression is directly approxi-
mated by the number of reads that mapped on a given 
transcript [170]. Oikonomopoulos et al. [137] suggested 
that the expression levels of long RNAs are better cap-
tured by ONT, while cDNA-seq (Illumina) appears to be 
more biased. In general, ONT still has higher sequencing 
error rate than NGS and PacBio [202]. For the pros and 
cons of ONT, please refer to Fig. 2 and Additional file 1.

PacBio vs. ONT
For PacBio and ONT Pc data, we found that short read 
lengths (< 500  bp) had low alignment rates. This find-
ing is likely due to a larger portion of adapter and linker 
sequences in this short-length data bin [39]. In practice, 
PacBio and ONT sequencing have their own merits and 
demerits [39]. One of the greatest advantages of ONT 
compared to PacBio sequencing is that it can estimate 
transcript expression levels [168]. In the present study, 
Cui et al. [39] analysed the correlation between Illumina 
and ONT data of each replicate sample and found corre-
lations > 0.8 for all groups. The high correlation suggests 
that ONT can quantify transcript expression levels well. 
Briefly, PacBio was superior in identifying alternative 
splicing events, whereas ONT Pc could estimate tran-
script expression levels [39].

PacBio technology is now widely used for the charac-
terization of cancer transcriptomes, where detection of 
novel isoforms and fusion transcript is superior to that 
of short-read technologies. This approach surpasses 
mapping-based or assembly-based approaches. The 
effectiveness of MinION in the accurate quantification 
of transcripts, in the detection of transcript variants and 
fused genes, in transcript-based haplotype phasing and 
allele-specific expression and in single-cell expression 
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profiling has been shown in multiple studies [168]. In 
addition, full-length transcript sequence information is 
very useful for both genome annotation and gene func-
tion studies [137].

Brief Summary
Each platform has its strengths and weaknesses and can 
be used to address different research questions in RNA 
expression profiling. There is currently no one-size-fits-
all approach for all aspects of RNA profiling. Micro-
arrays and RT-qPCR provide direct quantification of 
target RNAs, but they are unable to identify novel RNA 
sequences and can only work with known sequences. 
Long-read sequencing platforms (such as PacBio and 
ONT) can be used to detect and analyse complete full-
length RNA sequences and identify new RNA transcripts, 
structural variations and RNA isoforms [2], but because 
they have a higher error rate than short-sequencing plat-
forms (such as NGS), they are not suitable for analysis 
that requires accurate sequencing, e.g., expression profil-
ing. This method is not effective for analysis of truncated, 
degraded or small RNA transcripts. Short-read sequenc-
ing can provide indirect quantification, can identify novel 
RNAs, has high throughput (reads per run), and has 
many analytical tools. However, it is less accurate in ana-
lysing structural variations, RNA isoforms and compre-
hensive RNA transcriptomes [1]. Most (> 90%) ncRNAs 
are miRNAs, and in conclusion, different platforms are 
suitable for different levels of specificity and sensitivity 
and are often complementary to each other. For com-
prehensive noncoding RNA profiling, a combination of 
methods is recommended.

The role of noncoding RNAs in PD
Recent advances in sequencing technologies have ena-
bled high-resolution RNA profiling and thus has pro-
vided insights into PD-associated ncRNAs. In the final 
section, the role of each RNA (miRNA, lncRNA, cir-
cRNA, pRNA and tRNA) in serving as potential biomark-
ers for PD is summarized. Their functional aspects in the 
pathogenesis of PD are also discussed separately.

MiRNAs in PD
Many studies and review articles emphasize the orches-
trated role of miRNAs in the pathogenesis, differen-
tial diagnosis, and prognosis of PD. Previous studies 
of microRNAs associated with PD are summarized in 
Table 2. A recent meta-analysis thoroughly summarized 
the identities of differentially expressed miRNAs in PD 
[165]. Theoretically, an ideal study design requires large-
scale, longitudinal, international cohorts using multi-
disciplinary methods, including NGS, microarray, and 
RT-qPCR, to detect new types of ncRNAs, validate the 

regulatory direction of differentially expressed ncRNAs, 
and succeed in investigating their biological functions 
in the pathogenesis or prognosis of PD in translational 
studies. Kern at el. recently provided a good example that 
fulfils almost all these requirements [87]. These research-
ers reported circulating small ncRNA profiles, primarily 
(~ 93%) miRNAs, in two large-scale longitudinal cohorts 
(Parkinson’s Progression Markers Initiative (PPMI) and 
Luxembourg Parkinson’s Study (NCER-PD)) using NGS 
and microarray datasets, respectively. Comparing total 
PD groups (genetic and idiopathic) and control groups 
(healthy and unaffected) with some cases that were seri-
ally followed, they first identified both diagnostic and 
prognostic miRNA biomarkers in the PPMI cohort. 
Between total PD and controls, five miRNAs were differ-
entially expressed in PD (upregulated expression of miR-
6836-3p and miR-6777-3p and downregulated expression 
of miR-487b-3p, miR-493-5p, and miR-15b-5p). Only 
miR-15b-5p was differentially expressed in plasma-
derived exosomes from PD patients [210], and the other 
4 differentially expressed miRNAs have never been 
identified in PD before. Moreover, only downregulated 
expression of miR-487-3p and miR-15b-5p was vali-
dated between the PPMI and NCER-PD cohorts. A simi-
lar study was performed by the same group in a smaller 
cohort (106 PD patients versus 91 healthy controls (HCs)) 
[43], while 5 differentially expressed miRNAs at that time 
were not able to be reproduced in this larger cohort. 
The differences between the two studies, including sam-
ple size (ten times larger in Kern et  al.’s study, sequenc-
ing platform (Illumina Solexa by Ding et al. NextSeq by 
Kern et  al. and validated platform (microarray by Ding 
et al. RT-qPCR by Kern et al. may be responsible for the 
discrepancy between the two studies. Regarding prog-
nostic miRNAs correlated with the worsening of motor 
symptoms and accompanied by the network analysis of 
miRNA-to-mRNA interactions, a total of 8 miRNAs with 
downregulated expression (let-7b-5p, miR-140-3p, miR-
574-5p, miR-769-5p, miR-3157-3p, miR-3960, miR-5690, 
miR-6734-5p were highlighted in patients with a progres-
sive course. However, the progression of other nonmotor 
symptoms, such as cognitive impairment or psychiatric 
symptoms, should also be important. Last, most of the 
participants in the PPMIR and NCER-PD cohorts were 
Caucasians, hindering universal application worldwide. 
This large-scale study noted the difficulties we found in 
PD-associated ncRNA studies, including lack of standard 
sequencing methods, few reproducible targets, and lack 
of multiethnic populations. The use of other sources of 
samples (e.g., blood, urine, or saliva,free circulating form 
or extracellular vesicle-derived form and enrichment of 
miRNA origins (e.g., brain or other organs; neurons or 
other neuronal cell types would have a greater impact on 
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Table 2  The miRNA profiles associated with PD patients

Samples Analysis methods miRNA expression—
upregulated

miRNA expression—
downregulated

Description Reference

Human Plasma rt-qPCR miR-27a Let-7a, let-7f, miR-
142-3p, miR-222

25 PD, 25 HC [29]

rt-qPCR – MiR-1, miR-22*, miR-29a 15 PD, 8 HC [118]

rt-qPCR, exosome ex-miR-331-5p ex-miR-505 52 PD, 48 HC [224]

rt-qPCR miR-7-5p, miR-22-3p, 
miR-124-3p, miR- 136-
3p, miR-139-5p, miR-
330-5p, miR-433-3p, 
miR-495-3p

– 99 (idiopathic) PD, 
101 HC

[154]

rt-qPCR miR-22-3p, miR-139-5p, 
miR-154-5p, miR-
330-5p

– 109 PD, 92 HC [155]

rt-qPCR miR-105-5p – 317 PD, 273 HC [220]

rt-qPCR miR-132 – 46 PD [221]

rt-qPCR miR-331-5p – 31 PD, 25 HC [25]

NGS + rt-qPCR miR-338-3p, miR-
30e-3p, miR-30a-3p

miR-16–2-3p, miR-1294 50 PD, 65 HC, (53 AD); 
serum + CSF;

[19]

rt-Qpcr exosome ex-miR-30c-2-3p ex-miR-15b-5p, ex-miR-
106b-3p,ex-miR-138-5p, 
ex-miR-338-3p

30 PD, 30 HC [210]

rt-qPCR miR-137 miR-124 60 PD, 60 HC [103]

rt-qPCR, exosome ex-miR-34a-5p – 15 PD, 14 HC [68]

rt-qPCR miR-30a-5p – (Set 1) 50 PD, 50 HC; 
(Set 2) 49 PD, 49 HC; 
meta-analysis for both 
set 1 and set 2

[167]

Human Serum rt-qPCR – miR-132-3p, miR-146-5p 82 PD, 44 HC [176]

rt-qPCR miR-29c – 51 PD, 20 HC [141]

rt-qPCR miR-30c-5p, miR-373 – 148 PD, 126 HC [228]

rt-qPCR – miR-29a, miR-29b, 
miR-29c

80 PD, 80 HC [9]

rt-qPCR, exosome ex-miR-24, ex-miR-195 ex-miR-19b 109 PD, 43 HC [24]

rt-qPCR let-7d, miR-22*, miR-
23a, miR-24, miR-
142-3p, miR-222

– 30 PD, 30 HC [11]

rt-qPCR – miR-29c, miR-146a, miR-
214, miR-221

138 PD, 112 HC [111]

NGS (Illumina Solexa 
seq) + rt-qPCR

miR-195 miR-15b, miR-181a, 
miR-185, miR-221

106 PD, 91 HC [43]

NGS (Illumina Solexa 
seq) + rt-qPCR

– miR-141, miR-146b-5p, 
miR-193a-3p, miR-214

169 PD, 180 HC [44]

NGS (Illumina 
NextSeq in PPMI 
cohort) + microarray (in 
NCER-PD cohort)

miR-6836-3p, miR-
6777-3p

miR-487b-3p, miR-
493-5p, miR-15b-5p

total 1614 in PPMI 
cohort; 440 PD, 485 HC 
in NCER-PD cohort

[87]

Human PBMCs Microarray + rt-qPCR – miR-335, miR-374a, 
miR-199a-3p/miR-
199b-3p, miR-126*, 
miR-151-3p, miR-
199a-5p, miR-151-5p, 
miR-126, miR-29b, 
miR-147, miR-28-5p, 
miR-30b, miR-374b, 
miR-19b, miR-30c, miR-
29c, miR-301a, miR-26a

19 PD, 13 HC; only miR-
126* was validated by 
rt-qPCR

[120]

rt-qPCR miR-155-5p miR-146a-5p 37 PD, 43 HC [22]
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Table 2  (continued)

Samples Analysis methods miRNA expression—
upregulated

miRNA expression—
downregulated

Description Reference

Human leukocytes NGS + rt-qPCR miR-199b, miR-1274b, 
miR-21, miR-150, miR-
671, miR-1249, miR-20a, 
miR-18b*, miR-378c, 
iR-4293

miR-320a, miR-320b, 
miR-320c, miR-769, 
miR-92b, miR-16

7 PD, 6 HC [181]

Human CSF NGS (Illumina 
HiSeq) + rt-qPCR, exo‑
some

ex-miR‐126‐5p, ex-miR‐
99a‐5p

– Discovery cohort (RNA-
seq): 42 PD, 43 HC; Vali‑
dation cohort (rt-qPCR): 
25 PD, 25 HC

[23]

Microarray + rt-qPCR, 
exosome

ex-let-7c-3p, ex-miR-
10a-5p, ex-miR-153, 
and ex-miR-409-3p

ex-miR-1, ex-miR-
19b-3p

Discovery cohort: 47 
PD, 27 HC; Validation 
cohort: 78 PD, 35 HC

[69]

NGS (SOLiD) + rt-qPCR miR-19a-3p, miR-
19b-3p, let-7 g-3p,

miR-10a-5p, miR-
127-3p, miR-128, 
miR-132-5p, miR-
136-3p, miR-212-3p, 
miR-370, miR-409-3p, 
miR-431-3p, miR-433, 
miR-485-5p, miR-
873-3p, miR-1224-5p, 
miR-4448

57 PD, 65 HC, (62 AD); 
serum + CSF; bold 
highlighted 5 miRNA 
are both downregu‑
lated in AD

[19]

NGS (Illumina Nextseq 
500)

let-7f-5p miR-27a-3p, miR-423-5p 40 PD, 40 HC; miRNA as 
20–24 nt

[46]

rt-qPCR miR-205 miR-24 28 PD, 28 HC (17 MSA) [119]

rt-qPCR miR-144-5p, miR-
200a-3p and miR-
542-3p

– 44 PD, 42 HC [127]

rt-qPCR – miR-626 15 PD, 16 HC, 11 AD [149]

Human Saliva rt-qPCR – miR-153, miR-223 83 PD, 77 HC [38]

rt-qPCR miR-145-3p, miR-874 – 30 PD, 30 HC [32, 33]

Human Brain section Microarray + rt-qPCR – miR-34b, miR-34c 11 PD, 6 controls; frontal 
lobe, amygdala

[126]

rt-qPCR – miR-205 16 PD, 7 HC; frontal 
lobe; lower miR-205 
cause increased LRRK2 
level

[35]

rt-qPCR – miR-7-5p 6 PD, 5 HC; SN [123]

NGS (Illumina HiSEq 
2000)

– miR-10b-5p 29 PD, 33 HC; prefrontal 
cortex

[79]

Microarray miR-22, miR-181a, miR-181b, miR-181c, miR-181d, 
miR-129, miR-29a, miR-29b, miR-29c, miR-373, 
miR-330, miR-130a, miR-130b, miR-374

6 PD, 5 HC; medulla 
(dorsal motor nucleus 
of the vagus, inferior 
olivary nucleus); miRNA 
targeted to differentially 
expressed genes were 
selected. No change of 
level can be obtained

[106]

TaqMan miR-548d miR-198, miR-485-5p, 
miR-339-5p, miR-208b, 
miR-135b, miR-299-5p, 
miR-330-5p, miR-
542-3p, miR-379, miR-
337-5p

8 PD, 4 HC; SN [26]

rt-qPCR – miR-34b 25 PD, 26 HC; putamen; 
decreased miR-34b 
with increased adeno‑
sine A2A receptor 
protein level

[194]
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the final list of differentially expressed miRNA profiles. In 
fact, miRNAs could be further categorized according to 
their biological pathways associated with mitochondria, 
autophagy, inflammation, and PD-related genes, includ-
ing SNCA, the gene encoding alpha-synuclein. Herein, 
we highlight some novel and innovative mechanisms 
of miRNAs that will shed light on future works in this 
section.

MiRNAs in biofluids other than blood
MiRNAs can be extracted from various biofluids, includ-
ing blood, serum, plasma and other sources. Since a 
recent study reported that the levels of miR-153 and miR-
223 were decreased in the saliva of 83 PD patients ver-
sus 77 HCs, as detected by quantitative RT-qPCR [38], 
salivary miRNAs are now noninvasive and easy-to-access 
sources. Intriguingly, a Chinese study revealed increased 
levels of miR-874 and miR-145-3p in 30 PD patients 
compared to 30 HCs by RT-qPCR [33]. This discrepancy 
probably reflects the difference in ethnicity or technical 
preparation of the samples.

Brain‑derived miRNAs in PD
Many studies extend their interest from circulating free-
form miRNAs to tissue-specific miRNAs, such as brain-
derived miRNAs. Circulating brain-enriched miRNAs 
would enable us to detect CNS signals from the periph-
eral bloodstream. For example, a combined group of 12 
brain-enriched miRNAs, including miR-7, miR-124, miR-
129, miR-139, and miR-431, could help us to differentiate 
individuals with PD from healthy individuals, although 
the discrimination using the aforementioned 4 miRNAs 
was moderate, with an area under the curve of 0.705 
[154]. Intriguingly, Ravanidis et al. tested their 12 brain-
derived miRNAs in another independent cohort with 109 
idiopathic PD patients and 92 HCs [155]. This time, fewer 
miRNAs remained significantly different (increased miR-
22-3p, miR-139-5p, miR-154-5p, miR-330-5p) between 
PD patients and HCs, and the highest discrimination 
accuracy was 0.730 by the pooled miRNAs including dif-
ferent miRNA candidates (miR-7-5p, miR-136-3p, and 
miR-409-3p). People may be curious about the accuracy 
of discrimination power when applying miRNA profiling 

in the real world. Nonetheless, we should always consider 
another critical issue: how can we assure that these miR-
NAs are definitely generated within the CNS?

Exosomal miRNAs in PD
Researchers have attempted to identify techniques that 
not only determine miRNA identities but also show the 
specific tissues, cells, organelles, or extracellular vesi-
cles (EVs) from which they are derived. The characteris-
tics of EVs, such as surface markers, size, and cargo, are 
extremely complicated and interwoven. Hence, the effort 
to categorize various EVs is an emerging field of science 
worldwide. By size exclusion, exosomes are one of the 
categories of EVs characterized by lipid bilayers and sizes 
of 40–160  nm [86]. Exosomes contain various cargos, 
including mRNAs, ncRNAs, proteins, and metabolites. 
The enrichment of miRNA in exosomes, abbreviated as 
“exo-miR” [13], is considered to participate in cell-to-cell 
signalling [136]. More importantly, exosomes can easily 
cross through the blood–brain barrier (BBB) and thus 
can be detected in the peripheral bloodstream and reflect 
homeostasis in the CNS [10].

Several studies have described the diagnostic role of 
exo-miR in PD [146]. Gui et  al. was the first and only 
team to uncover a distinct pattern of exo-miRNAs in cer-
ebrospinal fluid (CSF) of PD patients compared to HCs 
with decreased levels of ex-miR-1 and ex-miR-19b-3p 
and increased levels of ex-let-7-c-3p, ex-miR-10a-5p, 
ex-miR-153, and ex-miR-409-3p [69]. In a comparison 
with AD patients, Gui et  al. also disclosed that a frac-
tion of selected CSF-derived exo-miRNAs could be used 
to differentiate healthy individuals from those with PD 
with AD by miRNA array using RT-qPCR. Caldi et  al. 
employed high-throughput (reads per run) small RNA 
sequencing by NGS to perform an unsupervised survey 
of CSF-derived exo-miR between PD and HC groups, 
and they identified another group of exo-miR, including 
miR-99a-5p, miR-126-5p, and miR-501-3p, as diagnostic 
markers of PD [23]. In a comparison of profiles of exo-
miR and free-form miRNAs in CSF, there was no over-
lap when we examined circulating CSF-derived miRNAs, 
and miR-24 and miR-205 were identified as diagnostic 
markers separating PD patients from controls [119]. It 

Table 2  (continued)

Samples Analysis methods miRNA expression—
upregulated

miRNA expression—
downregulated

Description Reference

Microarray miR-126 – 8 PD, 8 HC; SN-DA 
neurons

[90]

rt-qPCR – miR-133b (midbrain) 3PD, 3HC; midbrain, 
(cerebral cortex, cer‑
ebellum)

[89]
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is yet too early to determine the superiority of free-form 
miRNAs and exo-miRs from different biofluids in the 
diagnosis of PD. Major challenges also remain for select-
ing and extracting cell-specific exosomes (neurons, oli-
godendrocytes, microglia, or astrocytes in the CSF or 
bloodstream [78, 143].

In addition to exo-miR’s high permeability across bio-
logical membranes and blood–brain barriers, its low 
immunogenicity with low rejection response compared 
to intracranial or intravenous stem cell therapy and tis-
sue- or cell-specific targeting ability also make it a good 
candidate for therapeutic druggable targets of PD. How-
ever, further research is required to confirm the thera-
peutic potential of exosome-based therapy in clinical 
applications. One of the hot topics that seems promis-
ing is using stem cell-derived exosomes. Crude exosome 
pellets extracted from mesenchymal stem cells (MSCs) 
were found to be beneficial to the outcome of traumatic 
brain injury [219] and cognitive deficiency [32], prob-
ably via miRNA transfer [150]. A recent study revealed 
that exo-miR-188-3p injection into the substantia nigra 
pars compacta (SNpc) of mice with 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced PD could 
inhibit cell division protein kinase 5 (CDK5)-induced 
apoptosis and NACHT leucine-rich repeat protein 3 
(NLRP3) inflammasome-induced pyroptosis [104]. These 
researchers transfected adipose-derived MSCs (ADSCs) 
with a vector containing miR-188-3p, and then, exo-
miR-188-3p was abundantly secreted by ADSCs. After 
extraction of exo-miR-188-3p-enriched exosomes, PD-
related pathogenesis, such as apoptosis and pyroptosis, 
could be reversed in the animal model. Nonetheless, Li 
et al. used intracranial injection of exo-miRs rather than 
the peripheral route, hindering its use in routine clinical 
practice. Notably, the massive generation of recombi-
nant exosomes is still in its immature stage [61], raising 
questions over scientists claiming how many fractions 
of exosomes contain selected exo-miRs. The purity of 
exosomal pellets is also a major challenge because it is 
dramatically influenced by existing methods of isolation 
[92]. This issue should always be kept in mind for future 
experiments.

Pathogenic miRNAs in PD
The pathogenesis of PD comprises multiple mechanisms 
and can be generally classified into several categories: 
increased a-syn production, decreased a-syn clearance 
(owing to lysosome-autophagosome impairment), mito-
chondrial dysfunction, enhanced neuroinflammation, 
reduced neuronal survival, and dysregulated PD-related 
genes such as SNCA, PTEN-induced putative kinase 1 
(PINK1), leucine-rich repeat kinase 2 (LRRK2), gluco-
sylceramidase beta (GBA), or Parkin RBR E3 ubiquitin 

protein ligase (PRKN). The targeted genes of miRNAs 
could directly deactivate the transcription of protein-
coding genes and subsequently inhibit their protein 
products, which is the earliest concept we know about 
miRNAs. For example, miR-16–1 decreases alpha-
synuclein clearance by inhibiting heat shock protein 70 
(hsp70) and inducing lysosomal dysfunction [232] in an 
experimental setting. Decreases in miR-16 or its passen-
ger strands (miR-16–2-3p) in human leukocytes [181] or 
plasma [19] might be a survival strategy of neuronal cells 
as well as a general effect on other body tissues.

Neuroinflammation: miR‑29c
The anti-neuroinflammatory effect of miR-29c has been 
extensively demonstrated in a series of studies published 
by Wang R. et  al. in an MPTP-treated mouse model of 
PD and neuronal cell lines. In brief, miR-29c reduces 
the levels of proinflammatory interleukins (IL-1b, IL-18) 
[195], miR-29c-3p inhibits NLRP3 inflammasome acti-
vation by targeting nuclear factor of activated T cell 5 
(NFAT5) [197] and inhibits autophagy by targeting ten-
eleven translocation 2 (TET2) [200]. Several human stud-
ies have also reported consistently decreased expression 
of miR-29c in human serum [9, 111, 120], except one 
study [141] showing that miR-29c expression increased 
in human serum. Interestingly, no miR-29c was differ-
entially expressed in studies using human plasma, sug-
gesting that sample origins and the preparation protocol 
could make a major difference in the final list of differen-
tially expressed miRNAs.

Autophagy‑related alpha‑synuclein clearance: let‑7
The autophagosome-lysosome network is a major intra-
cellular degradation system that digests unwanted pro-
teins, including α-syn, in cells [225]. Genetic PD due to 
GBA or LRRK2 mutations presents dysregulation of 
intracellular vesicle transportation among autophago-
somes, endosomes, and lysosomes. Aberrant let-7 
miRNA levels can affect autophagy through proteins 
and lncRNAs. For example, increased levels of Igg-1 and 
atg-13 proteins can be induced by knockdown of let-7 
in a C. elegans PD model [171]. The involvement of the 
mTORC1 protein pathway [48] in primary cortical neu-
rons from transgenic mice and other lncRNAs (H19 and 
Lin28) in breast cancer cell lines [213] warrants further 
studies to elucidate the underlying mechanism between 
let-7 and autophagy. In humans, the let-7 family is very 
large [159], and different isoforms have been discovered 
in association studies in plasma (downregulated let-7a 
and let-7f expression [33]), serum (upregulated let-7d 
expression [11]), CSF (upregulated let-7c-3p [69] and 
let-7f-5p expression [46]), and CSF-derived exosomes 
(upregulated let-7  g-3p expression [19]) (Table  2). 
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Determination of the most PD-relevant let-7 isoforms 
will require further study.

SNCA accumulation: miR‑7 and miR‑34b/c
The dysregulation of miR-7, which binds to the 3’ UTR 
of the SNCA gene, may induce excessive α-syn genera-
tion and accumulation [47, 84]. Interestingly, two stud-
ies revealed opposite changes in the direction of miR-7 
in different human sources, upregulated expression in 
plasma [154] and downregulated expression in the brain 
[123]. This kind of paradoxical phenomenon is also found 
in miR-34b/c, which has multiple biological functions 
in inhibiting SNCA transcription [85], dopaminergic 
neuronal survival, and mitophagy [126]. The decrease in 
miR-34b alone or combined with miR-34b and miR-34C 

is relatively consistent in postmortem findings [126, 194], 
albeit with its incremental change in human plasma 
being found only in plasma-derived exosomes (exo-miR-
34b-5p actually) in one study [68] rather than free-form 
isoforms in numerous other studies.

The precise mechanism behind this intriguingly para-
doxical phenomenon is still unclear. Taking traumatic 
brain injury as an example, direct release [99] or trans-
portation via extracellular vesicles [195, 197–199] of 
target miRNA (miR-9 here) outside the BBB has been 
reported, as we found for miR-34b/c isoforms. These 
paradoxical biological alterations might also be relevant 
to patients with neurodegenerative diseases. Moreover, 
we should question why a decrease in miR-7 in the brain, 
which normally inhibits SNCA transcription, occurs in 

Fig. 3  The overview of ncRNAs in the pathogenesis of PD. Several mechanisms involved in PD-relevant pathogenesis and associated ncRNAs 
are listed. The impairment of lysosome and autophagy systems through defects of GBA, LRRK2 genes, or LAMP2A and Hsp70 proteins reduce 
the clearance of α-syn. The excessive production of α-syn could be induced by hyperactive SNCA transcription associated with miRNA and 
lncRNA (SNCA-AS1). Aberrant α-syn metabolism results in accumulation and aggregation of phosphorylated α-syn. Several causative genes of 
PD such as LRRK22, PRKN, PINK1, DJ-1 are also modulated by miRNAs and largely induce mitochondrial impairment. Other groups of miRNAs 
also impair mitophagy or mitochondrial proteins (Bax). Together with the enhanced neuroinflammation (through pro-inflammatory cytokines 
and NLRP3-inflammasome) and reduced neurotrophic factors (via BDNF, FGF20), neuronal survival is damaged in the end. The interactions of 
miRNA-lncRNA (miR-223 and lncRNA GAS5) and miRNA-circRNA (miR-128 and cirSLC8A1) are highlighted by asterisks (*). BDNF Brain-derived 
neurotrophic factor (BDNF), DJ-1 Protein deglycase DJ-1 / Parkinson disease protein 7; FGF20 Fibroblast Growth Factor 20; GBA Glucosylceramidase 
Beta, Hsp70 70 kilodalton heat shock proteins; LAMP2A Lysosome-associated membrane protein 2, LRRK2 Leucine Rich Repeat Kinase 2, NLRP3 NLR 
Family Pyrin Domain Containing 3, PINK1 PTEN-induced kinase 1, PRKN parkin RBR E3 ubiquitin protein ligase, SNCA Synuclein Alpha
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PD patients and should theoretically inhibit excessive 
α-syn production under normal conditions. Another 
study of TBI and miR-9 also suggested that altered levels 
of certain miRNAs in neurons might have additional ben-
efits or unexpected harm to the growth of other types of 
neuronal cells, such as astrocytes [207, 208] or microglia 
[222]. In the near future, we need to solve the puzzle of 
complicated network shifts of single or multiple miRNAs 
in neurons and glial cells in the brain, probably with the 
help of advanced techniques such as single-cell RNA-seq 
[112]. We strongly recommend recent reviews for details 
of each PD-associated miRNA and related studies [132, 
190]. Herein, putative miRNA- and other ncRNA-associ-
ated pathogenic pathways in PD are graphically summa-
rized in Fig. 3.

MiRNA‑lncRNA interactions
The modulatory property of miRNAs in the pathogen-
esis of PD not only have direct but also indirect effects. 
Another essential mechanism of indirect modulation is 
via the “sponge effect of lncRNA”, that is, one lncRNA can 
bind a large set of miRNAs and alter their activities. For 
example, Chen et al. [31] found that the lncRNA nuclear 
enriched abundant transcript 1 (NEAT1) could upregu-
late phosphodiesterase 4B (PDE4B) expression to accel-
erate the progression of PD by sponging miRNA-124-3p 
[31] and miR-374c-5p [45]. A well-known lncRNA, RNA 
X-inactive-specific transcript (XIST), exhibits anti-
inflammatory properties by regulating the aforemen-
tioned miR-29c-3p, altering NFAT protein levels and 
overactivating the NLRP3 inflammasome in a rat model 
of epilepsy and a neuronal cell culture [229]. Another 
lncRNA, GAS5, demonstrated its proinflammatory effect 
in rotenone-induced PD mice and lipopolysaccharide 
(LPS)-treated microglial cells by competitively binding 
to miR-223-3p and then activating NLRP3 [215]. The 
concentration and dilution of miRNAs via lncRNAs and 
their sophisticated interactions are another hot topic.

LncRNAs in PD
Studies centred on lncRNAs in PD typically empha-
size several aspects, including α-syn aggregation and 
clearance, dopaminergic neuron degeneration, neuro-
inflammation, and PD-related genes, as reviewed in a 
recent article encompassing human, animal and cellular 
studies [110, 212]. In this previous review, most studies 
used MPTP-injected mice or neuronal SH-SY5Y cells to 
explore the pathogenetic role of each lncRNA interact-
ing with these pathways. Given that one lncRNA can be 
multitargeted to a wide variety of downstream miRNAs, 
mRNAs, and PD-related genes and proteins, we expect 
that future studies will reveal more inspiring findings if 
various RNAs obtained from postmortem tissues and 

patient-derived dopaminergic cells are analysed in paral-
lel [50].

Diagnostic lncRNAs in PD
Several human studies that used lncRNAs as diagnos-
tic biomarkers are summarized (Table 3). Elkouris et  al. 
identified six sense and/or antisense lncRNA genes tar-
geting PD-related genes, including SNCA, PINK-1, 
UCHL-1, and MAPT, and proved their abundant exist-
ence in healthy iPSC-derived dopaminergic neurons in 
comparison with iPSCs and fibroblasts [50]. Next, they 
measured the RNA expression of six lncRNAs in the 
human brain from both the SN and cerebellum (9 PD 
and 8 HC) in human peripheral blood monocytic cells 
(PBMCs) (20 PD and 20 HC samples) and found that four 
out of six lncRNAs, SNCA-AS1, MAPT-AS1, AK127687 
and AX747125, were detected in CSF-derived exosomes 
(2 HCs). Through sophisticated experiments, Fan’s team 
ultimately demonstrated that these lncRNAs are enriched 
in dopaminergic neurons and detected in both peripheral 
and central tissues; thus, they are suitable as diagnostic 
markers of PD.

Using a microarray, Fan and his colleagues also found 
that four differentially expressed lncRNAs (AC131056.3–
001, HOTAIRM1, lnc-MOK-6:1, and RF01976.1–201) had 
upregulated expression in leukocytes of PD patients [52]. 
The dysregulation of two lncRNAs (AC131056.3–001 and 
HOTAIRM1) promoted apoptosis in dopaminergic neu-
rons. Other researchers have focused on PD and other 
neurodegenerative diseases. Garofalo and his colleagues 
explored the issue by comparing the whole picture of 
RNA metabolism in three neurodegenerative diseases, 
PD, AD, and amyotrophic lateral sclerosis (ALS) [58]. 
High-throughput RNA-seq was exploited to identify 
ncRNAs in PBMCs of patients. Four lncRNAs were found 
to be differentially expressed in 6 PD patients versus 6 
controls, with one lncRNA (SCARNA2) with upregulated 
expression and three with downregulated expression (2 
ncRNAs: RP1-29C18.9, RP1-29C18.8; 1 protein-coding 
RNA: TBC1D3). Among them, only RP1-29c18.8 could 
not be validated by RT-qPCR in PBMCs. However, fur-
ther functional and pathway analyses remain largely 
unexplored.

Exosomal lncRNAs in PD
Exosomal lncRNAs are an emerging field, as we found 
with miRNAs. In the plasma of 93 PD patients and 85 
controls, Zou et al. isolated likely CNS-derived exosomes 
containing L1CAM by a microbead-based method, 
screened the lncRNA profile by microarray, and empha-
sized only one lncRNA, lnc-POU3F3, which showed 
highly upregulated expression in PD [236]. Although 
the whole picture of the differentially expressed lncRNA 
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Table 3  The profiles of lncRNA and circRNA in PD patients

ncRNA Samples Analysis methods ncRNA expression—
upregulated

ncRNA expression—
downregulated

Description Ref.

lncRNA human plasma exo‑
some

NGS (Illumina HiSeq) 15 24/2 (2 in vali‑
dation cohort: 
lnc-MKRN2-42:1, 
GAS5:46)

Discovery by NGS 
from 7 PD, 7 HC; 
validation by rt-qPCR 
from 24 PD, 11 HC (in 
bold)

[199]

microarray (Ali‑
gent) + rt-qPCR

1 (Linc-POU3F3) N.A 93 PD, 85 HC; mag‑
netic bead isolation 
of exosome; only 
Linc-POU3F3 was 
highlighted. No 
detailed differentially 
expressed lncRNA 
profile was provided

[236]

Human leukocytes Microarray (Aligent) 95/4 (4 in validation 
cohort: AC131056.3-
001, HOTAIRM1, 
lnc-MOK-6:1, and 
RF01976.1-201)

27 Discovery by microar‑
ray from 5 PD, 5 HC; 
validation by rt-qPCR 
from 72 PD and 
22 HC; functional 
validation in SH-SY5Y 
and THP1 cells; 
AC131056.3-001 and 
HOTAIRM1 increases 
apoptosis

[52]

Microarray (GEO 
database)

2 (LINC00302, 
LINC00328)

5 (XIST, PART1, MCF2L-
AS1, NOP14-AS1, 
FAM215A)

50 PD, 22 HC; 
PRKACA, IGF1R, and 
lncRNA-XIST might 
be involved in PD 
pathology

[34]

NGS (Illumina HiSeq) 38 39 (JHDM1D, 
LOC105378701, 
LOC102724104, 
LOC105375056, 
LOC105379392)

Discovery in 3 PD, 3 
HC; validation in 2 
other GEO databases; 
functional pairing of 
lncRNA and miRNA 
was performed 
and highlighted; 
the interaction of 
LOC101928100-
KLRK1/KLRD1 was 
showed but no 
change of level was 
provided)

[234]

Human leuko‑
cytes + brain section

NGS (ABI SOLiD) + rt-
qPCR

5 (AC004744.3, 
RP4-705O1.1, RP11-
533O20.2, RP11-
542K23.9)

8 (RP11-79P5.3, 
RP13-507P19.2, 
RP11-101C11.1, 
U1, RP11-425I13.3, 
RP11-124N14.3, RP11-
462G22.1, PCA3)

Discovery: plasma 
from 3 PD, 3 HC 
(NGS + rt-q{CR);
Validation: 
SN + amygdala from 
6 PD and 4 HC (rt-
qPCR); U1 and RP11-
462G22.1 (lnc-FRG1-3) 
are over-expressed 
in PD leukocytes, 
and RP11-79P5.3 up-
regulates in PD brains

[180]

Human PBMCs NGS (Illumina Next‑
Seq 500) + rt-qPCR

1 (SCARNA2) 2 (RP1-29C18.9, RP1-
29C18.8)

6 PD, 6 HC; None of 
lncRNAs could be 
validated by rt-qPCR

[58]
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profile was not disclosed, the researchers highlighted a 
significant inverse correlation of exosomal lnc-POU3F3 
levels with lysosomal enzyme β-glucocerebrosidase 

(GCase) activity, which is encoded by the GBA1 gene. In 
addition, both exosomal lnc-POU3F3 and GCase activity 
in PD were significantly correlated with disease severity 

Table 3  (continued)

ncRNA Samples Analysis methods ncRNA expression—
upregulated

ncRNA expression—
downregulated

Description Ref.

Human brain + PBMCs rt-qPCR – 6 (AK127687, 
AX747125,  SNCA-AS1, 
UCHL1-AS1, PINK1-
AS1, MAPT-AS1)

9 PD, 8 non-PD 
Controls for SN and 
cerebellum; lncRNA 
targeted to PD-related 
genes were enrolled; 
validate their exist‑
ence and levels in SH-
SY5Y, patients-derived 
iPSC, CSF-derived 
exosome, and human 
cortex

[50]

Human brain section Microarray data 42 (AL049437 most 
upregulated)

45 (AK021630 most 
downregulated)

11 PD, 14 HC; discov‑
ery in SN; validation 
by SH-SY5Y cells 
(tyrosine hydroxylase 
expression, mitochon‑
drial mass)

[131]

rt-qPCR 4 (lincRNA-p21, 
Malat1, SNHG1, 
TncRNA)

1 (H19 upstream 
conserved 1 and 2)

20 PD, 10 HC; anterior 
cingulate gyrus; five 
featured lncRNAs are 
PD stage-depend‑
ently expressed

[94]

circRNA Human plasma NGS (Illumina HiSeq 
X ten)

2 (SIN3A_
circ_0036353; 
HBB_chr11:5225503–
5226657: +)

9 (ITGAL_
circ_0000690, 
SLTM_circ_0000605, 
YY1AP1_
circ_0014606, 
RBM39_circ_0004870, 
FBXW7_circ_0001451, 
FAM13B_
circ_0001535, RBM33_
circ_0001772)

4 PD, 4 HC; testified 
by circRNA-miRNA-
mRNA interaction 
network analysis

[91]

Human PBMCs rt-qPCR N.A MAPK9_circ_0001566, 
HOMER1_
circ_0006916, 
SLAIN1_circ_0000497, 
DOP1B_circ_0001187, 
RESP1_circ_0004368, 
and PSEN1_
circ_0003848

60 PD, 60 HC [156]

Human brain section RNA-seq data‑
base + rt-qPCR

1 (CircSLC8A1) N.A Discovery from a RNA-
seq database from SN 
of 15 PD and 10 HC; 
validation by rt-qPCR 
from SN of 24 PD 
and 18 HC; although 
24 DE lncRNAs were 
mentioned in the text, 
details of DE lncRNA 
profile was not 
entirely clarified

[72]

piRNA Human brain section NGS (Illumina 
HiSeq) + rt-qPCR

561/46 overlapped in 
midbrain neurons

553/24 overlapped in 
midbrain neurons

8 PD, 8 HC; cingulate 
gyrus; the number of 
piRNAs overlapped in 
the brain tissue and 
midbrain neurons 
were highlighted

[166]
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but not exosomal α-syn levels. Therefore, this study 
concluded that increased exosomal lnc-POU3F3 plus 
decreased GCase activity in PD could serve not only as 
a diagnostic biomarker but also as a therapeutic target of 
PD.

Some studies screened for lncRNA targets by higher-
throughput RNA-seq. A recent study published by Wang 
et al. revealed that in 7 PD patients and 7 HCs, RNA-seq 
identified 15 PD-relevant exosomal lncRNAs with upreg-
ulated expression and 24 with downregulated expres-
sion by ultracentrifugation of isolated exosomes (Wang 
Q et  al. 2020). Among those differentially expressed 
lncRNAs, MSTRG.336210.1 and lnc‐MKRN2‐42:1 were 
highly expressed among controls, while MSTRG.242001.1 
and MSTRG.169261.1 were highly expressed in patients. 
The researchers focused on motor severity-correlated 
lnc-MKRN2-42:1 because some of its targeted genes 
also had downregulated expression in the plasma of 24 
PD patients and 11 HCs. Indeed, future works are still 
needed to validate the results in a larger cohort and 
clarify the biological functions of lnc-MKRN2-42:1 in 
animal or cell models. However, it is worth noting that 
Wang et  al. also sequenced circRNAs and uncovered 
62 circRNAs with upregulated expression and 37 with 
downregulated expression in their cohort, but a detailed 
description of these molecules is not available. We look 
forward to further progress in the field of lncRNAs and 
other ncRNAs, including circRNAs, piRNAs, and tRFs, 
as we will discuss in the following sections.

CircRNAs in PD
Given that circRNAs are brain-enriched [162] and pre-
dominantly located at synapses and dendrites [226], an 
age-dependent accumulation of circRNAs in the CNS 
has been discovered in model organisms such as flies, 
worms, and mice [37, 203]. There are two studies focused 
on circRNAs in PD, one in the bloodstream and another 
in postmortem tissues (Table 3).

Blood‑derived circRNAs in PD
A recent study investigated the RNA-seq profiles of cir-
cRNAs along with mRNAs and miRNAs in peripheral 
blood from a small number of participants, with only 4 
patients with PD and 4 HCs [91]. A total of 129 circRNAs 
with upregulated expression and 282 with downregulated 
expression were found in PD samples compared to con-
trols. Most differentially expressed circRNAs were asso-
ciated with PD, AD or HD-related pathways analysed 
by the Kyoto Encyclopedia of Genes and Genomes. The 
researchers also highlighted 2 circRNAs with upregu-
lated (chr11:5225503–5226657: + , hsa_circ_0036353) 
and 8 with downregulated (hsa_circ_0000690, hsa_
circ_0001535, hsa_circ_0001451, hsa_circ_0004870, 

hsa_circ_0000605, hsa_circ_0014606, hsa_circ_0001801, 
hsa_circ_0001772) expression and disclosed that source 
genes (HBB, SIN3A, FBXW7, ITGAL, SIN3A) of the high-
lighted circRNAs were predominantly linked to functions 
of homeostasis and oxidative stress response, indicating 
the central role of reactive oxidative stress and dyshome-
ostasis in PD [41].

Brain‑derived circRNAs in PD
In 2020, Hanan et  al. studied circRNAs in the human 
brains of PD patients and examined brain tissues from 
three distinct regions, the amygdala, substantia nigra 
(SN), and mesial temporal gyrus, from 42 PD patients and 
27 healthy individuals using pooled existing databases 
[72]. In addition to abundant mRNAs, approximately 
0.02% of circRNAs were also uncovered in each sample 
by deep RNA-seq at 50 million reads per se. Interestingly, 
an age-related increase in circRNAs was similarly found 
in the amygdala and mesial temporal gyrus of PD patients 
and HCs. However, SN-derived circRNA levels tended 
to increase with age only in the HCs. Nevertheless, SN-
derived circRNAs decreased in PD versus HC groups, 
which might, according to their hypothesis, be due to the 
loss of dopaminergic neurons in the SN of PD patients. 
Next, among 24 differentially expressed circRNAs found 
between the PD and HC groups (not clearly elaborated 
in the article), Hanan and her colleagues focused on a 
circRNA called circSLC8A1, which showed upregulated 
expression in the SN of PD patients. The SLC8A1 gene 
encodes a sodium/calcium exchanger [88]. Interestingly, 
miR-128-targeted mRNAs also showed upregulated 
expression in the SN of PD brains. A cell model was then 
constructed using 293HEK cells with shRNA knockdown 
of circSLC8A1 alone, albeit with mRNA transcripts of 
SLC8A1. RNA-seq eventually identified 24 out of 110 
genes with upregulated expression that were targeted by 
miR-128 between 293HEK KO cells and controls. Taken 
together, the results of this study suggest that neuron-
derived circSLC8A1 may modulate the functions of miR-
128 and play a certain role in the pathophysiology of PD.

Another recent study utilized the most fundamen-
tal method, rt-qPCR, to screen known brain-drived 
circRNAs in human PBMCs [156], where they identi-
fied 48 out of 87 circRNAs. Among them, six circR-
NAs (MAPK9_circ_0001566, HOMER1_circ_0006916, 
SLAIN1_circ_0000497, DOP1B_circ_0001187, RESP1_
circ_0004368, and PSEN1_circ_0003848) were signifi-
cantly down-regulated in 60 PD versus 60 HC but no 
circRNA was found upregulated. Nevertheless, after 
a stepwise logistic regression selection model, there 
were four circRNAs with highest discrimination power 
between PD and HC, including SLAIN1_circ_0000497, 
SLAIN2_circ_0126525, ANKRD12_circ_0000826, and 
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PSEN1_circ_0003848. Only SLAIN1_circ_0000497 and 
PSEN1_circ_0003848 were overlapped. Clearly, more 
investigation is warranted in the future.

PiRNAs in PD
To date, only two published papers have reported their 
findings of specific piRNA profiles in PD based on cell and 
worm models, as well as postmortem tissues. The first study 
of piRNAs in PD was published by Schulze et al. in 2018, 
comparing transcriptomic and epigenomic analysis using 
RNA-seq between 15 lines of fibroblasts (9 PD, 6 HC), 24 
lines of iPSCs (6 PD, 6 HC), and 10 lines of differentiated 
neurons (5 PD, 5 HC) [166]. There were no differentially 
expressed genes between fibroblasts, fibroblast-derived 
iPSCs and iPSC-differentiated midbrain neurons from the 
two groups, except in PD-derived neurons, where WNT3 
expression was upregulated and pathways involving NOS1, 
CREB, and PGC1alpha were inactivated. Intriguingly, small 
RNA sequencing via NGS found deregulated miRNA and 
piRNA patterns between groups. Moreover, they replicated 
the protocol in the cingulate gyrus from 8 PD and 8 HC 
samples, aberrant expression of piRNAs, including 561 piR-
NAs with upregulated and 553 with downregulated expres-
sion, was also disclosed. Most targeted genomic regions 
were transposable elements that showed highly downregu-
lated expression in a disease-specific manner. As a result, 
dysregulated piRNA features were likely due to the impact 
of the pathophysiology of PD itself. One more issue of con-
cern about is the bioinformatic pipeline they used. Schulze 
et al. defined canonical piRNAs, or piRNA-like molecules 
in their context, by a nucleotide length within 24–32  bp, 
slightly longer than 22 bp of miRNAs, which excluded pos-
sible overlap with snoRNAs. However, many works remain 
to be clarified given that nearly a hundred piRNA targets 
await functional curation.

PiRNAs in a PD nematode model
Another study published by Shen et al. [174] used a worm 
model. Transgenic C. elegans nematodes overexpress-
ing human α-syn wild type (WT) and the A53T mutant 
(HASNWT OX andHASNA53T OX) were crossbred with 
C. elegans with knockout (KO) of the human TDP-43-like 
protein tdp-1 (tdp-1 KO). Interestingly, among 6 various 
genotypes, various ncRNAs were differentially expressed 
between HASNA53T OX and WT, including 32 miRNAs 
and 112 piRNAs. However, the differentially expressed 
ncRNAs between HASNWT OX and WT only included 8 
miRNAs and no piRNAs. More strikingly, a major differ-
ence in 31 miRNAs and 440 piRNAs was also uncovered 
when comparing HASNWT OX and HASNA53T OX.

Unknown effect of alpha‑synuclein on transposon elements 
in PD
Apparently, there is still no convincing experimental 
evidence demonstrating that WT and A53T α-syn have 
diverse impacts in influencing TEs through distinct 
piRNA alterations. However, the dramatic change of piR-
NAs in A53T mutant nematodes suggests that maybe it 
is mutant strain rather wild type α-syn that should be 
investigated in relation to the piRNA—TE loop deregu-
lation. Another misfolded protein commonly associated 
with neurodegenerative disease, tau, is a hot topic in 
studying tau-depleted piRNA and dysregulated TE pat-
terns in AD [71] and tauopathies [187]. More studies to 
discover the interplay between the α-syn-piRNA-TE axis 
are warranted in the near future.

tRNA fragments in PD
A recent review summarizing the discovery of tRFs in 
neurodegenerative diseases, including PD, is available 
[148]. Unfortunately, there is only one human study that 
revealed altered tRF patterns in patients with PD [113]. 
Three existing RNA-seq samples from the prefrontal cor-
tex, CSF, and serum of PD patients and controls were col-
lected and reanalysed to identify differentially expressed 
tRFs between groups. The discrimination of patients and 
healthy subjects by selective tRF profiles further yielded 
a high sensitivity and specificity despite sex-dependent 
tRF expression. These preliminary findings warrant more 
validation studies with a larger sample size or more types 
of parkinsonism syndromes to determine the true power 
of tRFs in the differential diagnosis of PD.

Another study focused on brain-derived tRFs in mice 
called senescence-accelerated mouse prone 8 (SAMP8) 
[231]. Intriguingly, tRFs with a miRNA-like pattern were 
found to primarily target a causative gene of PD, Park2, 
or Parkin. In 43 PD-related PARK families, autosomal-
recessive early onset PD induced by Parkin mutation is 
the most common genetic cause of familial PD worldwide 
[75]. However, SAMP8 mice are typically not considered 
a model of PD but ageing or early AD [142], character-
ized by autophagic deficits, mitochondrial dysfunction, 
excessive oxidative stress, and, most importantly, tau pro-
tein aggregation. It would be more convincing for us to 
determine the pathoetiology of tRFs in PD if similar find-
ings were replicated in transgenic mouse models of PD.

Summary
The discovery of diagnosis, treatment, prognosis-related 
ncRNAs in PD is challenging, largely owing to the com-
plexity of disease itself, the variability of sample origins 
(blood-, brain-, urine-, saliva-, or exosome-derived), 
the non-standardized method using distinct RNA-seq 
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platforms and software pipelines, and inconsistent results 
of ncRNA candidates in human association studies. Vali-
dations of robust ncRNAs relevant to the differential 
diagnosis between PD, HC or disease controls, and dis-
ease progression in motor, psychiatric, cognitive domains 
should be further clarified with the highest interest. To 
date, only a short list of ncRNA candidates can be rep-
licated in mechanisms-based experiments using cell or 
animal models. Most of pathogenic miRNAs in PD which 
also have significant alteration in human studies were 
highlighted as aforementioned. Discoveries of safer virus- 
[17] and novel exosome-based [114] delivery platform 
associated with highly efficient knockdown system [74] 
are increasing, mostly related to the use of miRNA [12] 
and circRNA [8]. Briefly, ncRNA candidates are more 
promising in the translation from disease-relevant bio-
markers to treatment-based druggable targets [36]. The 
advance in RNA-based therapy from the recent expe-
rience of mRNA-based COVID vaccines can certainly 
make a giant step forward to the development of ncRNA-
based disease-modifying treatments in the future.

Concluding remarks
The discovery of novel ncRNAs with diverse biological 
functions within different species and cell types makes 
ncRNAs one of the most exciting scientific topics. In this 
review, we have introduced many ncRNAs, including 
miRNAs, lncRNAs, piRNAs, circRNAs, and tRFs. Micro-
RNAs, lncRNAs and circRNAs can serve as diagnostic 
biomarkers, while miRNAs are the most promising ther-
apeutic targets of PD, especially coupled with exosomal 
transportation. However, the evidence for piRNAs and 
tRFs is less convincing at this stage.

There are still many new classes of ncRNA sequences to 
be found by higher-throughput, longer-read, and exten-
sive sequencing platforms. A complementary approach 
using multiple platforms is often recommended when 
generating RNA profiles or analysing RNA expression. 
However, their biological functions still warrant further 
clarification by functional analysis in the pathophysiology 
of PD.

The complex network of ncRNAs with DNA, proteins, 
and other ncRNAs makes this puzzle hard to unravel. 
With the help of collaborative sequencing and analyti-
cal methods and proper selection of model organisms, 
we can expect to gain clearer insight to identify disease-
relevant ncRNAs as diagnostic biomarkers or therapeutic 
targets of PD in all biological aspects in the near future.
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