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Stem cell secretome as a mechanism 
for restoring hair loss due to stress, particularly 
alopecia areata: narrative review
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Abstract 

Background:  Living organisms are continuously exposed to multiple internal and external stimuli which may influ-
ence their emotional, psychological, and physical behaviors. Stress can modify brain structures, reduces functional 
memory and results in many diseases such as skin disorders like acne, psoriasis, telogen effluvium, and alopecia 
areata. In this review, we aim to discuss the effect of secretome on treating alopecia, especially alopecia areata. We 
will shed the light on the mechanism of action of the secretome in the recovery of hair loss and this by reviewing all 
reported in vitro and in vivo literature.

Main body:  Hair loss has been widely known to be enhanced by stressful events. Alopecia areata is one of the skin 
disorders which can be highly induced by neurogenic stress especially if the patient has a predisposed genetic back-
ground. This condition is an autoimmune disease where stress in this case activates the immune response to attack 
the body itself leading to hair cycle destruction. The currently available treatments include medicines, laser therapy, 
phototherapy, and alternative medicine therapies with little or no satisfactory results. Regenerative medicine is a new 
era in medicine showing promising results in treating many medical conditions including Alopecia. The therapeutic 
effects of stem cells are due to their paracrine and trophic effects which are due to their secretions (secretome).

Conclusion:  Stem cells should be more used as an alternative to conventional  therapies due to their positive out-
comes. More clinical trials on humans should be done to maximize the dose needed and type of stem cells that must 
be used to treat alopecia areata.
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Background
Stem cells are undifferentiated and unspecialized cells 
of the human body. They are mainly characterized by [1] 
their ability to self-renew (proliferate rapidly) through 
symmetrical division, [2] their plasticity because they 
can differentiate into various types of cells of the organ-
ism through asymmetrical division, and [3] their clonality 

as they derive from the same clone. Stem cells are clas-
sified into five major groups depending on their lineage: 
embryonic stem cells (ESCs), amniotic epithelial cells 
(AECs), fetal stem cells (FSCs), umbilical cord epithelium 
(UCE), and adult somatic stem cells (including mesen-
chymal stem cells (MSCs)). They exist in both embryos 
and adults [1]. Because stem cells potentially give rise to 
numerous lineages, and because of their paracrine and 
trophic effects, they became the center of research as a 
potential therapies for many diseases therefore they are 
usually utilized in regenerative and reparative therapy [2].
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Stress is any condition that seriously disturbs a per-
son’s physiological and psychological balance (homeo-
stasis) [3]. Hippocampus, amygdala, and prefrontal 
cortex areas are the brain structures primarily involved 
in the control of the stress response mechanism in 
autonomic and hypothalamic–pituitary–adrenal (HPA) 
axis [4]. These regions change both structurally and 
functionally due to stressful experiences [5]. Struc-
tural changes includes neuron replacement, dendritic 
remodeling, and synapse turnover [6]. Glucocorticoid 
hormone along with excitatory neurotransmitters such 
as glutamate alter neuronal architecture leading to den-
dritic retraction and expansion with modified synaptic 
density [7]. Indeed, several diseases are caused by stress 
including increased fat mass osteo-sarcopenia/frailty, 
cellular dehydration, long-term systemic inflammation 
[8] and skin related disorders.

Skin is the largest body organ. It is enriched with 
immune cells, keratinocytes, mast cells, and peripheral 
nerve endings. Besides, it is a critical element in pro-
duction of HPA axis components. So, it is considered 
an active participant in stress response. This leads to 
various stress-linked skin disorders including Psoriasis, 
Atopic dermatitis, Vitiligo, Acne, and Alopecia Areata 
(AA) [9]. An exposure to psychological stress can act 
as triggering or exacerbating factor for AA [10]. MSCs, 
in particular, adipose-derived stem cells (ADSCs), are 
most commonly used in the field of treatment of dis-
eases including skin disorders. Along with their par-
acrine factors, secretome, MSCs became recently the 
most promising therapy for stress-induced alopecia. 
This latter is characterized by immunological distur-
bances affecting the hair follicle (HF) and contributing 
to hair loss. MSCs, being able to suppress lymphocyte 
proliferation and, inhibit complement activation and 
dendritic cell differentiation from monocytes; were, 
therefore, considered natural immunosuppressants. 
Because of this, they are widely used for hair regen-
eration due to stressful events [2, 11]. There are more 
than 3000 clinical studies published on Alopecia and 
around  nine studies registered in clinical trials.gov. 
These studies discuss alopecia and available therapies. 
On the emergence of cell therapy, and specifically stem 
cells secretions or secretome as potential treatment for 
alopecia, three clinical studies were reported, two on 
clinical trials.gov and one on research gate.net.

In this review, we aim to discuss the role of regenerative 
medicine, specifically the secretome produced by stem 
cells, in treating stress-induced alopecia. Besides, we will 
be shedding the light on the mechanism of secretome 
action in the recovery of hair loss by reviewing all pub-
lished in vivo and in vitro studies on stem cells secretions 
and Alopecia.

Alopecia and its classification
Alopecia is a disorder in which some or all the hair on the 
body or head falls off. It might be due to a variety of fac-
tors, including stress [12]. It can be classified as scarring 
and non-scaring ones. Scarring alopecia is considered 
relatively rare. However non-scarring alopecia includes 
the following: Alopecia Areata, Anagen effluvium, 
Androgenic alopecia (most common type), Telogen efflu-
vium, Tinea capitis, Trichorrhexis nodosa and trichotillo-
mania. Other classifications include patchy hair loss or 
diffuse hair loss or both [13].

Stress‑induced alopecia and the mechanism of action
Alopecia is provoked by a variety of conditions includ-
ing genetic background and environmental issues. Being 
genetically predisposed individuals along with enduring 
stressful life events help the increase of AA [14].

The hair growth cycle consists of three phases: anagen 
(growth phase), catagen (regression phase) and telogen 
(resting or inactive phase). During anagen phase, folli-
cles give an entire hair shaft from tip to root. This phase 
determines the length of hair shaft. In catagen phase, hair 
shaft differentiation ceases. Each follicle regresses com-
pletely in a process including apoptosis of epithelial cells 
in the bulb and outer root sheath. Hair club is formed, 
and dermal papilla (DP) remains in contact with epithe-
lium. Following catagen, follicles enter a dormant resting 
phase (telogen), where no significant proliferation, apop-
tosis or differentiation is observed [15]. Any disruption in 
the hair growth cycle will cause hair loss [16].

Experimental studies on animal models primarily mice 
have tested and proven the tight association between 
stress/psycho-emotional state and hair loss [17]. Studies 
on humans still remain limited. Human dermal papilla 
cells (hDPCs) culture was used to investigate the associa-
tion between stress and hair loss in humans, and to study 
the mechanism of hair loss.

Perceived stress (internal or external) can stimulate 
neuroendocrine immune changes. It was shown that 
prolonged stress can increase inflammatory cytokines 
(e.g.INF-ɣ) leading to inflammation and ending up in 
apoptosis, cell senescence and premature catagen transi-
tion. DPCs in hair follicle possess receptors for cortico-
tropin releasing factor (CRF) [18]. When the individual 
is under stressful events, production of CRF in hypo-
thalamus increases. It binds to its receptors (CRFR1 and 
CRFR2) on dermal papilla cells inducing high level of 
cAMP, high level of protein kinase A and consequently 
high phosphorylation of cAMP response element-
binding protein (CREB). This, results in high produc-
tion of Adrenocorticotrophic hormone  (ACTH) which 
is derived from the prohormone, pro-opiomelanocortin 
(POMC), by anterior pituitary gland. ACTH will enhance 
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the high production of cortisol, being a main effector 
in HPA axis, in the adrenal cortex. Presence of massive 
quantity of cortisol reduces the synthesis and, simultane-
ously, speeds up the degradation of structural skin com-
ponents (hyaluronan and proteoglycans) by 40% resulting 
in dry skin. In addition, these two structural components 
play a critical role on the normal functioning and cycling 
mechanism of hair follicle and thus result in disruption of 
the cycle [16]. Consequently, hair loss is observed.

CRF inhibits hair shaft elongation and proliferation of 
DPCs through arrest of division at G2/M phase. In addi-
tion, it accounts for the accumulation of reactive oxygen 
species (ROS) which also stop the cell cycle. CRF down-
regulate the expression levels of anagen-related cytokines 
such as hepatocyte growth factor (HGF), Wnt5a, TGFβ, 
Vascular endothelial growth factor (VEGF) and versican 
[18]. Stress resulting from hair loss contributes to a nega-
tive feedback elevating hair loss incidence [19]. See Fig. 1.

Mechanism of stress on alopecia areata
Hair follicle is an immune privilege site, it can tolerate 
the introduction of foreign antigens without inducing 
the immune response. Thus, under normal conditions, 
hair follicle is protected along with its hair follicle stem 

cells (HFSCs) by this immune privilege. However, its col-
lapse contributes to the pathogenesis of autoimmune hair 
loss disorders including AA [20]. Indeed, patients with a 
particular genetic ancestry are susceptible to disorders 
in hair follicles microenvironment (including trauma, 
infection and stress), allowing hair follicles self-antigens 
to be presented to autoreactive CD8+ T cell which will 
attack and degenerate them. Neurogenic stress is known 
to affect the immune system. Upon stressful events, CRH 
factor is released leading to mast cell degranulation, neu-
ropeptide release, high number of CD8+ T cell and Natu-
ral killer (NK) cells [21]. CD8+ T cell and NK cells release 
Interferon ɣ which increases MHC I contributing to col-
lapse of immune privilege [20].

Mast cell degranulation and neuropeptides release are 
responsible for the significant elevation in substance P. 
The latter increases MHC I and β2 micro-globulin and 
activates perifollicular mast cell and thus enhances neu-
rogenic inflammation. When mast cell is activated, it 
releases TNF- α which stops hair growth and induces 
keratinocyte apoptosis. Moreover, substance P stimulates 
growth factor cascade favoring catagen phase through 
upregulation of nerve growth factor (NGF) and p75NTR. 
See Fig. 2

Fig. 1  Mechanism of stress-inducing hair loss. A Stressful events activate the hypothalamus to produce a high level of CRF which stimulates the 
anterior pituitary gland to secrete POMC-derived ACTH. The latter contributes to a high level of cortisol in the blood. Cortisol itself decreases the 
synthesis of hyaluronan and proteoglycan which are responsible for the normal growth of hair shafts. Hence growth cycle is abnormal with dry skin 
leading to hair loss. B External or internal stress through stress hormones causes the release of pro-inflammatory cytokines (INF-γ) which causes 
apoptosis and cell senescence. This causes premature catagen transition and finally hair loss. C High level of CRF is indispensable for less expression 
of anagen-related cytokines like TGF-β and thus premature catagen transition resulting in hair loss. D CRF bind to its receptors CRF1 and CRF2 on 
DPC creating a local HPA axis in the hair follicle which arrest division in DPC and eventually provoking hair loss
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Available treatments
The patient’s age, the location of the hair loss, the 
degree and severity of the condition, the existence of 
other medical or psychiatric disorders, and, in certain 
situations, the findings of a scalp biopsy should be all 
considered while making treatment recommendations 
[22].

Many treatments are available to treat alopecia, as 
shown in Table  1 however only two are FDA-approved: 
finasteride and minoxidil [23].

Table  1 shows the traditional therapies used to treat 
hair loss with their mechanism of action in the body. 
These therapies are not approved by FDA due to their 
negative side effects.

These therapies have a limited impact and provide 
unsatisfactory results [24]. With the progress of regen-
erative medicine, stem cell-based therapies have opened 
up new avenues to address the issues faced by traditional 
hair loss treatments. The transplantation of MSCs from 
adipose, bone marrow, umbilical cord blood and follicles 
would regenerate hair follicles in the skin as reviewed 
by Owczarczyk-Saczonek et  al. [25]. Diffusible fac-
tors secreted by stem cells ( such as growth factors and 

cytokines can activate neighboring cells by paracrine 
signaling.

The term "stem cell secretome" refers to the soluble 
factors synthesized by stem cells and utilized for cell–
cell communication [26]. It includes proteins, extracel-
lular vesicles (EVs), and nucleic acids, as well as other 

Fig. 2  Role of stress in induction of Alopecia Areata through the collapse of immune privilege. A CRF released by stress leads to degranulation of 
mast cells which releases substance P. this substance contributes to the collapse of immune privilege by elevating MHC-I and β2 micro-globulin. 
Besides, it activates mast cells to release TNF which stops hair growth. It results in premature catagen transition by upregulation of NGF and p75NTR. 
B CRF increases CD 8 + cells and NKs which increases INF-γ and followed by the increase in MHC-I thus collapse of immune privilege and finally AA

Table 1  Available treatments for hair loss (Alopecia)

Therapies Mechanism of action

Dutasteride inhibition of alpha-reductases

Ketoconazole androgen receptor blocker

Diphencyprone antigen competition

Cimetidine, oral predniso-
lone and flutamide

Antiandrogen

Sulfasalazine immunosuppressive and immunomodula-
tory

cyclosporine A inhibition of T-cell activation

Phototherapy Immune-modulatory effect due to UV rays

Janus kinase inhibitor block the T-cell mediated inflammatory
response

Surgical transplant therapy Hair regrowth
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molecules released into the extracellular space [27]. 
Secretome accounts for a broad variety of serum proteins, 
growth factors, angiogenic factors, hormones, cytokines, 
extracellular matrix proteins, extracellular matrix pro-
teases, and even, in low quantity, lipid mediators and 
genetic material that are considered to be encoded by 
around 10% of the human genome [28, 29]. The nutrient 
medium containing these paracrine molecules along with 
the stem cells cultured within, is termed “conditioned 
medium (CM)” [30]. Stem cells produce these substances 
by both conventional and non-conventional mechanisms, 
such as protein translocation, exocytosis, and vesicle or 
exosome encapsulation [31].

MSCs are the most significant stem cells used in 
regeneration and tissue repair due to their rapid isola-
tion, ex  vivo expansion, self -renewal capacity, colony 
formation, extended population doubling, phenotypic 
expression pattern, multilineage differentiation potential 
along with their paracrine trophic effects. After cultur-
ing these cells, they secrete secretome and this latter can 
be taken by syringe after centrifugation and formation 
of the supernatant. Despite their immune-modulatory, 
pro-angiogenic, pro-survival, anti-apoptotic, antioxi-
dant, anti-fibrotic, and anti-bacterial properties, some 
issues come into mind when dealing with stem cells and 
their secretions [32]. First, the source of MSCs plays an 
important role in their efficiency. Isolation from different 
tissues (adult, prenatal and embryonic) shows variations 
in their plasticity, exosomes, micro-vesicles, mRNA, and 
mitochondrial transfer abilities. These differences affect 
the therapeutic outcome of MSC secretome. Second, 
aging is known to reduce the functional and regenerative 
capacities of MSCs [33, 34].

MSC  administration  is considered a feasible and safe 
procedure with no reported adverse events. Cell source, 
donor origin, product  production, and recipient disease 
status are important factors related to the safety and 
efficacy of  MSC  use. In this regard, the use of bovine 
proteins in the medium used to culture these cells and 
the observation of bone tissue formation in animal mod-
els, as well as malignant transformation and immune 
responses,  must be evaluated first in order to accept 
wide clinical applications and registration of this new cell 
therapy [35].

In regenerative medicine, cell-free therapies have more 
advantages than classical stem cell-based therapies. In 
stem cell transplants, the use of secreted molecules might 
help to prevent immunological compliance, metastatic 
potential, and infection spreading. As secretome could 
be produced in substantial quantities ahead of time and 
made ready for treatment when needed, it might signifi-
cantly reduce the costs associated with cell lines estab-
lishment and maintenance. As a result, this enables them 

to be used in emergency situations such as infarction and 
trauma [36].

In vitro and in vivo studies
Human umbilical cord blood cells and human dermal 
papilla cells
IGF-1/Akt/GSK 3β/ β-catenin signaling pathway on 
h-DPCs is involved in hair regeneration. Intradermal 
injection of human umbilical cord blood cells (h-UCBs) 
into C3H/HeJ mice, followed by fixation of skin in 4% for-
maldehyde and addition of Antibody for β catenin were 
done to monitor β-catenin expression. Results showed 
high β-catenin protein level which is a positive regula-
tor for hair growth. Protein expression of phosphorylated 
Akt, phosphorylated GSK3β, β-catenin and proliferating 
cell nuclear antigen (PCNA) are elevated in h-DPCs and 
h-UCB-MSCs [37].

Several invitro and in  vivo studies were done using 
secretome mainly derived from ADSCs origin. All stud-
ies, as mentioned in Table  2, gave positive results and 
were able to restore hair loss. These positives outcomes 
were attributed primarily to the activation of various 
pathways implicated in hair regeneration such as Wnt/β-
catenin signaling pathway. See Table 2.

Mechanism of action of secretome on treating 
alopecia
Wnt signaling pathway and TGF‑β signaling pathway
Growth factors (GFs) of stem cell secretome activate 
DPCs to secrete proteins such as SDF1, MMP3 and bigly-
can which participate in the induction of Wnt signaling.

SDF1 and bi-glycan activate Wnt 3a and thus canonical 
Wnt signaling pathway is induced ending up with high 
expression level of β-catenin. The latter is a key regulator 
of hair follicle growth and a primary initiator of anagen 
phase. At the same time MMP3 inhibits the non-canoni-
cal Wnt signaling pathway by inactivating Wnt-5b. Wnt-
5b is an inhibition factor for β-catenin/Wnt signaling 
pathway. Other secretory factors of DPCs include LTBP1 
which covalently binds to TGF-β and thereby activate 
the TGF-β signaling pathway. This will lead to the activa-
tion of Smad 2/3 pathway in HFSCs and therefore avoids 
delayed hair regeneration [38]. In addition, LTBP1 par-
ticipates in BMP signaling pathway inhibition [38, 39]. 
Inhibition of this pathway is essential since BMP4 and 
BMP4 genes  inhibit HF development and are associated 
with maintaining these folicles in the telogen phase [40]. 
See Fig. 3

Cytokines and hair regeneration
Secretome consists of VEGF, insulin-like growth factor 
(IGF), HGF, bone morphogenic proteins (BMPs), inter-
leukin-6 (IL-6), macrophage colony-stimulating factor 
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Table 2  Summary of all articles in the literature of stem cells in relation to alopecia

SCs and paracrine 
factors

Type of study N Type of alopecia Mechanism Effect Authors Refs.

hUCB-MSCs In-vitro 55 – VEGF-related 
β-catenin and 
p-GSK-3β [SER9] 
signaling pathway

↑ Viability in DPCs
↑ hair density, thick-
ness, and growth 
rate

Oh et al [57]

ASCs In-vitro (Human 
DPCs)

– – – Telogen-to-anagen 
transition
Upregulation 
growth factors

Choi et al [58]

MSCs In-vitro – Alopecia Areata Wnt/ β-Catenin 
pathway
Phosphorylation of 
JAK1 to 3, STAT1, and 
STAT3

↑ Viability of Human 
Outer root sheath 
cells (h-ORSCs)

Lee et al [59]

Exosomes from 
ADSCs

In-vitro – – ↑ Expression of ALP, 
versican and α-SMA 
proteins

↑ DPC proliferation Nilforoushzadeh 
et al

[60]

MSC-EVs In-vivo (C57BL/6 
mice)
Invitro

17 mice ↑ Bcl-2, phosphoryl-
ated Akt and ERK
↑ telogen to anagen
↑expression of 
wnt3a, wnt5a and 
versican

↑ DP cell prolifera-
tion

Rajendran et al [61]

ADSC-Exos In vitro
In vivo (C57BL/6 
hair-depilated 
mouse)

15 mice Immune-Mediated 
Alopecia

regulating miR-22
Wnt/β-catenin sign-
aling pathway
TNF-α signaling 
pathway

Hair regrowth Li et al [51]

hUCB-MSCs In-vivo (C3H/HeJ 
mice)
Invitro

Paracrine mecha-
nism

Hair growth Bak et al [37]

HF-MSCs In vitro
In vivo: (C3H/HeJ 
AA)

AA ↓ Hair loss
↓Inflammation 
around HF

Deng et al [62]

NSC
(TGF-b)

In-vivo (Animal 
C57BL/6 mice)

20 ↑ Keratinocytes and 
DPCs
↑ Hair shaft length 
and growth rate

Hwang et al [63]

ADSC In-vivo
(Animal model- C3H/
NeH mice)

21 ↑ Anagen phase
↑ Hair regeneration, 
↑proliferation of 
hDPCs

Park et al [64]

ADSCs In-vivo (Animal 
model- C57BL/6 J 
mice)

37 Wnt/β-catenin 
pathway

↑Hair growth
↑Telogen-to-anagen 
transition
↑Proliferation, 
migration and cell 
cycle progression

Li et al [65]

ADSCs In-vivo (Animal 
model- C57BL/6 J 
mice)

37 Wnt/β-catenin 
pathway

↑Hair growth 
↑Telogen-to-anagen 
transition ↑Prolifera-
tion, migration, and 
cell cycle progres-
sion

Li et al [65]

dental pulp stem 
cells

Invivo
(C3H/HeN female 
mice)

20 ↑ Anagen-staged 
hair follicles
↓ Number of 
telogen staged hair 
follicles

Gunawardena et al [66]

hESCs In vivo
(NUDE mice)

Hair growth Gnedeva et al [67]
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(M-CSF) and other cytokines. These are highly associated 
with hair regeneration through various mechanisms [41, 
42].

Starting with VEGF, by promoting perifollicular vas-
cularization in anagen phase and suppressing it in telo-
gen, it speeds up hair regeneration and increases the size 
of HFs and hair shafts in DPCs. When VEGF secretion 
is blocked, impaired hair growth is observed [43, 44]. 

Moreover, both the IGF-1/IGF binding protein-1 com-
plex and BMPs act on DPCs to restore and maintain the 
potential for hair induction [37, 45]. Indeed, IGF-1 con-
trols hair growth cycle and differentiation of hair shaft. 
Transgenic mice that express IGF-1 in inner root sheath 
affects follicular proliferation, tissue remodeling and 
hair growth cycle as well as follicular differentiation [46]. 
HGF, another paracrine hormone, may enhance follicular 

Table shows all the in vivo and invitro studies about stem cells and alopecia where all studies yield positive effect. These studies were collected from PubMed database

Table 2  (continued)

SCs and paracrine 
factors

Type of study N Type of alopecia Mechanism Effect Authors Refs.

iPSCs In-vivo (nude mice) – – – Unlimited source of 
folliculogenic cells

Pinto and Terskikh [68]

ADSC In-vivo (Human) 1000 – – ↑ Total number hair 
shafts

Fukuoka et al [69]

ADSCs In-vivo (Human) 22 alopecia – ↑ Hair number Fukuoka and Suga [70]

HF-MSCs (FGF-7) In-vivo
(Human)

21 AGA​ ERK activation
Wnt signaling 
pathway

↑ Hair density
↑ Anagen phase

Gentile et al [71]

HFSCs In-vivo
(Human)

11 AGA​ – ↑Hair follicle num-
ber and hair density

Gentile et al [72]

MSCs In vivo (Human) 4 Alopecia Areata – Hair regrowth Czarnecka et al [73]

autologous SCs In vivo (Human) 40 AA and AGA​ – Hair growth Elmaadawi et al [74]

stem cell educator 
therapy

In vivo
(Human)

9 AA – ↑ Hair growth and 
quality of life

Yanjia Li et al [75]

Fig. 3  Growth factors in stem cells secretions and their contribution to hair regeneration. A Canonical Wnt signaling pathway induction and 
inactivation of noncanonical Wnt signaling pathway by SDF1, MMP3, and biglycan respectively. The latter proteins are secreted by DPCs due to their 
activation by GFs. B Role of LTBP1 secreted by DPC in hair regeneration. Inactivation of Bmp signaling pathway. Bind with TGF β and activate Smad 
2/3 and TGF β pathways
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development by boosting-catenin expression [47]. This 
was manifested by dorsal intradermal injection of 1  µg 
HGF/SF in 0.1% albumin phosphate buffered saline once 
daily for 5–7 days in three groups of mice. They showed 
longer and larger HF in new born mice, retention of 
anagen HF after 10  days which imply the delay in tran-
sition from anagen to catagen [48]. In addition, Platelet 
derived growth factor (PDGF) is another paracrine factor 
that induces and maintains anagen phase of murine HFs. 
PDGF receptors are localized on HFs. It was injected into 
dorsal skin of C3H mice during second telogen phase 
once daily for 5  days. RT-PCR using extracted RNA 
from PDGF upregulated expression of HF differentiation 
related key signaling molecules, sonic hedgehog (Shh), 
Lef-1 and Wnt-5a [49]. See Fig. 4.

Exosomes‑part of CM‑ application on hair regrowth
Exosomes are phospholipid bilayer vesicles. They 
can be produced by various cells including, B cells, 
T cells, dendritic cells, macrophages, neurons, glial 
cells, most tumor cell lines, and stem cells. Exosomes 
may transport valuable cargo between cells in a natu-
ral way, facilitating  the transfer of genetic mate-
rial within organisms. Exosome delivery to recipient 
appears to be a major step in modulating changes in 
cellular activity as exosomes are crucial for intercellular 

communication. These vesicles contain a vast range of 
substances, including proteins, lipids, DNA, and RNA, 
all of which have regulatory effects on recipient cells 
[50].

Li et  al. investigated the mechanism by which 
exosomes regenerate hair in a "C57BL/6 hair-depil-
ated mouse model" where they administered, into 
this model, ADSCs subcutaneously. ADSC-Exosomes 
increased DPCs proliferation and migration while sup-
pressing apoptosis. Following ADSC-Exosome therapy, 
RNA-sequencing indicated that the miR-22 and TNF-
signaling pathways were significantly downregulated 
in DPCs. Furthermore, the Wnt/-catenin signaling 
pathway was activated in the skin of ADSC-Exosome-
treated mice, according to qRT-PCR and western blot-
ting data. ADSC-Exosome therapy improved hair 
regeneration via modifying miR-22, the Wnt/-catenin 
signaling system, and the TNF-signaling pathway, indi-
cating that ADSC-Exosome may be a potential cell-free 
therapeutic strategy for immune-mediated alopecia 
[51].

These bioactive factors stimulate proliferation of 
DPCs by activation of both Erk and Akt signaling path-
ways, modulate the cell cycle of DPCs and protect them 
from damage due to androgens and oxygen species [52, 
53].

Fig. 4  Role of cytokines of stem cell secretions in hair regeneration. A VEGF contributes to more perifollicular vascularization in the anagen phase 
and less in perifollicular vascularization in the telogen phase thus restoring hair. B, C IGFBP1 and hepatocyte growth factor induce hair regeneration 
through increasing beta-catenin expression. D Role of PDGF in hair regeneration by elevating Shh and LEF1



Page 9 of 11Salhab et al. Journal of Biomedical Science           (2022) 29:77 	

Discussion
Alopecia is a topic of great interest. Understanding the 
pathophysiology and treatment of various alopecias can 
have a significant impact on a patient’s life.

Current and available treatments for this condition 
have many side effects and show unsatisfactory results. 
For instance, sulfasalazine has immunomodulatory 
and immunosuppressive mechanisms that consist of 
suppression of T cell proliferation and lessening the 
synthesis of cytokines, particularly interleukin (IL) 6, 
1, and 12, tumor necrosis factor alpha, and antibody 
production. It has been used properly as a long-time 
period treatment of numerous inflammatory and auto-
immune sicknesses, which include inflammatory bowel 
disorder and rheumatoid arthritis as well as AA. This 
drug is more effective in patchy alopecia areata than in 
alopecia totalis/alopecia universalis [54]. Besides, it is 
able to induce hair regrowth but not capable of alter-
ing the course of the disease. Because of their serious 
effects and inadequate outcomes especially if used for a 
long period of time, many of the current treatments are 
not approved by FDA. As a result, therapy using bio-
logical factors derived from stem cells are considered to 
be the best option in such scenarios [24].

Stem-cell based therapies include three distinct 
prospective mechanisms: transplantation of multipo-
tent stem cells from different sources, application of 
stem cell-derived secretome and application of stem-
cell derived exosomes. These advanced therapies have 
become recently crucial for treating multiple diseases 
including alopecia, in particular AA [55].

In this review article, we have revised the mecha-
nism by which stem cell derived factors with their par-
acrine effect significantly stimulate hair regeneration 
and reduce inflammation in case of AA. In addition, we 
have summarized all the articles related to alopecia and 
stem cells including research on numerous transgenic 
mice models which have already contributed invaluable 
knowledge to the field.

One of the most important type of stem cells yielding 
positive outcomes in hair regeneration is (ADSC)-CM 
which promotes hair regrowth in a retrospective study 
where hair density and hair thickness were improved 
[56]. Won et  al. showed that ADSC-CM enhanced the 
proliferation of DPC-CM and activated Erk and Akt 
signaling pathways. Akt signaling pathway mediates 
survival signals whereas Erk signaling pathway plays a 
role in mitogenesis. In addition, ADSC-CM modulates 
the cell cycle of DPCs via upregulation of key cell cycle 
related molecules as cyclin D1 and CDK2 [53]. This is 
critical since DP size and number of cells correlate with 
hair growth in anagen phase [56].

Our limitations include collecting information only 
from English articles and one database which is Pub-
med. However its highly important to acknowledge that 
this review sheds the light on the most advanced and the 
least harmful therapy that may change the world of medi-
cine and contribute to treatment of multiple debilitating 
diseases, neurodegeneratives conditions  and  many other  
diseases such as cancer [2]. This review may impact the 
future of regenerative medicine and help clinics treat-
ing hair loss to give hope to their patients by using 
secretome. The secretome from the studies performed by 
researchers has stopped hair loss and induced hair regen-
eration. This potential treatment is devoid of serious side 
effects and is considered a natural non-synthetic product. 
In our opinion, secretome should be approved as a treat-
ment for many conditions including Alopecia.

Conclusion
Stress is a psychological condition which leads to several 
disorders. Chronic stress contributes to hair loss particu-
larly alopecia areata. The autoreactive cells destroy hair 
follicles leading to hair loss and appearance of alopecia 
areata symptoms. Stem cells and their secretory factors 
can be considered as a potential treatment for hair loss 
and alopecia areata. More trails on humans need to be 
done in-order to optimize the conditions for this therapy. 
Number of injections, dose, and time interval should be 
optimized to reach 100% recovery with no relapse.
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