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Dopamine, behavior, and addiction
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Abstract 

Addictive drugs are habit-forming. Addiction is a learned behavior; repeated exposure to addictive drugs can stamp 
in learning. Dopamine-depleted or dopamine-deleted animals have only unlearned reflexes; they lack learned seek-
ing and learned avoidance. Burst-firing of dopamine neurons enables learning—long-term potentiation (LTP)—of 
search and avoidance responses. It sets the stage for learning that occurs between glutamatergic sensory inputs and 
GABAergic motor-related outputs of the striatum; this learning establishes the ability to search and avoid. Independ-
ent of burst-firing, the rate of single-spiking—or “pacemaker firing”—of dopaminergic neurons mediates motivational 
arousal. Motivational arousal increases during need states and its level determines the responsiveness of the animal to 
established predictive stimuli. Addictive drugs, while usually not serving as an external stimulus, have varying abilities 
to activate the dopamine system; the comparative abilities of different addictive drugs to facilitate LTP is something 
that might be studied in the future.
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Background
Addictive drugs are habit-forming. Here we use the phase 
“habit-forming broadly [1] to refer to the entire pro-
gression toward the stimulus–response end habits [2] 
discussed in the specialist literature.Rewards are habit-
forming because predictive stimuli—reward-predictors 
as well as punishment-predictors—come to cause dopa-
minergic burst-firing, and burst-firing enhances or ena-
bles the separate development of long-term potentiation 
(LTP) and long-term depression (LTD) of learned con-
nections between other systems: glutamatergic input 
pathways and GABAergic output pathways [3]. The 
primary source of these is in the striatum; the striatum 
receives sensory inputs from the cortex and sends motor-
related outputs that are essential for food-searching and 
punishment-avoidance. The primary evidence for dopa-
minergic involvement in reward-driven learning comes 
from studies of genetically altered mice that cannot syn-
thesize dopamine in the brain. These mice appear normal 

when born, but they fail to learn food-seeking and, after 
weaning, die of starvation unless they are force-fed 
[4]. Such animals have only unconditioned reflexes—
“consummatory” reflexes [5]—and, having not learned to 
feed,—an “appetitive” response [5]—also fail to learn to 
seek or avoid other rewards. That dopamine is critical for 
such learning is evident from the dopaminergic record-
ings of Schultz and colleagues [6, 7] and from recent 
optogenetic studies that confirm dopaminergic activation 
as rewarding [8–11].

Dopamine‑deficient animals
Dopamine-deficient animals are born with minimal—
learned in utero—knowledge of the environment. These 
animals have normal reflexes: they can swallow food 
if it is placed in their mouth [12] and they escape from 
aversive stimuli [13–15]. They do not, however, learn to 
search for rewards or avoid aversive stimuli [4, 16]. They 
must learn to approach the environmental cues that 
guide behavior, leading to food and other rewards [17, 
18], just as they must learn to avoid predictive stimuli 
that warn of punishers. Learned approach to rewards 
is an appetitive behavior and is essential for addiction 
as well as for feeding; indeed, the strongest evidence of 
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drug self-administration involved responses to predictors 
because the animals, in these cases, rarely have sensory 
contact with the drug itself [19].

Dopaminergic burst‑firing enables environmental learning
Genetically modified neonates that cannot synthesize 
dopamine in the brain [4], like adult animals with their 
dopamine systems lesioned [16] or blocked pharmaco-
logically [20–22]—dopamine challenged animals—fail to 
find and eat external foods [20, 22] and fail to seek and 
consume addictive drugs [3, 23–25] or other rewards [21, 
26, 27].

The dopamine system is activated by three kinds of 
external stimuli: rewarding stimuli, punishing stimuli, 
and novel stimuli. When activated by rewards or punish-
ers, portions of the dopamine system discharge in bursts 
[6, 28–32], whereas other portions are inhibited [33–35]. 
Dopaminergic burst discharges involve two or more 
linked spikes with progressively decreasing amplitude 
and short inter-discharge intervals (about 60 ms between 
the first and second discharge and about 120 ms between 
subsequent discharges) [36]. These discharges cause very 
local accumulations of dopamine in the striatum, at local 
peaks of 100  nM or greater concentration, as measured 
by fast-scan cyclic voltammetry (FSCV) [37].

The primary sensory inputs to the dopamine system—
driving this release—are glutamatergic and perhaps cho-
linergic terminals from cell bodies of the latero-dorsal 
and pedunculopontine tegmental nuclei [38, 39]; simi-
lar burst firing can be activated as well by direct gluta-
matergic stimulation of dopaminergic neurons in isolated 
brain slices [40]. In dopamine-intact animals, dopaminer-
gic neurons burst-fire in response not just to rewards or 
punishers but also to stimuli that reliably precede—and 
thus predict—rewards and punishers [6, 7, 41].

The burst-firing in response to predictors of rewards or 
punishers develops with age, as the animal learns about 
the environment. The burst-responses should not really 
be seen as travelling from the unconditioned rewards 
and punishers to their predictors; rather, the process 
of burst-firing develops anew in response to predic-
tors that involve a Hebbian mechanism [42, 43]. Hebb 
has postulated a mechanism by which repeated synap-
tic input from a (predictor) cell that reliably precedes 
another (reward) neuron becomes linked to its target. As 
responses to predictors develop, the burst-responding 
in response to the actual rewards or punishers is tempo-
rarily lost; responsiveness, however—in this case inhi-
bition of firing—appears when the reward or punisher 
fails to appear at the expected time [44]. When burst-
firing develops in response to reward-predictors it ena-
bles cellular learning in surrounding synapses; these are 

glutamate-GABA synapses localized within microns of 
the sites of dopamine release.

Burst-firing of the dopamine system is only a first step 
in the learning; the formation of the synapses for search-
ing develops in other cellular elements. Dopamine burst-
ing enables development of long-term potentiation 
(LTP) and long-term depression (LTD), and, in the stria-
tum, this occurs between glutamatergic sensory inputs 
and GABAergic motor-related outputs [45, 46]. Dopa-
mine in the striatum reaches and binds to high-affinity 
D2 dopamine receptors and low-affinity D1 receptors 
[48, 49]. At high affinity D2 receptors significant bind-
ing occurs, making D2 receptors particularly sensitive 
to phasic decreases in dopamine release. At low affinity 
D1 receptors less dopamine should be bound, making 
D1 receptors particularly sensitive to phasic increases in 
dopamine release. Movements result when D1 receptors 
are activated and inhibition of movement results when 
D2 receptors are activated [9]. In behaving animals, acti-
vation of D1 and D2 are momentary complements; their 
activations occur concurrently [50]. Concurrent activa-
tion presumably involves activating one subset of mus-
cles (D1) to do something while inhibiting (D2) other sets 
of muscles, antagonistic muscles, that would normally 
interfere with the elicited action. The reward-predicting 
stimuli that lead an animal to anticipate rewards—both 
natural rewards and drug rewards—are established by 
this kind of learning [3, 25].

Dopaminergic pacemaker‑firing modulates motivation
Whereas burst responding of the dopamine system is 
elicited by external stimuli, dopaminergic single dis-
charges also spontaneously occur; these discharges are 
identified as pacemaker firing because they result from a 
depolarizing current within the dopaminergic cells them-
selves [51]. Such discharges can be seen in brain slice 
preparations even when, in vitro, excitatory inputs have 
been eliminated [40]. Pacemaker firing is slower than 
burst firing; it occurs at about half the frequency of burst-
firing [51]. The rate of pacemaker firing is modulated 
by two sources: by increases or decreases of inhibitory 
inputs from GABA-containing cells [52] and by hor-
mones and peptides that act at receptors on dopaminer-
gic neurons themselves [53–55] or that act through their 
inputs [55–57]. The tonic modulation of the dopamine 
system—pacemaker firing, supplemented by episodes 
of burst-firing—is a correlate of, presumably a cause of, 
motivational arousal.

Motivational arousal is a state variable; it regulates 
readiness to respond to external stimuli. While rewards 
and punishers elicit responses regardless of emo-
tional state, it is predictors of rewards or punishers that 
depend on motivational arousal. In resting animals, 
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it is pacemaker firing that varies as a function of inter-
nal state and determines when, and to what degree, the 
animal responds to reward-predictors. Burst-firing can 
also influence motivational arousal; consider the behav-
ior of an animal when a pheromone-emitting conspecific 
passes nearby. Motivational arousal varies over time and, 
in resting animals, determines when a previously sated 
animal starts to become hungry and interested in seeking 
food.

In a resting animal, the release of dopamine is detected 
historically by microdialysis [58]. Baseline levels of dopa-
mine are estimated to be around 5  nM [59, 60]; micro-
dialysis can measure dopamine levels this low and much 
lower; microdialysis—in tetrodotoxin-treated animals—
can measure dopamine at 1% of baseline levels [61]. 
However, microdialysis is an insensitive measure, averag-
ing rather than giving data from single cells; it involves 
the sampling of extracellular fluids through large (~ 250 
microns) push–pull cannulae in the brain, in contact with 
many dopamine terminals, and it usually gives averages 
taken over minutes or tens of minutes. One possibility 
is that basal dopamine levels are near 5 nM at all points 
throughout the striatum; alternatively, it is possible that 
microdialysis simply reflects the average of large fluc-
tuations around some unknown actual baseline level. In 
contrast, however, the alternative—FSCV, for example—
measures individual elevations and does not have the 
sensitivity to detect the low levels of dopamine in resting 
animals; it is insensitive to dopamine at concentrations 
below 20  nM [37] and uses “background subtraction” 
to isolate dopamine fluctuations from noise [62]. FSCV 
measures peak concentrations that are isolated both in 
localization and in time. Because the degree of temporal 
and spatial heterogeneity is not known, it is not clear the 
degree to which these isolated dopamine peaks contrib-
ute to the motivational arousal in active animals. More 
recently developed techniques involving optical technol-
ogy, calcium imaging, and genetically-encoded fluores-
cent protein sensors [63] will give us better methods for 
assessing pacemaker dopamine discharge.

The evidence implicating a causal role of dopamine in 
motivational function comes from experiments where 
the dopamine system has been experimentally manipu-
lated [25]. These include the following: Animals with par-
tial dopamine depletion show reduced energy in learned 
tasks [64]. Parkinsonian patients with decreased dopa-
mine levels have deficits in speed of hand movements 
[65] and in willingness to squeeze a dynamometer [66]; 
when dopamine is replaced by L-DOPA administration, 
these symptoms decrease [66]. Amphetamine, which 
augments dopamine release, causes humans to increase 
effort for monetary rewards [67]. A dopamine uptake 
inhibitor that doubles baseline dopamine levels increases 

willingness to work for high-carbohydrate pellets [68]. 
Restoring dopamine by re-establishing synthesis in dopa-
minergic neurons restores locomotion and food-seeking 
in dopamine-deficient mice [69, 70].

The fact that dopamine-depleted animals already have 
responses to rewards and punishers allows a stronger 
definition of motivation than has been offered in the past; 
the level of motivation varies with responsiveness to pre-
dictive stimuli in the environment. The distinction here 
is between predictive stimuli that lead toward or away 
from rewards or punishers and rewarding and punishing 
stimuli themselves, to which dopamine-depleted animals 
continue to respond.

Motivation is not a linear function of dopamine levels 
and may vary with noradrenergic as well as dopaminergic 
motivation. Motivation is low when dopamine levels are 
low, and it increases as dopamine levels start to increase. 
However, when dopamine levels are doubled or tripled—
such levels as are induced by self-administered doses of 
amphetamine [71], cocaine [72], or opiates [73]—moti-
vation is lost [74]. Thus the relation that links dopamine 
level with motivation appears to be a classic “U”-shaped 
function; such functions have traditionally been associ-
ated with arousal and motivation [75, 76].

Predictive cues can become aversive
Wheeler and colleagues have suggested conditions in 
which cocaine-predictive cues can become associated 
with negative affect [77–79]. The first of these papers dis-
cussed “cocaine predictive” cues, but the second paper 
more correctly characterized them as cues of “delayed 
cocaine delivery.” The parameters of establishing the 
association of a sweet-tasting substance with aversive 
conditioning are of particular interest, in part because 
people who use addictive drugs sometimes appear to 
do so in anticipation of, or in fear of, expected aversive 
symptoms.

In the Wheeler studies, animals were given series of 
30 or 45 min-long, intra-oral taste stimuli that preceded 
2 h sessions of intravenous saline or cocaine self-admin-
istration. After several days of training the facial expres-
sion elicited by the taste cues [77] and the effect of these 
cues on dopamine release [78] were determined. A taste 
cue that preceded subsequent saline self-administration 
caused licking and lateral tongue movements—these are 
responses driven by sweet solutions—whereas cues that 
predicted delayed cocaine self-administration had come 
to cause gagging and gaping—the responses to aversive 
quinine solutions—[77]. Moreover, the cue predicting 
saline self-administration increased dopamine release, 
whereas the cue predicting cocaine self-administration 
inhibited dopamine release [77]. The critical factor here 
is that it was the predictor of delayed cocaine availability 
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that became aversive. Delayed cocaine availability is 
not well associated with dopamine release; dopamine 
release is directly controlled by what happens in seconds 
after the prediction [44]. The immediate consequence—
for the dopamine system—of the cue that predicted 
delayed cocaine was the absence of dopamine it caused 
after training with series of 29 or 44 one-minute cue 
exposures.

Dopamine and addictive drugs
Roles for dopamine in reward theory [80–82] and a role 
of reward in addiction [83] were established shortly after 
dopamine was established as a neurotransmitter. Dopa-
mine was first identified with reward function from 
anatomical [84] and pharmacological evidence [85–89]; 
it was subsequently implicated as well in motivational 
function [90–92]. Dopamine has broadly been associated 
with the rewarding effects of addictive drugs, particularly 
in the process of establishing habitual drug intake [24, 93, 
94]. However, dopamine plays strongly established roles 
in the addictive properties of some drugs but is impli-
cated by minimal evidence in others.

Amphetamine and cocaine The role of dopamine in 
the rewarding effects of the psychomotor stimulants—
amphetamine and cocaine—are strongly established. 
Self-administered doses of amphetamine [71] or cocaine 
[72] elevate dopamine levels over four-fold. Dopa-
mine antagonists at high doses block amphetamine and 
cocaine self-administration [86, 95, 96]. At low doses the 
antagonists cause compensatory increases in responding, 
suggesting that the rewarding effects of the stimulants 
has been attenuated [86, 95, 96]. Dopamine-selective 
lesions cause immediate loss of cocaine self-administra-
tion when the lesions are complete [97] and temporary 
loss when they are incomplete [98]. These lesioned ani-
mals continue to lever-press for the direct dopamine ago-
nist, apomorphine, following these lesions, confirming 
that the lesioned animals remember their training history 
and have normal motor capacity [97, 98]. Finally, cocaine 
and amphetamine induces long-term synaptic changes in 
glutamate-GABA synapses in the striatum [99–101].

Opiates Heroin self-administration is also clearly 
dopamine-dependent. It more than triples resting 
dopamine levels [73], and while the role of dopamine 
in opiate addiction has been questioned [102], evidence 
from intravenous heroin self-administration studies 
makes it clear that animals usually request additional 
heroin each time their dopamine levels fall below about 
twice-normal levels [103]. An important possibility in 
experiments blocking opiate self-administration with 
dopamine antagonists is that the antagonists act not 
only at post-synaptic receptors but also at dopamine 
autoreceptors [104] where they increase dopamine 

firing and dopamine release. By increasing dopamine 
release—as heroin alone does not—dopamine antago-
nists elevate extracellular dopamine at the nerve termi-
nal, desensitizing the system to the antagonist and, in 
this case, requiring more heroin to be effective. In any 
case, dopamine antagonists do block opiate self-admin-
istration [102]; the lack of compensatory increases in 
responding for heroin following low doses of dopa-
mine antagonists [102] does not [105] rule out a role 
for dopamine in opiate reward. Studies of opiate-con-
ditioned place preferences adds to the evidence that 
opiates are habit-forming—place-preferences address 
the first element of search-habits, the locomotion to the 
place where drugs are available—and that their habit-
forming effects are blocked by dopamine antagonists 
[106, 107].

Nicotine Self-administration of nicotine also appears 
to be dopamine-dependent. Nicotine self-administration 
causes burst-firing of dopaminergic neurons [108, 109] 
and elevates dopamine levels to 150–200% of baseline 
[110]. It is disrupted by selective dopaminergic antago-
nists [111] and selective neurochemical lesions [112]. 
Nicotine acts at sites and on receptors expressed by dopa-
mine neurons and inhibitory controllers of dopamine 
neurons, such as local GABAergic cells within the ven-
tral tegmental area (VTA). Deletion of nicotinic receptor 
subunits, such as β2, abolishes nicotine-induced dopa-
mine release and attenuates nicotine self-administration, 
and re-expression of β2 restores nicotine’s rewarding 
effects [113–115]. Nicotine causes conditioned place 
preferences; this is blocked with dopamine antagonists 
[116]. Nicotine enables LTP in glutamatergic inputs to 
the dopamine system and primes the ability of cocaine to 
induce LTP in the amygdala [117, 118], a structure ana-
tomically related to the striatum [119].

Ethanol The evidence that dopamine is important for 
the rewarding effects of ethanol is also substantial but 
weaker than that supporting dopamine involvement in 
stimulant or opiate reward. Part of the problem is that 
we still have no animal model of self-administration 
that is sufficient to maintain intoxication [120]; rats can 
be induced to drink alcohol [121–124], and animals can 
be made physically dependent on alcohol [125, 126], 
however, even in already dependent rats, voluntary 
self-administration that maintains dependence is not 
seen. Ethanol (and ethanol withdrawal) increases burst-
firing in dopaminergic animals [127, 128]; ethanol also 
increases pacemaker dopaminergic firing [129]. Ethanol 
can increase dopamine levels to 150–200% of baseline 
[94], and increases dopamine cell burst-firing as well as 
pacemaker-like firing in the VTA; note, however, that a 
subset of VTA dopamine neurons are instead inhibited 
by ethanol [128] and this might also be important.
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Dopamine antagonists decrease lever-pressing for 
ethanol in a sucrose-fading procedure [130, 131]; this is 
done in animals that were experienced with ethanol and 
during intervals of alcohol deprivation. However, the case 
of alcohol is unusual. In a conditioned place preference 
study, alcohol is reported to be dopamine-dependent in 
alcohol-naive animals but not in withdrawn, experienced, 
animals [132]. One possibility is that a dopamine-inde-
pendent pathway is also involved in ethanol reinforce-
ment [132, 133]. Ethanol enhances synaptic plasticity in 
the striatum [101].

Cannabis There are many cannabinoids, some of 
which have psychoactive effects and remain to be stud-
ied. The primary psychoactive ingredient in marijuana 
is ∆9-tetrahydrocannabinol (THC). While some studies 
have reported that this agent is self-administered intra-
venously by rodents [134] and non-human primates 
[135] and increases striatal dopamine levels [136–139], 
other studies suggest that THC is not very rewarding 
in other animals, such that THC self-administration is 
modest and difficult to sustain [140, 141]. Newer rodent 
models of edible or vaporized THC self-administration 
hold promise [142, 143]. However, species differences 
in cannabinoid receptor expression and distribution, 
particularly in the VTA, may underlie differences in the 
rewarding effects of THC between humans, non-human 
primates and rodents [144].

THC is an unusual agent; two of its endogenous ana-
logues—anandamide, 2-arachidonylglycerol—are 
expressed by dopaminergic (and other) neurons and are 
released when dopaminergic neurons fire; they influ-
ence dopamine turnover through actions on inputs to 
the dopamine system [145, 146]. THC is self-adminis-
tered into two dopamine-rich regions, the posterior VTA 
where mesolimbic dopamine cell bodies are found and 
the posterior ventral striatum, where terminals of that 
system terminate [147]; these sites of action implicate 
THC’s actions on the dopamine system in reward func-
tion and the use of central drug self-administration sug-
gests that site-specificity is important here.

Barbiturates and benzodiazepines Much less is known 
about self-administered doses of barbiturates or benzo-
diazepines. Barbiturates [148, 149] and benzodiazepines 
[150, 151] are self-administered both intravenously and 
intracranially into the VTA [152, 153] by animals. Ben-
zodiazepines increase VTA dopamine neuron firing and 
induce LTP in glutamatergic inputs to VTA dopamine 
neurons through positive modulation of local  GABAA 
receptors [154–157]. At experimenter-selected doses 
they elevate dopamine levels [158–161] and it has been 
suggested that they are addictive for this reason [24].

Caffeine Caffeine is self-administered by animals [148, 
162, 163] and produces conditioned flavor preferences 

(low doses) or conditioned place aversions (high doses) 
in rats when injected intraperitoneally or directly into 
the VTA [164]. A dopamine antagonist injected into the 
shell of the ventral striatum blocks these place prefer-
ences, whereas the antagonist injected into the core 
of the ventral striatum blocks the conditioned aver-
sive effects [165]. Volatized, inhaled caffeine increases 
extracellular dopamine levels in the nucleus accumbens 
shell [166]. The mechanism by which caffeine does so 
is not clear. The main actions of caffeine are mediated 
through actions at adenosine receptors that form het-
eromers with dopamine receptors. However, in human 
Positron Emission Tomography (PET) studies, caffeine 
increases D2/D3 receptor availability in the ventral 
striatum, suggesting caffeine alone does not directly 
increase dopamine levels in this region [167]. Other 
studies suggest that caffeine enhances the rewarding 
effects of other manipulations, such as exercise [168] or 
ethanol consumption [65, 169].

Conclusions
Learned behavior—perhaps all or almost-all learned 
behavior—depends on dopamine function; dopamine 
deficient animals fail to learn to search for food or other 
rewards and fail to learn to avoid predictable punishers. 
Dopamine neurons discharge in bursts when triggered 
by external stimuli, and this burst-firing enables forma-
tion of potentiated glutamate-GABA signaling that is 
critical for learned searching. Dopamine neurons also 
discharge in slower single-impulse pacemaker firing 
and the rate of this firing appears to determine motiva-
tion in resting (inanimate) animals. The ability of addic-
tive drugs to cause burst-like discharges in the dopamine 
system is the broadly assumed correlate of addiction, but 
the direct evidence for this assumption is linked strongly 
to amphetamine, cocaine, and opiates; the evidence is 
weaker for nicotine and alcohol, cannabis, barbiturates, 
benzodiazepines, and caffeine. The abilities of different 
addictive drugs to enable long-term potentiation and 
facilitate habit formation via dopaminergic mechanisms 
should be compared in future studies.
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