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Human rs75776403 polymorphism links 
differential phenotypic and clinical outcomes 
to a CLEC18A p.T151M‑driven multiomics
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Abstract 

Background:  Human traits, diseases susceptibility, and clinical outcomes vary hugely among individuals. Despite a 
fundamental understanding of genetic (or environmental) contributions, the detailed mechanisms of how genetic 
variation impacts molecular or cellular behaviours of a gene, and subsequently leads to such variability remain poorly 
understood.

Methods:  Here, in addition to phenome-wide correlations, we leveraged multiomics to exploit mechanistic links, 
from genetic polymorphism to protein structural or functional changes and a cross-omics perturbation landscape of 
a germline variant.

Results:  We identified a missense cis-acting expression quantitative trait locus in CLEC18A (rs75776403) in which the 
altered residue (T151→M151) disrupts the lipid-binding ability of the protein domain. The altered allele carriage led to a 
metabolic and proliferative shift, as well as immune deactivation, therefore determines human anthropometrics (body 
height), kidney, and hematological traits.

Conclusions:  Collectively, we uncovered genetic pleiotropy in human complex traits and diseases via CLEC18A 
rs75776403-regulated pathways.
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Background
Insights acquired from genetic association studies have 
greatly advanced our understanding of the biology of 
human traits and the pathophysiology of numerous 
complex diseases. Combining those studies with path-
way analyses has further shed light on the underlying 
mechanisms that drive traits and/or disease variability 

among individuals. Due to the statistical limitation of 
such genetic epidemiological methodologies, it is still 
a big challenge to parse the molecular and cellular pro-
cesses that link obscure genetic variation to explicit phe-
notypic changes. Variability in gene expression imposed 
by germline variation has been revealed by the identifica-
tion of cis-acting expression quantitative trait locus (cis-
eQTL). Moreover, gene set enrichment analysis permits a 
multigene (horizontal) view of the occurrence of human 
traits. Despite this, a full and integrative links (multiom-
ics or vertical view) from genetic changes to subcellular 
molecular features (transcriptional or translational prod-
ucts, phosphorylation sites, metabolites, and biological 
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pathways), and ultimately to phenotypic changes remains 
a formidable task.

C-type lectin 18 (CLEC18) family comprise CLEC18A 
(16q22.1), CLEC18C (16q22.1), and CLEC18B (16q22.3). 
Each of CLEC18 family member encodes a 446 amino 
acid polypeptide comprising a C-terminal carbohydrate 
recognition domain (CRD), two epidermal growth fac-
tor (EGF) and (EGF)-like domains, and a N-terminal 
cysteine-rich secretory protein/antigen 5/pathogenesis 
related-1 (CAP) domain, also known as Sperm-coating 
protein (SCP) or Tpx antigen 5/pathogenesis related-1/
Sc7 (TAPS) domain. CLEC18 protein has been shown to 
localized in intracellular organelles such as Golgi appa-
ratus, endoplasmic reticulum (ER), and early endosomes, 
and can also be found in the extracellular milieu [1]. 
Recent studies revealed the implications of the involve-
ment of CLEC18 in host defence against H5N1 (espe-
cially for CLEC18A) [2], hepatitis B virus (HBV) [3] and 
hepatitis C virus [4] infections. Despite this, an exhaus-
tive characterization of the pathophysiological roles of 
CLEC18 genes is still lacking.

Inferring the functions of CLEC18 genes can be 
achieved via inspecting the polymorphic amino acid in 
protein domains, and studying the influence of genetic 
variant on protein structure and functional change. For 
examples, the polymorphic residues at the CRD domain 
of CLEC18A (S339) and CLEC18A-1 (R339), and the 
p.405LVWLSAAMG insertion in CLEC18B CRD domain 
resulted in the loss of glycan-binding affinity [1]. In 
this study, we aimed to further identify crucial genetic 
polymorphism(s) among the CLEC18 gene family in 
humans. In addition to in silico prediction and domain 
structural modelling, we further validate the impacts of 
variants on CLEC18 genes by lipid-binding assay. Moreo-
ver, variant-associated profiles and the enriched pathways 
of multiomics, including phenomes, transcriptomes, pro-
teomes, metabolomes, and phosphoproteomes, were fur-
ther characterized. This approach provides a framework 
to illustrate the mechanistic (molecular and/or cellular) 
details of a genetic polymorphism, and reveals the power 
of integrating multiple-omics in a genetic epidemiologi-
cal study to improve our understanding on the impact of 
genetic variant in human traits and diseases.

Materials and methods
Prioritizing the CLEC18A p.T151M residue and functional 
predictions
CLEC18 family genes (CLEC18A, CLEC18B, and 
CLEC18C) genotype data from 2504 samples were que-
ried from the 1000 Genome (1000G) Phase 3 database 
(https://​www.​inter​natio​nalge​nome.​org/; accessed Dec 2, 
2016). These 1000G individuals were categorized into five 

major populations of African, Admixed American, Euro-
pean, East Asian, and South Asian.

Missense annotation
Information (missense or not) regarding CLEC18 family 
gene variants was obtained from Haploreg v4.1.

Expression quantitative trait locus (cis‑eQTL) annotation
Tissue-specific cis-eQTLs of the CLEC18A, CLEC18B, 
and CLEC18C genes were queried from the Genotype-
Tissue Expression (GTEx) Portal v8 (http://​www.​gtexp​
ortal.​org/​home/; accessed Aug 27, 2019).

Prediction of deleteriousness
Computational predictions of the impacts of missense 
variants were built based on the biochemical properties 
of amino acid substitutions. To evaluate the deleterious-
ness to protein function and the structure of amino acid 
substitutions, we adopted three in silico prediction tools 
including Sort Intolerant From Tolerant (SIFT; https://​
sift.​bii.a-​star.​edu.​sg/; accessed Oct 2019) [5], Polymor-
phism Phenotyping v2 (PolyPhen-2; http://​genet​ics.​bwh.​
harva​rd.​edu/​pph2/; accessed Oct 2019) [6], and Com-
bined Annotation Dependent Depletion (CADD; https://​
cadd.​gs.​washi​ngton.​edu/​snv/; accessed Aug 2021) [7, 8]. 
The SIFT score ranges 0 ~ 1. The cutoff score for SIFT is 
0.05. A substitution is predicted to be tolerated (or dele-
terious) with a SIFT score of > 0.05 (or < 0.05). PolyPhen-2 
uses the same score range as SIFT, but in the oppo-
site direction, with a score closer to 1 representing high 
confidence of being damaging. CADD computes scores 
for all potential genetic variants throughout the refer-
ence genome. The raw score is further transformed into 
a CADD Phred score by ranking the variants for all 8.6 
billion genetic variants. CADD Phred scores range 1 ~ 99. 
Phred scores for ranking the top 10% of causal genetic 
variants are assigned as 10. The top 1% are assigned as 20, 
etc. With a reasonable cutoff for deleteriousness ranging 
10 ~ 20, we arbitrarily defined variants with a Phred score 
of > 20 as deleterious and < 10 as non-deleterious.

The CLEC18A gene plot was directly adopted from the 
Biodalliance website (http://​www.​bioda​llian​ce.​org/​index.​
html; accessed Feb 7, 2021).

Structural homology modelling of the CLEC18A protein 
domain
We constructed a three-dimensional (3D) homol-
ogy model by inputting the CAP/SCP/TAPS domain 
sequences of CLEC18A via the SWISS MODEL server 
[9]. Briefly, the algorithm identifies a “template protein”, 
a sequence homologue of the input sequence, and uses 
the template protein to build a 3D model. In this case, 
human glioma pathogenesis-related protein 1 (GLIPR1) 
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was selected as the template protein for model construc-
tion and further structural analysis. Visual rendering of 
3D homology models was performed using PyMol v2.4.2 
(https://​pymol.​org/2/; accessed Oct 26, 2021).

Lipid‑binding affinity test for wild‑type and mutant form 
CLEC18A residue
DNA fragments of the CAP/SCP/TAPS domain, which 
encoded the wild-type (WT; p.T151) and mutant form 
(p.M151) of the CLEC18A residue, were amplified by a 
reverse-transcription polymerase chain reaction (RT-
PCR) and subcloned into the pcDNA3.1-hIgG1 Fc (mut) 
vector to generate the WT and mutant CLEC18A.Fc 
fusion proteins. The FreeStyle 293 Expression System 
(Invitrogen, Carlsbad, CA, USA) was applied to overex-
press the CLEC18A.Fc fusion proteins. The detailed pro-
cedures were described in our previous study [1].

To perform the protein-lipid overlay assay, the phos-
phorylated derivatives of phosphatidylinositol (PIP) 
strips (P23751) membranes and Sphingo strips (S23753) 
membranes were purchased from Thermo Fisher Scien-
tific (Waltham, MA, USA). Light exposure of the lipid 
strip membranes was avoided during the entire pro-
cess before detection. The lipid strip membranes were 
initially blocked in 3% bovine serum albumin (BSA) in 
phosphate-buffered saline (PBS) for 1 h (h) at room tem-
perature. Next, the SCP domain of the WT and mutant 
CLEC18A.Fc fusion proteins were added at final con-
centrations of 500 and 50  ng/ml for 2  h of incubation 
at room temperature. After three washes with 3% BSA-
PBST (PBS plus 0.1% Tween20), the lipid membranes 
were incubated with an anti-human immunoglobulin G 
(IgG) horseradish peroxidase (HRP) antibody (1:5000) in 
blocking buffer for 1 h at room temperature. After three 
washes with 3% BSA-PBST, the lipids were detected with 
enhanced chemiluminescence reagents (GERPN2235, 
Cytiva, Chicago, IL, USA).

Data from the Taiwan biobank (TWB)
The Taiwan Biobank (TWB), a nationwide research data-
base in Taiwan, was launched to facilitate biomedical 
research and further translate work into clinical settings 
by incorporating genomic, environmental, and disease 
profiles [10].

Participants were recruited from local communities, 
with inclusion criteria of being aged 30 ~ 70 years, physi-
cally active, without a cancer history, and self-reported 
to be of Han ancestry (i.e., both parents). Clinical (and 
follow up) data from anthropometric measurements, 
biospecimen tests, physical examinations, and ques-
tionnaires were obtained during sample enrollment. 
Written informed consent was provided by all indi-
viduals who participated in the TWB project. Ethical 

approval was obtained from the Institutional Review 
Board (IRB) of Taipei Medical University (IRB no. 
N201906005), the Ethics and Governance Council of the 
TWB (TWBR10807-05, TWBR10906-03), and Academia 
Sinica (AS-IRB01-16,018).

CLEC18A p.T151M genotypic data of the TWB cohort
Genomic DNA of participants in the TWB project was 
harvested using a standardized protocol and subjected to 
genotyping using the Axiom Genome-Wide TWB v2.0 
Array Plate. Stringent quality-control filters for TWB 
biallelic SNV and indel genotype data were applied using 
PLINK v1.9 [11]. Variants with heterozygous haploid 
genotypes were addressed by (i) checking heterozygous 
calls in the pseudoautosomal region of chromosome 
(chr) X in males; (ii) sex checking; and (iii) directly 
removing the variants. Subjects with ambiguous sex data 
were removed during sex checks. Individuals and geno-
types were sequentially filtered with a call rate threshold 
of 98%. Variants with a minor allele frequency (MAF) 
of < 1% and a Hardy–Weinberg equilibrium (HWE) P 
value of < 10–10 were further discarded.

Next, a subset of independent variants was selected 
through linkage disequilibrium (LD) pruning by calculat-
ing the pairwise LD of autosomal variants (MAF > 10%) 
with parameters of a window size of 200 kb, a step size of 
5, and a variance inflation factor threshold of 0.2. Outli-
ers were detected and filtered according to the heterozy-
gosity rate calculated from the pruned variant subset. 
Genetic relationships among individuals were estimated 
using Genome-wide Complex Trait Analysis (GCTA) 
[12], followed by calculating the principal components 
(PCs).

Local imputation of rs75776403 (chr16:69954569; 
GRCh38) was performed by first extracting bial-
lelic single-nucleotide polymorphisms (SNPs) of 
around ± 2.5  Mb. Next, phasing and imputation were 
conducted using the Michigan Imputation Server 
(https://​imput​ation​server.​sph.​umich.​edu/​index.​html#!; 
accessed Dec 2, 2021) by choosing the 1000G Phase 3 
(v5) East Asian population as the reference. Post-impu-
tation quality filtering was applied with an imputation 
score of > 0.8 and MAF of > 5%.

Phenotypic (clinical) profiles of the TWB cohort
Phenotypic varieties of TWB participants were collected 
from test data of biological specimens (blood and urine), 
physical examinations, and questionnaires. The pheno-
type data were further processed as follows.

Quantitative traits
In total, 86 quantitative traits were included in our study: 
(i) 62 original traits (spanning 11 phenotype categories) 
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available from clinical profiles of the TWB cohorts, 
including five anthropometric (height [abbreviated 
as Ht], weight [Wt], body fat [BF], waist [WC] and hip 
[HC] circumference), three cardiac (systolic [Sys] and 
diastolic [Dias] blood pressure, heartbeat speed [Heart-
beat]), two gynecological (age of menopause [Menps], 
age of menarche [Menrc]), three habitual (alcohol intake 
[DRK_y], nut intake [Nut_DsYr], smoke intake [SMK_
PkYr]), five hematological (red blood cell count [RBC], 
white blood cell count [WBC], platelet count [Plt], hemo-
globin [Hb], hematocrit [Hct]), six hepatic (total bilirubin 
[TBil], serum albumin [Alb], aspartate aminotransferase 
[AST], alanine aminotransferase [ALT], gamma-glutamyl 
transferase [GGT], alpha fetoprotein [AFP]), six meta-
bolic (glycated hemoglobin [HbA1c], fasting glucose 
[FGlu], total cholesterol [TCho], triglyceride [TG], high- 
[HDLc] and low-density [LDLc] lipoprotein cholesterol), 
four nephrotic (blood urea nitrogen [BUN], creatinine 
[Cr], uric acid [UA], microalbumin [mAlb]), five orthope-
dic (stiffness index [SI], T score [T], Z score [Z], speed of 
sound [SOS], broadband ultrasound attenuation [BUA]), 
18 pulmonary (vital capacity [VC], tidal volume [TV], 
expiratory reserve volume [ERV], inspiratory reserve 
volume [IRV], inspiratory capacity [IC], VC-to-Ht ratio 
[VcHtRatio], forced VC [FVC], forced EV in 1 s [FEV1], 
FEV1-to-FVC ratio [Fev1FvcRatio], FEV1-to-VC ratio 
[Fev1VcRatio], mean maximal flow [MMF], peak expira-
tory flow [PEF], 25% forced expiratory flow [FEF25], 50% 
FEF [FEF50], 75% FEF [FEF75], FEF75-to-Ht ratio [Fef-
75HtRatio], extrapolated volume-to-FVC ratio [EvFv-
cRatio], forced inspiratory volume in 1  s-to-FVC ratio 
[Fiv1FvcRatio]), and 5 virological (hepatitis C virus anti-
body [AtHCVAb], hepatitis B surface antigen [HBsAg], 
hepatitis B e antigen [HBeAg], hepatitis B surface anti-
body [AtHBsAb], hepatitis B core antibody [AtHBcAb]).

(ii) Additional 24 traits were derived from origi-
nal traits, including nine anthropometric (body-mass 
index [BMI], corpulence index [CI], waist-to-stature 
ratio [WSR], waist-to-hip ratio [WHR], body adipos-
ity index [BAI], BMI-adjusted WHR [BMIAdjWHR], 
BMI-adjusted waist circumference [BMIAdjWC], 
BMI-adjusted hip circumference [BMIAdjHC], height-
adjusted BMI [HtAdjBMI]), three cardiac (pulse pressure 
[Pulse], systolic-to-diastolic blood pressure ratio [SysDi-
asRatio], diastolic-to-pulse pressure ratio [DiasPulseRa-
tio]), one hematological (hematocrit-to-hemoglobin ratio 
[HctHbRatio]), four metabolic (BMI-adjusted fasting glu-
cose [BMIAdjFGlu], fasting glucose-to-glycated hemo-
globin ratio [FGluHbA1cRatio], triglycerides-to-high 
density lipoprotein cholesterol ratio [TgHDLcRatio], total 
cholesterol-to-high density lipoprotein cholesterol ratio 
[TChoHDLcRatio]), three hepatic (aspartate aminotrans-
ferase-to-alanine aminotransferase ratio [AstAltRatio], 

gamma-glutamyl transpeptidase-to-alanine aminotrans-
ferase ratio [GgtAltRatio], alpha fetoprotein-to-transam-
inase ratio [AfpAstAltRatio]), and four nephrotic 
parameters (glomerular filtration rate based on serum 
creatinine (estimated using four-variable Modification of 
Diet in Renal Disease (MDRD) study equation and fur-
ther cropped into 15 ~ 200) [eGFR], uric acid-to-creati-
nine ratio [UaCrRatio], blood urea nitrogen-to-creatinine 
ratio [BunCrRatio] and microalbumin-to-creatinine ratio 
[mAlbCrRatio]).

Notably, for sitting systolic/diastolic pressures and 
heartbeat speed, values were averaged across three meas-
urement time points. If a quantitative trait presented 
a censored value due to the detection limit, we directly 
replaced the record with the censored value.

Binary traits
In total, 84 binary traits were included: three alimen-
tary canal diseases (gastroesophageal reflux [GasRef], 
irritable bowel syndrome [IBS], peptic ulcer [PepUlc]), 
seven arthritis (arthritis [Arthr], adhesive capsulitis [AC], 
ankylosing spondylitis [AS], degenerative arthritis [DA], 
palindromic rheumatism [PR], psoriatic arthritis [PsA], 
rheumatoid arthritis [RA]), one bone disease (osteopo-
rosis [Osteo]), 11 cancers (breast cancer [Brst], cervical 
cancer [Cerv], colorectal cancer [Colon], gastric cancer 
[Gast],liver cancer [Liv], lung cancer [Lung], nasopharyn-
geal cancer [Nasph], ovarian cancer [Ova], uterine cancer 
[Uter], prostate cancer [Prst], other cancer [OtherCA]), 
six cardiovascular diseases (arrhythmia [Arythm], con-
genital heart disease [CongHrt], coronary artery disease 
[CoroArt], cardiomyopathy [Crdmyo], valve heart disease 
[ValHrt], other heart disease [OtherHrt]), seven gyneco-
logic (dysmenorrhea [Dys], endometriosis [Endo], ovar-
ian cyst [OvaCys], hormone drug usage for menopause 
[HorDrgMenps], irregular menstruation [IrgMS], myoma 
[Myo], natural abortion [NatAbor]), seven habitual (cof-
fee consumption [Cof], tea consumption [Tea], snake 
consumption [Snak], drink [DRK], nut [NUT], smoke 
[SMK], sport [Spt]), three headache-induced symptoms 
(affect diary life when headache [AchDiary], nausea 
when headache [AchNau], photophobia when headache 
[AchePhot]), one hepatic symptom (liver gall stone [Liv-
GaStn]), one immune disease (type 1 diabetes mellitus 
[tp1DM]), seven metabolism disorders (diabetes melli-
tus [DM], type 2 diabetes mellitus [tp2DM], gestational 
diabetes mellitus [tyGDM], gout [Gout], hyperlipidemia 
[HypLip], hypertension [HypTens], stroke [Stroke]), two 
nephrotic symptoms (kidney stone [KdnStn], renal fail-
ure [RenlFail]), six nervous-system diseases (dementia 
[Dmntia], epilepsy [Epilps], hemicrania [Hemcra], mul-
tiple sclerosis [MS], Parkinson’s disease [Prkins], ver-
tigo [Vrtig]), eight ophthalmic symptoms (blind [Blnd], 
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color blind [ColBlnd], cataract [Ctrc], floaters [Flt], glau-
coma [Gluc], retinal detachment [RntDe], xerophthalmia 
[Xrph], other eye disease [OtherEye]), six psychiatric dis-
orders (alcoholism/drug abuse [AlcoDrgAbuse], depres-
sion [Deprs], manic depression [ManDeprs], obsessive 
compulsive disease [ObsComp], postpartum depression 
[PostDeprs], schizophrenia [Schiz]), two pulmonary syn-
dromes (asthma [Asthm], emphysema bronchitis [Emph-
Brnch]), and six soreness parameters (articulus ache 
[Art], back waist ache [BakWst], headache [Head], neck-
ache [Nck], sciatica [Sct], other ache [OtherAch]).

Ordinal traits
In total, 19 ordered traits were also included: one habit-
ual (snake consumption frequency [SNKFrq]), seven 
ophthalmologic (cataract eye number [CtrcN], blind 
eye number [BlndN], color blind eye number [Col-
BlndN], floaters eye number [FltN], glaucoma eye num-
ber [GlucN], retinal detachment eye number [RtDeN], 
xerophthalmia eye number [XrphN]), seven soreness 
(headache frequency [HeadFrq], headache severity 
[HeadSvr], neck-ache frequency [NckFrq], back waist 
ache frequency [BakWstFrq], articulus ache frequency 
[ArtFrq], sciatica frequency [SctFrq], dysmenorrhea fre-
quency [DsmFrq]), and four psychiatric condition levels 
(nervousness [Nerv], feeling down [Dwn], anxiety [Anxt], 
depression [Dprs]).

Phenome‑wide association study (PheWAS) of rs75776403 
in Taiwanese Hans
We conducted a phenome-wide association study 
(PheWAS) of rs75776403 using the TWB cohort. First, 
a list of genetically unrelated samples by filtering out 
1st- or 2nd-order relationships was obtained using the 
“–unrelated” option implemented in KING v2.2.7 [13]. 
Next, association tests were conducted by incorporat-
ing covariates of age, squared age, sex (ignored in sex-
restricted traits), and the top 20 PCs. The association 
model was determined according to the type of trait.

Quantitative traits
For the 86 quantitative traits, a linear regression model 
was adopted. The traits were normalized using the 
inverse normal transformation (Elfving method) before 
fitting the association model. Hypothesis testing was 
conducted using the type I (sequential) method.

Binary traits
For the 84 dichotomized traits, a logistic regression 
model was applied.

Ordinal traits
For the 19 ordinal traits, an ordered logistic regression 
model was applied using the “polr” function imple-
mented in the MASS package. The Z statistics were 
calculated using the “coeftest” function implemented in 
the lmtest package.

To avoid false positivity, a local false discovery rate 
(FDR) was estimated using the “lfdr” function imple-
mented in the qvalue package.

Validation of PheWAS results
Summary statistics regarding the associations 
between rs75776403 and 2173 traits from UK Biobank 
(UKB, ~ 456  K subjects of European ancestry) were 
directly adopted from the GCTA website (https://​
yangl​ab.​westl​ake.​edu.​cn/​softw​are/​gcta/#​DataR​esour​ce; 
accessed Dec 25, 2021) [14, 15]. Moreover, summary 
statistics of rs75776403 associations with 229 traits 
in a Japanese population were adopted from Biobank 
Japan (BBJ, ~ 178 K individuals) and pheweb.jp website 
(https://​pheweb.​jp/​downl​oads; accessed Dec 27, 2021) 
[16].

Meta‑analysis
A fixed-effect or random-effect model was applied for a 
trans-ethnic meta-analysis across different populations 
using a restricted maximum likelihood to estimate the 
heterogeneity variance. Knapp-Hartung adjustments 
were further applied for the random-effect model. 
Statistical tests and forest plot visualization were con-
ducted using the meta package.

Cancer cell line encyclopedia (CCLE) multiomics
We queried multiple omics data (including genomic, 
transcriptomic, proteomic, metabolomic, and phos-
phoproteomic profiles) of the CCLE from the Depend-
ency Map (DepMap) portal (https://​depmap.​org/​
portal/; accessed Oct 28, 2021) [17]. The data preproc-
essing and analytical steps of each profile are described 
as follows.

Genomic data
Raw genomic data (Affymetrix Genome-Wide Human 
SNP 6.0 Array) from CCLE samples in Affymetrix CEL 
format were converted to Affymetrix CHP and then 
binary variant call format using the affy2vcf (https://​
github.​com/​frees​eek/​gtc2v​cf ) tool. Variants (SNPs and 
short insertion/deletions (indels)) were normalized 
according to the human genome reference assembly 38 
(GRCh38). We next extracted only biallelic SNPs that 
satisfied the following criteria: (i) autosomal or chrX; 
(ii) call rate of > 98%; (iii) MAF of > 1%; (iv) non-somatic 
(according to CCLE mutations (~ 1.3  M somatic calls 

https://yanglab.westlake.edu.cn/software/gcta/#DataResource
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across 1741 cell lines) from whole-exome sequencing 
profiles); and (v) showing LD of r2 > 0.4 to at least one 
of the nearby 50 SNPs (within 1000 Kb). After exclud-
ing cell lines that failed the heterogeneity test, these 
putative “germline” variants were next subjected to 
genotype imputation through the Michigan Imputation 
Server by using 1000G Phase 3 v5 as a reference. Finally, 
variants with a post-imputation info score of > 0.3 and a 
MAF of > 5% were selected for association analyses.

Transcriptomic and proteomic data
For normalized CCLE transcriptomic (mRNA sequenc-
ing) and proteomic (quantitative multiplexed proteomics 
profiles by mass spectrometry from the Gygi lab (https://​
gygi.​hms.​harva​rd.​edu/​index.​html; accessed Dec 14, 2021) 
[18] data, gene symbols were first harmonized using the 
HGNChelper package. Next, the expression values of 
duplicate genes were mean-aggregated.

Metabolomic data
Data regarding CCLE metabolomes containing expres-
sion values for 228 metabolites [19] were directly down-
loaded from the DepMap website.

Phosphoproteomic data
Data on phosphorylation sites (p-sites) across ~ 10  K 
genes (by trypsin and/or GluC digestion) were directly 
adopted from M. Frejno et al. [20]. Gene names were har-
monized using the HGNChelper package.

Herein, we adopted the general term “molecular fea-
ture” to indicate mRNA, protein, metabolite, and p-site 
of multiomics. Associations between rs75776403 and 
molecular features of each omic profile were conducted 
as follows: (i) molecular features with zero variance were 
removed; (ii) a linear model between a molecular feature 
(as a dependent variable) and rs75776403 (as the inde-
pendent variable) was fitted by including sex, age, his-
tology, ethnicity, pathology and primary cancer type as 
covariates, with the type I (sequential) significance was 
assessed using an exact permutation test with the “lmp” 
function implemented in the lmPerm package; and (iii) 
a differentially expressed molecular feature was defined 
based on a significant threshold of P = 0.01.

Gene set and pathway enrichment analysis
Transcriptome and proteome
We conducted gene set enrichment analysis (GSEA) to 
test for the enrichment of pathways (and/or gene sets) 
in expression data. A fast algorithm (i.e. Fast Gene Set 
Enrichment Analysis; FGSEA) implemented in the fgsea 
package was adopted with using weighted differential 
expression test statistics (i.e. − log10(P) × β; where P is 
the significant value and β is the regression coefficient 

of a molecular feature) from differentially expressed test 
results as input. Pathways (and/or gene sets) used for 
the test were compiled from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database, gene ontology 
(GO) biological process (BP) database, and Reactome 
pathway database. Significant enrichment was defined as 
P ≤ 0.01 and the direction of enrichment was confirmed 
using a normalized enrichment score (NES of > 0 for pos-
itively enriched and < 0 for negatively enriched).

Robust expression enrichment was defined as follows: 
the weighted differential expression test statistics of each 
omic were first scaled. Next, pathways with scaled statis-
tics of > 2 or < (− 2) in both expression omics were con-
sidered to be robustly enriched.

Phosphoproteome
The weighted differential expression test statistics of 
p-sites from trypsin and gluC were separately calcu-
lated, and then aggregated by the maximum, which takes 
account of the difference in site-specificity of the two 
digestive enzymes. The weighted statistics of each diges-
tive enzyme and the merged weighted statistics were 
subjected to GSEA analysis. Reference pathways regard-
ing human phosphosite-specific signatures were adopted 
from PTMsigDB v1.9.0 (https://​github.​com/​broad​insti​
tute/​ssGSE​A2.0; accessed 30 Dec 2021) [21]. After har-
monizing gene symbols using the HGNChelper package, 
we conducted the FGSEA as described above.

Tissue‑specific mRNA expression data
The mRNA-sequencing (Seq) expression profiles in tran-
script per million of several tissues, including the adre-
nal gland, brain, liver, ovary, pituitary, testis, and thyroid 
were queried from the Genotype-Tissue Expression 
(GTEx; v8) portal (https://​gtexp​ortal.​org/​home/​datas​ets; 
accessed Nov 29, 2021). Gene symbols were harmonized 
using the HGNChelper package. Next, expression values 
of duplicated genes were aggregated by the maximum. A 
Spearman’s rho (ρ) statistic was calculated to assess the 
rank-based association of pairwise genes.

Results
Prioritization of p.T151M (rs75776403) as a deleterious 
variant in CLEC18A
To identify the genetic variants that impact CLEC18 
family genes functionally, we screened SNPs across 
the CLEC18A, CLEC18C, and CLEC18B genes based 
on the three criteria: (1) common (minor allele fre-
quency (MAF) > 1%) in at least one ethnic popula-
tion; (2) missense (changing amino acid residue of the 
gene; Additional file  1: Table  S1); and (3) cis-regulatory 
(a.k.a. expression quantitative trait locus (cis-eQTLs); 
Additional file  1: Table  S2). Of 48 cis-eQTLs that were 

https://gygi.hms.harvard.edu/index.html
https://gygi.hms.harvard.edu/index.html
https://github.com/broadinstitute/ssGSEA2.0
https://github.com/broadinstitute/ssGSEA2.0
https://gtexportal.org/home/datasets
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associated with the primordial gene expression lev-
els of CLEC18A/B/C genes as annotated by the Gen-
otype-Tissue Expression (GTEx) database, two SNPs 
(i.e., rs2549097 (p.A118V) and rs75776403 (p.T151M)) 
on CLEC18A were found to be missense, and thus 

were considered to be putative variants with functional 
impacts (Figs.  1A-B). Regarding to the CLEC18B and 
CLEC18C, we did not identify any putative functional 
variants.

Fig. 1  The CLEC18A rs75776403 (p.T151M) polymorphism. A Genetic view and rs2549097 or rs75776403 variants of the human CLEC18A gene. B 
Venn diagram showing overlapping of cis-eQTLs and missense variants of CLEC18 family genes. C The 3D homology model of the CLEC18A CAP/
SCP/TAPS protein domain. The residue 151 of the CLEC18A CAP/SCP/TAPS protein domain is indicated by an arrow. D Protein-lipid overlay assay for 
wild-type (p.T151; left) and altered (p.M151; right) CLEC18A protein
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As shown in the Fig.  1A, the rs2549097 
(chr16:69,954,470; GRCh38) c.C-to-T allelic change cor-
responded to p.A118V (alanine-to-valine at position 
118), and the rs75776403 (chr16:69954569; GRCh38) 
c.C-to-T corresponded to p.T151M (threonine-to-
methionine at position 151). To parse functional impacts 
of the SNPs, in silico predictions were conducted to pri-
oritize rs75776403 (but not rs2549097) as deleterious 
for CLEC18A (Table  1). In detail, the deleteriousness 
of rs2549097 and rs75776403 was predicted using the 
Combined Annotation Dependent Depletion (CADD), 
Sorting Intolerant From Tolerant (SIFT) and Polymor-
phism Phenotyping v2 (PolyPhen-2) tools. Accordingly, 
rs2549097 was predicted to be tolerated by the protein 
function and/or structure (CADD Phred score = 0.245 
[non-deleterious]; SIFT score = 0.06 [tolerated]; Poly-
Phen-2 score = 0 [benign]), whereas rs75776403 was 
predicted to be damaging (CADD Phred score = 22.7 
[deleterious]; SIFT score = 0 [deleterious]; PolyPhen-2 
score = 0.998 [probable damage]). Therefore, we fur-
ther focused on rs75776403 (CLEC18A p.T151M), a cis-
eQTL in four (testis, artery, brain, and adrenal gland) 
tissues (Additional file  1: Table  S3 and Fig. S1), for the 
downstream analysis. It is noteworthy that the terms 
“rs75776403 c.C-to-T” (DNA-level), “CLEC18A c.452C-
to-T” (DNA-level), “rs75776403 p.T151M” (protein-level) 
and “CLEC18A p.T151M” (protein-level) were consid-
ered interchangeable.

CLEC18A p.T151M disrupted the lipid‑binding affinity 
of the CAP/SCP/TAPS domain
The rs75776403 residue (p.M151 was considered as a 
“mutant” form compared to “wild-type” p.T151) was 
located on the C-terminal cysteine-rich secretory pro-
tein/antigen 5/pathogenesis related-1 (CAP) or Sperm-
coating protein (SCP) or Tpx antigen 5/pathogenesis 
related-1/Sc7 (TAPS) domain of CLEC18A. To assess 

the possible location of T151 of CLEC18A, we have to 
establish the protein structure. However, the precise ter-
tiary structures of the SCP domain of CLEC18A remain 
unknown, we, therefore, generated a homologous model 
via the SWISS-MODEL Server [9]. From the homology 
modelling results, residue T151 of CLEC18A is located 
on the outer surface of the CAP/SCP/TAPS domain. Fur-
thermore, this residue is located in the bottom cavity of 
the folded protein domain. Taken together, these results 
illustrated the accessibility of the residue to other inter-
acting substrates of CLEC18A (Fig. 1C). Since threonine-
to-methionine (polar uncharged to neutral hydrophobic) 
conversion may abrogate the polarity of the residue 151 
of CLEC18A, we speculated that rs75776403 (p.T151M) 
disrupted the substrate-binding affinity of the CLEC18A 
protein domain. Given that the sterol- and/or acidic 
glycolipid-binding (and exportation) function was con-
served across SCP/TAPS/CAP proteins [1, 22], we next 
tested whether p.T151M might disrupt the lipid-bind-
ing ability of the CAP/SCP/TAPS domain of CLEC18A 
(Fig.  1D). As a result, WT CLEC18A showed binding 
affinity to two acidic phospholipids, i.e., phosphatidic 
acid (PA) and phosphatidylserine (PS). Specifically, the 
ability to bind PA and PS was abolished in CLEC18A with 
p.M151, suggesting functional disruption by the missense 
rs75776403 in the CAP/SCP/TAPS domain.

Phenotypic landscape of rs75776403 in different human 
populations
Given the structural and functional perturbation of 
rs75776403 (p.T151M) in the CAP/SCP/TAPS domain 
of CLEC18A, we next clarified the genetic epidemio-
logical links in humans. First, the allelic frequencies of 
rs75776403 in different ethnicities were summarized: 
rs75776403 c.T allele (corresponding to p.M151) was the 
most abundant in Asians (48%), followed by admixed 
Americans (32%), Europeans (27%) and Africans (11%). 
Specifically, the c.T allelic frequency of rs75776403 was 
47% in Taiwanese Hans.

Second, we conducted a phenome-wide association 
study (PheWAS) of rs75776403 in the Taiwanese popu-
lation to examine the correlations between rs75776403 
and multifarious human traits. By leveraging a Taiwan 
Biobank (TWB) cohort with a sample size of 68,080, we 
parsed the genetic association profile of rs75776403 in 
189 traits as follows: (i) Among quantitative traits (Addi-
tional file  1: Table  S4), 62 traits were directly adopted 
from clinical data (compiled from blood or urine speci-
mens, physical examinations, and questionnaires) of 
TWB subjects. Next, 24 traits with clinical relevance 
were derived and further included (Additional file  1: 
Table  S5), resulting in a total number of 86 quantita-
tive traits spanning 11 phenotype categories (Additional 

Table 1  Functional prediction of rs2549097 and rs75776403 in 
CLEC18A 

CAP C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis 
related-1, SCP Sperm-coating protein, TAPS Tpx antigen 5/pathogenesis 
related-1/Sc7, SIFT Sort Intolerant From Tolerant, PolyPhen-2 Polymorphism 
Phenotyping v2, CADD Combined Annotation Dependent Depletion

Variant rs2549097 rs75776403

Allelic change c.353C > T [GCG → GTG] c.452C > T [ACG → ATG]

Amino acid change p.A118V p.T151M

Protein domain CAP/SCP/TAPS CAP/SCP/TAPS

SIFT 0.06 [Tolerated] 0 [Deleterious]

PolyPhen-2 0.000 [Benign] 0.998 [Probably dam‑
aging]

CADD Phred 0.245 [Non-deleterious] 22.7 [Deleterious]
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file  1: Table  S6). Similarly, (ii) 84 dichotomized (binary; 
Additional file 1: Table S7-S8) and (iii) 19 ordinal (Addi-
tional file  1: Table  S9-S10) traits were also included in 
the study. Consequently, we detected significant statis-
tical correlations of rs75776403 c.C-to-T (correspond-
ing to CLEC18A p.T151-to-M151) with quantitative 
traits including three anthropometric (smaller body 
height [Ht], local false discovery rate (Fdr) = 4.52 × 10–4; 
lower body weight [Wt], Fdr = 8.64 × 10–3; and increase 
waist-to-stature ratio [WSR], Fdr = 3.34 × 10–2), three 
nephrotic (decreased creatinine [Cr], Fdr = 6.16 × 10–5; 
decreased blood urea nitrogen [BUN], Fdr = 7.18 × 10–4; 
and elevated eGFR, Fdr = 1.15 × 10–3), one hematologi-
cal (elevated platelet count [Plt], Fdr = 3.22 × 10–4) and 
one hepatic parameter (α-fetoprotein-to-transaminase 
ratio [AfpAstAltRatio], Fdr = 2.68 × 10–2). In addition, 
traits such as the risk for cardiomyopathy [Crdmyo] 
(Fdr = 1.80 × 10–2), and retinal detachment eye num-
ber [RtDeN] (Fdr = 6.11 × 10–6) were also significantly 
associated with the rs75776403 c.C-to-T polymorphism 
(Table 2).

Third, when considering the ethnic differences, the 
phenotypic associations of rs75776403 in European 
(from UK Biobank [UKB]) and Japanese (from Biobank 
Japan [BBJ]) populations were further investigated. Of 
2173 traits from Europeans, 22 were found to relate to 
rs75776403, which including body height (sitting height, 
Fdr = 6.21 × 10–10; standing height, Fdr = 7.46 × 10–3), 
pulmonary functionality (forced expiratory volume 
in 1-s (FEV1), Fdr = 1.35 × 10–8; forced vital capac-
ity (FVC), best measure, Fdr = 1.35 × 10–8; FEV1, best 
measure, Fdr = 3.16 × 10–8; FVC, Fdr = 3.16 × 10–8; 
FEV1, predicted percentage, Fdr = 7.09 × 10–6; FEV1, 

predicted, Fdr = 3.22 × 10–3), smoke intake (smoking 
status: never, Fdr = 7.09 × 10–6; past tobacco smok-
ing, Fdr = 4.65 × 10–5; ever smoked, Fdr = 7.41 × 10–3; 
smoking status: previous, Fdr = 2.40 × 10–2), hemato-
logical profile (eosinophil count, Fdr = 2.43 × 10–3; lym-
phocyte count, Fdr = 1.45 × 10–2), hand grip strength 
(right, Fdr = 2.93 × 10–3), onset age of menarche 
(Fdr = 2.17 × 10–2), beef intake (Fdr = 3.22 × 10–2), place 
of birth (Fdr = 3.22 × 10–2), wheezing or whistling in the 
chest in last year (Fdr = 3.22 × 10–2), and the number 
of depression episodes (Fdr = 3.75 × 10–2; Additional 
file  1: Table  S11, top). For the Japanese population, 
only three out of 229 traits were found to be associ-
ated with rs75776403, i.e., height (Fdr = 1.51 × 10–8), 
body weight (Fdr = 5.02 × 10–3), and serum creatinine 
(Fdr = 6.13 × 10–3; Additional file 1: Table S11, bottom).

Fourth, a trans-ethnic meta-analysis was conducted 
to estimate the combined effect size of the rs75776403 
c.C-to-T variant on the human trait(s) across three 
populations. Here, only the body height trait was sub-
jected to the meta-analysis because the results passed a 
phenome-wide significance threshold in all populations 
(TWB: β ± standard error (s.e.) =  − 0.0127 ± 0.0044, 
Fdr = 4.52 × 10–4; UKB: β ± s.e. =  − 0.0070 ± 0.0017, 
Fdr = 7.46 × 10–3; BBJ: β ± s.e. =  − 0.015 ± 0.0022, 
Fdr = 1.51 × 10–8). Fixed-effect and random-
effect models illustrated a combined effect size 
(β ± s.e.) of − 0.0102 ± 0.0013 (P = 1.918 × 10–15) 
and − 0.0112 ± 0.0026 (P = 0.0485), respectively 
(Fig. 2A).

Multiomics profiling of molecular impacts of the CLEC18A 
c.452C‑to‑T polymorphism
Since the phenotypic relevance of rs75776403 (CLEC18A 
c.452C-to-T) was elaborated, the next critical question 

Table 2  Phenome-wide association study for CLEC18A rs75776403 in Taiwanese Hans from the Taiwan Biobank (TWB)

Std. Err. standard error, Fdr local false discovery rate. Traits with a Fdr < 0.05 were listed

Category Trait Type Sample No β Std. Err Fdr

Anthropometric Ht Quant 61,444 − 0.0127 0.0044 4.52 × 10–4

Wt Quant 61,443 − 0.0151 0.0053 8.64 × 10–3

WSR Quant 61,443 0.0133 0.0049 3.34 × 10–2

Cardiovascular diseases Crdmyo Binary 0 = 60,861
1 = 591

− 0.277 0.0654 1.80 × 10–2

Hematological Plt Quant 61,423 0.0229 0.0060 3.22 × 10–4

Hepatic AfpAstAltRatio Quant 61,435 0.0209 0.0060 2.68 × 10–2

Nephrotic Cr Quant 61,437 − 0.0172 0.0046 6.16 × 10–5

BUN Quant 61,437 − 0.0213 0.0057 7.18 × 10–4

eGFR Quant 61,437 0.0020 0.0020 1.15 × 10–3

Ophthalmologic RtDeN Ordinal 0 = 60,618
1 = 588
2 = 246

0.0900 0.00024 6.11 × 10–6
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Fig. 2  Multiomics profiling of rs75776403. A Forest plot showing the meta-analysis statistics of rs75776403 to human body height across ethnicities 
(Taiwanese, European, and Japanese). Fixed-effect and Knapp-Hartung adjusted random-effect models were both applied. B–F Volcano plots 
showing the differential transcriptomic B proteomic C metabolomic D, and phosphoproteomic (trypsin- E or gluC-digested F analyses to identify 
molecular features (mRNAs, proteins, metabolites and phosphorylation sites) significantly associated with rs75776403. These features were 
categorized into up-regulated (red) and down-regulated (pale green) according to estimates (i.e., statistical model coefficient; x-axis). Horizontal 
dashed lines indicate P < 0.01 (y-axis). G Combined analysis of gene-set enrichment analysis (GSEA) results from expression data (i.e., transcriptome 
and proteome). Dashed lines indicate a scaled weighted statistic (x- and y-axes) of + 2 or − 2. H Bar plot showing genes (x-axis) that are associated 
with CLEC18A transcript levels (P < 0.05). The strength of the association was quantified by Spearman’s rho statistic (y-axis). Genes that are involved in 
cellular response to thyroid hormone stimulus and corticosteroid receptor signaling are colored in purple and orange, respectively. I Venn diagram 
showing overlapping of CLEC18A transcript-associated genes across three tissues (brain, pituitary gland and thyroid). J Bar plot showing three 
genes (x-axis) associated with CLEC18A transcript levels in all brain, pituitary gland and thyroid tissues (P < 0.05). The strength of the association 
was quantified by Spearman’s rho statistic (y-axis). Genes that are implicated in cellular responses to thyroid hormone stimulus and corticosteroid 
receptor signaling are colored in purple and orange, respectively
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was to know how the genetic variant at this locus impact 
human traits through perturbing specific molecular or 
cellular processes. We thus leveraged human cell line-
based multiomics (compiling transcriptome, proteome, 
metabolome, and phosphoproteome) from the Cancer 
Cell Line Encyclopedia (CCLE) database to conduct the 
following analyses.

For each molecular feature from the transcriptome 
and proteome (totals of 19,095 mRNAs and 12,183 pro-
teins), a linear regression model was fitted and associa-
tions with rs75776403 were tested by exact permutation. 
Next, gene set enrichment analysis (GSEA) based on the 
KEGG, GO BP, and Reactome databases was conducted 
to identify the potential pathways (and/or gene sets). As a 
result, we found 278 (251 upregulated and 27 downregu-
lated) and 70 (33 upregulated and 37 downregulated) dif-
ferentially expressed mRNAs and proteins, respectively 
(Fig.  2B, C). The GSEA analysis further revealed 392 
(365 positively and 27 negatively) and 85 (34 positively 
and 51 negatively) significantly enriched pathways from 
mRNAs and proteins, respectively (Additional file  1: 
Table  S12). Intriguingly, the GSEA results pinpointed 
positive enrichment in the cell cycle, in contrast to nega-
tive enrichment in (carbohydrate, amino acid, and lipid) 
metabolism and immune activation, thus confirming 
functional consequences (i.e., metabolic or proliferative 
shifts, and immune deactivation) of CLEC18A transcrip-
tion and/or translation due to the rs75776403 c.C-to-T 
polymorphism.

Similar analyses were conducted for metabolomic 
and phosphoproteomic data. For 225 metabolites, we 
detected two differentially expressed metabolites, includ-
ing lactose (β =  − 0.158, P = 1.145 × 10–3) and acetyl-
glycine (β = 0.067, P = 3.223 × 10–3; Fig.  2D). For the 
phosphoproteome (p-site number: 44999 for trypsin and 
18,347 for gluC enzymes), 5079 (2526 upregulated and 
2553 downregulated) and 2121 (1258 upregulated and 
863 downregulated) differentially expressed p-sites were 
identified for trypsin and gluC, respectively (Fig. 2E, F). 
The GSEA further revealed eight positively enriched 
pathways (including epidermal growth factor receptor 
1 [EGFR1], glucagon-like peptide-1 [GLP1], phospho-
inositide 3-kinase-protein kinase B [PI3K-Akt] signaling, 
androgen receptor, gastrin, thymic stromal lymphopoi-
etin [TSLP], C–C chemokine receptor type 7 [CCR7], 
and interleukin 11 [IL-11]; all with P ≤ 0.05 and an 
enrichment score of > 0) to the phosphoproteomic profile 
associated with the rs75776403 c.C-to-T polymorphism 
(Additional file 1: Table S13).

Implications of CLEC18A p.T151M in hormonal regulation
Although these findings imply that metabolic, prolif-
erative and immune-related pathways are governed 

by CLEC18A p.T151M, it was still unclear whether an 
upstream regulatory mechanism mediates the molecu-
lar and/or cellular processes. To determine these, we 
combined mRNAs- and proteins-derived GSEA results 
and identified 27 robust (six positively and 21 negatively 
enriched) pathways (Fig.  2G and Additional file  1: Fig. 
S2).

Specifically, we noticed a negatively enriched cel-
lular response to thyroid hormone stimulus (GO ID: 
0,097,067) and a positively enriched corticosteroid recep-
tor signaling pathway (GO ID: 0,031,958) associated 
with rs75776403. Coordinating thyroid hormone with 
the steroid was found to be essential for growth regula-
tion [23, 24], and abnormal thyroid hormone regulation 
was reported to influence height in human and animal 
models [25–27]. Accordingly, we speculated that the sig-
nificant enrichment of p.T151M-regulated mRNAs and 
proteins in hormone-related pathways may be related to 
the rs75776403-associated traits (such as body height) 
as identified in the PheWAS. To test this, we evaluated 
the effects of the rs75776403 c.C-to-T polymorphism on 
mRNA expression levels of seven thyroid hormone axial 
genes including thyroglobulin (TG), thyroid hormone 
receptor beta (THRB), thyroid-stimulating hormone 
subunit beta (TSHB), thyrotropin-releasing hormone 
(TRH), thyroid-stimulating hormone receptor (TSHR), 
thyroid hormone receptor alpha (THRA), and thyrotro-
pin-releasing hormone receptor (TRHR). Indeed, nega-
tive associations with TG (β =  − 0.14, P = 0.0307) and 
THRB (β =  − 0.22, P = 0.0436) were found (Additional 
file  1: Table  S14). In addition, correlations between 
the CLEC18A mRNA level with these genes were fur-
ther examined, resulting in significant correlations 
of TG (Spearman’s rho [ρ] = 0.12, P = 2.20 × 10–4), 
THRB (ρ = 0.12, P = 2.90 × 10–4), TSHR (ρ = 0.13, 
P = 3.43 × 10–5), THRA (ρ = 0.11, P = 1.09 × 10–3) and 
TRHR (ρ = 0.10, P = 2.39 × 10–3).

Sixteen and 14 genes were respectively identified at the 
leading edge of cellular responses to the thyroid hormone 
stimulus (GO ID: 0,097,067) and corticosteroid receptor 
signaling pathways (GO ID: 0,031,958) (Additional file 1: 
Table  S15). By conducting similar analyses, rs75776403 
c.C-to-T polymorphism was found to positively associ-
ated with ARID1A, YWHAH, CRY1, LMO3, and JAK2 
and that was negatively associated with THRB (Addi-
tional file 1: Table S16). Moreover, CLEC18A mRNA was 
positively associated with four rs75776403-associated 
genes (THRB, LMO3, CRY1, and JAK2) and other six 
genes (BRD8, CRY2, PPARGC1A, CLOCK, ARNTL, and 
CALR; Fig. 2H).

Because hypothalamus-pituitary-thyroid (HPT) axis 
maintains thyroid hormone homeostasis in humans, 
correlations of CLEC18A mRNA with 30 leading-edge 
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genes in the cellular responses to the thyroid hormone 
stimulus and corticosteroid receptor signaling pathways 
were examined within involved (HPT) tissues (brain, 
pituitary, and thyroid). We found 27 (90.0%), 14 (46.7%), 
and 16 (53.3%) genes that respectively exhibited an asso-
ciation (P < 0.05) with CLEC18A mRNA expression in 
the brain, pituitary gland, and thyroid (Table  3). Nota-
bly, BRD8, ARNTL, and YWHAH were significantly cor-
related to the CLEC18A transcript in three HPT tissues. 
Importantly, BRD8 and ARNTL showed the consistent 
effect directions, in contrast to YWHAH which showed 
contrary results among the tissues (Figs. 2I-J). The simi-
lar approaches were applied in other thyroid hormone 
related tissues, such as the adrenal gland, liver, ovary and 

testis (Additional file  1: Table  S17). The data suggested 
that rs75776403 plays roles in both upstream biosynthe-
sis and downstream hormonal responses regulated by the 
thyroid hormone.

Discussion
Despite remarkable advances in genetics, little atten-
tion has been paid to whether and how genetic variants 
impact aspects of molecular and/or cellular features in 
the pathophysiology of human traits beyond simple sus-
ceptibility. Herein, we identified a missense cis-eQTL 
(p.T151M) in CLEC18A that was mainly correlated with 
anthropometrics (especially body height), nephrotic, 
and hematological traits (and/or diseases) in Taiwanese, 

Table 3  Association between CLEC18A mRNA level and the (leading edge) genes implicated in the thyroid-stimulated pathway or 
corticosteroid receptor signaling

N sample size. Genes implicated in thyroid stimulated pathways were labeled in white color; while genes implicated in corticosteroid receptor signaling were labeled 
in grey color. A P value of < 0.05 was highlighted in bold

Brain (N = 3326) Pituitary (N = 301) Thyroid (N = 812)

Gene ρ r.2 P ρ r.2 P ρ r.2 P

BRD8 0.51 0.26 2.78 × 10–176 0.19 0.04 9.87 × 10–4 0.27 0.07 3.10 × 10–12

MED1 0.49 0.24 1.80 × 10–161 0.13 0.02 0.0286 − 0.07 0.01 0.0660

KLF9 0.39 0.15 1.65 × 10–96 0.06 0.00 0.3288 − 0.05 0.00 0.2190

CTSL 0.36 0.13 2.54 × 10–83 0.01 0.00 0.8353 − 0.13 0.02 5.92 × 10–4

CTSB 0.32 0.10 3.00 × 10–63 0.04 0.00 0.5400 − 0.12 0.02 1.46 × 10–3

GAS2L1 0.31 0.10 2.55 × 10–61 0.24 0.06 5.31 × 10–5 0.05 0.00 0.1653

KIT 0.31 0.10 2.65 × 10–61 0.13 0.02 0.0255 0.02 0.00 0.5377

PPARGC1A 0.31 0.09 3.73 × 10–59 0.04 0.00 0.4553 − 0.04 0.00 0.3089

GCLM 0.29 0.09 6.08 × 10–54 0.02 0.00 0.7377 − 0.17 0.03 9.73 × 10–6

RDX 0.20 0.04 9.01 × 10–26 0.22 0.05 1.96 × 10–4 − 0.05 0.00 0.2176

GATA1 0.17 0.03 1.71 × 10–19 0.08 0.01 0.1979 0.12 0.01 2.41 × 10–3

CTSS 0.09 0.01 1.10 × 10–6 0.12 0.01 0.0471 − 0.00 0.00 0.9007

GHSR 0.08 0.01 5.17 × 10–5 − 0.08 0.01 0.1551 − 0.07 0.00 0.0932

LMO2 0.03 0.00 0.1348 0.10 0.01 0.1102 0.01 0.00 0.7788

CTSH − 0.02 0.00 0.3714 0.13 0.02 0.0320 0.12 0.01 2.48 × 10–3

THRB 0.01 0.00 0.5759 0.15 0.02 0.0112 0.10 0.01 0.0104
ARID1A 0.51 0.26 7.20 × 10–175 0.25 0.06 3.04 × 10–5 − 0.02 0.00 0.6308

JAK2 0.46 0.21 1.73 × 10–136 0.09 0.01 0.1476 0.10 0.01 9.34 × 10–3

CRY1 0.44 0.20 3.01 × 10–128 0.02 0.00 0.7632 0.09 0.01 0.0165
CLOCK 0.44 0.20 1.00 × 10–126 0.16 0.03 6.02 × 10–3 0.07 0.00 0.0906

NR3C1 0.44 0.19 2.68 × 10–126 0.04 0.00 0.5404 0.09 0.01 0.0209
PPP5C 0.43 0.18 3.70 × 10–119 0.11 0.01 0.0717 − 0.06 0.00 0.1578

PER1 0.41 0.17 9.34 × 10–110 0.13 0.02 0.0254 0.07 0.00 0.0804

CALR 0.37 0.13 3.60 × 10–85 0.04 0.00 0.5400 − 0.13 0.02 1.24 × 10–3

CRY2 0.37 0.13 3.96 × 10–85 0.11 0.01 0.0542 0.11 0.01 5.13 × 10–3

ARNTL 0.35 0.13 5.73 × 10–79 0.16 0.03 5.90 × 10–3 0.08 0.01 0.0352
PHB 0.32 0.11 5.56 × 10–66 0.09 0.01 0.1534 − 0.11 0.01 4.25 × 10–3

YWHAH 0.21 0.05 1.79 × 10–28 0.14 0.02 0.0223 − 0.09 0.01 0.0185
NEDD4 0.06 0.00 1.93 × 10–3 0.08 0.01 0.1705 0.08 0.01 0.0304
LMO3 -0.05 0.00 4.91 × 10–3 0.21 0.04 4.38 × 10–4 0.07 0.00 0.0888
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European and Japanese populations. This observation 
implicates the pleiotropy (associated with more than one 
trait) of rs75776403 as well as the concept that a genetic 
polymorphism could exert functional impacts through 
both regulating gene expressions (as a cis-eQTL) and 
disrupting a critical protein domain (as a missense vari-
ant). Focusing on these pathophysiological aspects may 
provide novel insights regarding genetic epidemiological 
profiles of the given trait or disease, as well as facilitate 
precision medicine.

CLEC18A has been linked to host immune defence 
against dengue viral infection through the C-type lectin-
like domain (CTLD) [2]. Serum CLEC18 protein lev-
els were found to be positively correlated with the HBV 
DNA load, HBsAg levels, and HCV viral loads [3, 4]. 
Nonetheless, whether CLEC18A is associated with other 
diseases, or which protein domain is responsible for the 
physiological correlation, is still unclear. By exploring the 
functional effects of the rs75776403 c.C-to-T polymor-
phism, we identified that this variant promotes metabolic 
and proliferative shifts, as well as immune deactivation in 
human cells. This finding, therefore, not only elaborates 
on molecular and/or cellular links to the genetic asso-
ciations of rs75776403, but also sheds light on the func-
tional roles of CLEC18A in all cell types (such as immune 
cells) that may be implicated in the associated traits or 
diseases.

The CAP/SCP/TAPS domain, which is possessed by 
CLEC18A and other genes, was proposed to bind and 
transport sterols, acidic glycolipids, and/or acidic phos-
pholipids [28, 29]. Specifically, this domain is directly 
responsible for packing lipids in the endoplasmic reticu-
lum (ER) into vesicles and secreting them out of cells 
[30]. Here, rs75776403 p.T151M was shown to disrupt 
the binding affinity of the CAP/SCP/TAPS domain to 
the PA and PS (both of which are acidic phospholip-
ids). Notably, further experimental validation is needed 
to consolidate our findings. Since PA and its derivative, 
lysophosphatidic acid (lysoPA), may act as extracel-
lular ligands of G protein-coupled receptors (GPCRs) 
[31], which play pivotal roles in metabolism [32], dimin-
ished extracellular exportation of PA due to rs75776403 
p.T151M disruption of the CAP/SCP/TAPS domain may 
lead to less GPCR signaling, and thus perturb homeosta-
sis of metabolites including carbohydrates, amino acids 
and lipids [32, 33]. It is noteworthy that PA and lysoPA 
may also act as mitogens. Therefore, CLEC18A p.T151M 
may lead to the accumulation of free-form PA by either 
decreasing extracellular exportation of PA or decreas-
ing CLEC18A-bounded PA. These free-form PAs may 
thus exert mitogenic functions to enhance cell prolifera-
tion. Furthermore, PS may also bind to the receptor for 

advanced glycation end products (RAGE) and affect cell 
cycle genes implicated in the G1/S phase transition [34].

The underlying mechanisms of immune deactivation 
through CLEC18A p.T151M can be explained as fol-
lows. First, PS-recognized receptors share a common fea-
ture that promotes the production of anti-inflammatory 
mediators [34, 35]. Hence, rs75776403 p.T151M may lead 
to a greater amount of the free form of intracellular PS 
and contribute to immune inhibition. Second, consist-
ent with speculation that CLEC18A may extract sterols 
from assembled membranes of pathogens (e.g., dengue 
virus type 2 [36]) during the intracellular viral replica-
tion stage in the ER [1], we observed negative enrich-
ment of immune activation pathways by rs75776403 
p.T151M. Third, genes with the CAP/SCP/TAPS domain 
were proposed to be a Ca2+-specific serine protease [37, 
38], which is critical for antigen processing and to elicit 
pathogen-specific immune activation of T cells [39, 40]. 
rs75776403 p.T151M may thus disrupt immune acti-
vation through diminishing the proteolytic activity of 
CLEC18A. Fourth, PA was implicated in the biogenesis 
of recycling endosomes (REs) [41]. Since the endosome 
is critical for innate and adaptive immune function [42, 
43], we proposed that CLEC18A p.T151M may cause 
retention of PA in the ER, thus weakening the integrity 
of membrane structure and the subcellular function of 
endosomes. Notably, a decrease in the amount of PA in 
RE may also affect the recycling/turnover of EGFR [44].

Additionally, we identified a correlation of rs75776403 
p.T151M and CLEC18A transcripts with the end prod-
ucts of the thyroid hormone biogenesis pathway, thy-
roglobulin (TG) and thyroid hormone receptor (THRB). 
We should notice that the upstream receptors of the 
pathway, thyrotropin-releasing hormone receptor 
(TRHR) [45] and thyrotropin receptor (TSHR) [46], are 
also GPCRs. Thus, loss of PA-binding affinity due to 
rs75776403 p.T151M may result in loss of synergistic G 
protein activation. Specifically, thyroid hormones (trii-
odothyronine (T3), and thyroxine (T4)) are essential for 
growth, development, and metabolisms [47, 48]. The 
functions of triiodothyronine is not only in cell prolifera-
tion [49–51], branching morphogenesis of the lungs [52], 
but also in the DNA synthesis, differentiation to osteo-
blasts, and act on growth plate chondrocytes [53, 54]. 
Thus, previous findings were in line with our results that 
the rs75776403 variant significantly associates with the 
human growth phenotypes.

Moreover, thyroid hormones modulate the overall syn-
thesis of phosphocreatine (PCr) through the regulations 
for creatine kinase and mitochondrial oxidative phospho-
rylation [55]. PCr is a protector against cardiac disease, 
as a meta-analysis revealing that uptake of extra PCr pro-
duced lower risks for all cardiac incidences [56]. Thus, it 
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is reasonable to speculate that the rs75776403 p.T151M 
correlation with lower risk for cardiomyopathy may be 
due to thyroid hormones-mediated PCr accumulation. 
Moreover, consistent with our PheWAS results, thyroid 
hormones were shown to alter several biomarkers related 
to kidney function (serum levels of creatinine and eGFR) 
[57] and platelets (mean platelet count, mean platelet vol-
ume, and platelet distribution width) [58, 59].

To date, more than 5500 publications and ~ 330 K asso-
ciations have been elaborated (by the Genome-Wide 
Association Study Catalog; February 2022), but most 
results still need to be functionally validated. One of the 
possible ways to accomplish this is to integrate data from 
multiple sources. Herein, we leveraged cis-eQTL anno-
tations from the GTEx database to confirm the tissue-
specific cis-regulatory effects of the rs75776403 c.C-to-T 
polymorphism on mRNA levels of CLEC18A. Further-
more, a protein domain simulation and lipid strip test 
were conducted to confirm that missense rs75776403 
p.T151M abruptly affects the lipid-binding ability of the 
CLEC18A. By further incorporating the rs75776403-
correlated multiomics to pinpoint metabolic/prolifera-
tive shift and implication in thyroid hormonal regulation, 
these results elaborate a promising way to link the molec-
ular and/or cellular features of rs75776403 to phenotypic 
landscape of humans.

Conclusions
The rs75776403 was identified as a crucial missense cis-
eQTL in CLEC18A, and linked the polymorphism to var-
ious phenotypes. We demonstrated that CLEC18A binds 
specifically to two phospholipids, PA and PS via the CAP/
SCP/TAPS domain. Defects in the lipid-binding ability 
were identified in the rs75776403 altered allele (p.M151) 
carriage. By elaborating CLEC18A rs75776403-associated 
multiomics, CLEC18A has great impact to regulate cellu-
lar processes, metabolism, cell cycle, immune activation, 
thyroid hormone biosynthesis and immune responses. 
Thus, a single amino acid change T151→M151 ultimately 
contributes to the variability of human traits and dif-
ferential outcome of human diseases. This study dem-
onstrates a promising approach to get insights on the 
potential impact of genetic polymorphism for precision 
medicine (Fig. 3).
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Fig. 3  Summary of the current study. A modern genetic epidemiological study parsing molecular and cellular features of CLEC18A rs75776403 that 
contribute to human traits and diseases
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