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Abstract 

Tumor microenvironment (TME) is a specialized ecosystem of host components, designed by tumor cells for success‑
ful development and metastasis of tumor. With the advent of 3D culture and advanced bioinformatic methodologies, 
it is now possible to study TME’s individual components and their interplay at higher resolution. Deeper understand‑
ing of the immune cell’s diversity, stromal constituents, repertoire profiling, neoantigen prediction of TMEs has 
provided the opportunity to explore the spatial and temporal regulation of immune therapeutic interventions. The 
variation of TME composition among patients plays an important role in determining responders and non-responders 
towards cancer immunotherapy. Therefore, there could be a possibility of reprogramming of TME components to 
overcome the widely prevailing issue of immunotherapeutic resistance. The focus of the present review is to under‑
stand the complexity of TME and comprehending future perspective of its components as potential therapeutic 
targets. The later part of the review describes the sophisticated 3D models emerging as valuable means to study TME 
components and an extensive account of advanced bioinformatic tools to profile TME components and predict neo‑
antigens. Overall, this review provides a comprehensive account of the current knowledge available to target TME.
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Background
Significant developments made in the field of cancer 
therapy over the last decade have led to the improvement 
in the life expectancy of cancer patients [1]. However, 
these approaches are not equally effective across dif-
ferent tumor types and patients. Even the response to a 
specific line of therapy varies broadly depending on the 
type of tumor, i.e., benign, locally advanced or metastatic 
[2]. These therapeutic challenges have been exceedingly 
attributed to the ability of cancer cells to hijack the host 
machinery to create a niche, i.e., tumor microenviron-
ment for themselves, and progressively modulate it from 

anti-tumoral to pro-tumoral responses [3]. Furthermore, 
a lack of unanimity in defining TME in tumor proximal 
and distal locations, and unavailability of model systems 
that accurately mimic the interaction of cancer cells with 
its microenvironment are the two prime reasons for our 
limited understanding of TME and exploring its thera-
peutic potentials [4, 5].

Tumor microenvironment is an ecosystem created by 
the cancer cells and comprised of components contrib-
uted by both tumor and host. Different factors in the TME 
unanimously ensure the development, progression and 
expansion of tumor through an uninterrupted supply of 
nutrients and oxygen, hampering the immune surveillance 
reach, and efficient drugs carting [5]. A dynamic interac-
tion between cancer cells with these cellular and acellular 
components of TME is essential for generating heteroge-
neity, clonal evolution and enhancing multi drug resist-
ance in tumor cells [6]. Broadly, six distinct specialized 
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microenvironments within TME have been identified 
namely the hypoxic niche, acidic niche, innervated niche, 
metabolism microenvironment, immune microenviron-
ment, and mechanical microenvironment [4].

Presently, most of the therapeutic efforts involving 
the TME either focusses on targeting TME components 
or the development of experimental model systems 
that accurately mimics complexities of TME. Moreover, 
TME-targeting strategies can be achieved by stimulat-
ing the intrinsic host immune system, which encompass 
either activation of anti-tumor immune cells or inhibiting 
pro-tumoral immune cells in the TME. Recent studies 
have shown that these specialized TME microenviron-
ments and niches have potential to act as target of cancer 
therapy through reprogramming [7–22].

Various modes of cancer treatment have been applied 
in clinic, which include surgery, chemotherapy, hormone 
therapy, radiation therapy, immunotherapy, targeted 
therapy, hyperthermia, photodynamic therapy and stem 
cell transplant [23]. More recently, immunotherapy has 
emerged as the preferred regimen because of its ability to 
induce durable responses, and low degrees of side-effects 
as compared to other types of treatment methods [24]. 
Cancer immunotherapy (CIT) strategies include adop-
tive T-cell transfer, immune checkpoint inhibitors, mon-
oclonal antibodies, non-specific immune stimulation, 
oncolytic virus immunotherapy and vaccinations [25]. 
The major challenges posed by CIT approaches include 
lack of therapeutic responses and acquired resistance 
[26]. Therefore, lack of understanding of real-time TME 
dynamics and identification of cancer specific neoantigen 
is the major challenge in developing effective immuno-
therapy. Advanced 3D models provide the opportunity 
to reconstruct and comprehend the heterogeneous TME 
and its dynamic interactions more precisely by using 
human cells, and tightly regulated cellular compositions, 
physiological conditions and physical parameters [27–
31]. Furthermore, bioinformatic tools are emerging as 
prospective means to profile and predict neoantigen. In 
this review, we described different components of TME 
as barrier and opportunity to target cancer, the 3D mod-
els available to understand TME, and the bioinformatics 
advancements towards profiling of tumor microenviron-
ments for identification of novel immunotherapeutic 
targets.

Salient features of TME
The main elements which define the variability in the 
TME includes but are not limited to genomic instability, 
tumor type, tumor location, presence of mutations such 
as KRAS, EGFR, PTEN etc., presence of lymph nodes, 
adipose tissue in the vicinity, and therapeutic interven-
tions [32]. However, there are certain characteristics 

which are constant and encompass the hallmarks of the 
TME. These hallmarks include the presence of stromal 
cells, endothelial cells, components of both innate and 
adaptive immune cells and extracellular matrix [33]. 
Altogether, the intricate interactions among these TME 
elements led to the development of localized and speci-
fied microenvironments within TME which in turn 
defines the resilience and immunogenicity of the tumor 
as summarized in Fig. 1.

Specialized microenvironments of the TME
Hypoxic niche
Uncontrolled proliferation of cancer cells and limited vas-
cularization from host cells give rise to oxygen crisis in dif-
ferent areas of a tumor [34]. These oxygen-restricted areas 
of the TME are known as the hypoxic niche as depicted 
in Fig. 1. The adaptation of cancer cells to a hypoxic envi-
ronment is largely mediated by hypoxia inducible fac-
tor-1 (HIF-1) [35]. HIF-1 initiates the angiogenic process 
through activation of multiple factors including the most 
prominent angiogenic ligand, vascular endothelial growth 
factors (VEGF), and its receptors including VEGFR2 [36]. 
HIF-1 regulates expression of cancer stem cell mark-
ers like KLF4, MYC, OCT4, SOX2, and NANOG, and 
thus help cancer cells to survive through hypoxic crisis 
[37–39]. In addition to pluripotent factors, HIF-1 also 
regulates other epigenetic modifiers involved in regulat-
ing stemness, including BMI1 and SIRT1 [40]. Hypoxia 
signaling can promote EMT mainly through HIF-1-medi-
ated transactivation of EMT inducing factors (EIFs) such 
as TWIST, SNAIL, and ZEB1 [41]. In addition, HIF-1 
can also activate transforming growth factor beta (TGF-
β), WNT, and NOTCH signaling and inhibit the Hippo 
signaling pathway to promote survival of cancer stem cells 
[42–45]. Several compounds capable of inhibiting hypoxia 
inducible factor-1 (HIF-1) or its targets have shown com-
petence in inhibiting tumor progression and are in clini-
cal trials Fig. 2B. For instance, topotecan, a topoisomerase 
1 inhibitor, has been approved by the US Food and Drug 
administration (FDA) to be used as a second line of treat-
ment for small cell lung and ovarian cancers [46]. Another 
drug targeting the hypoxic niche of TME, metformin, is 
presently in a clinical trial for head and neck squamous 
cell carcinoma (NCT03510390) [47]. Moreover, several 
hypoxia-reactive prodrugs, which become activated in the 
TME’s hypoxic niche have been developed [48]. TME also 
uses hypoxic response to rewire the metabolic mecha-
nisms and transcriptomic profiles, which can be used as 
a therapeutic target in combinatorial therapy [49, 50]. 
Wigerup et  al. has described various strategies to target 
hypoxia, and the drugs under exploration in a compre-
hensive review [51].
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Acidic microenvironment
Tumor cells prefer glycolysis as the major mode of glu-
cose metabolism, even in the presence of oxygen [52, 53]. 
Hypoxia and reduced vascularization further triggers gly-
colysis and suppress oxidative phosphorylation in tumor 
tissue. The elevated level of glycolysis causes increased 
lactate accumulation in the TME, which results in the 
extracellular low pH [54]. Acidic microenvironment at its 
initial stage of formation acts as a hostile niche, and trig-
gers apoptosis in cancer cells. However, persistent TME 
acidification prompts cancer-cell adaptation, and results 
in aggressive tumors and hence act as barrier for effective 
therapy [55]. Furthermore, low pH facilitates activation 
of pro-tumorigenic macrophages, neutrophils, dendritic 
cells (DCs), and inhibition of tumor-infiltrating lympho-
cytes (TILs) cytotoxic activity, hence impairing immu-
nosurveillance [4]. Targeting dysregulated pH zones of 
TME is therefore a potential opportunity for effective 
therapeutic intervention (Fig. 1). Several small-molecule 
inhibitors to target the acidic niche of TME are under 
exploration. In addition, pH-responsive drug release sys-
tems have also been recently developed to deliver cyto-
toxic drugs to the acidic TME. Recently, several small 
molecular inhibitors have been developed to target acidic 
tumor microenvironment, and Zhong et  al. provides a 
detailed description of such class of inhibitors [56].

Inflammatory microenvironment
Inflammation plays critical role in initiation, progression 
and metastasis of cancer [57, 58]. The chemo-attractants 
produced by cancer cells stimulates the infiltration of 
immune cells like neutrophils, macrophages, dendritic 
cells, eosinophils and mast cells in TME. These inflam-
matory cells secrete pro-inflammatory cytokines like 
IL-1, IL-6, IL-15, IL-17, IL-23, tumor necrosis factor-α 
(TNF-α), and other molecules like IFN-γ, reactive oxy-
gen species (ROS), serine and cysteine proteases, matrix 
metalloproteinases and membrane-perforating agents 
which are cytotoxic to tumor cells. Inflammation also 
potentiates the proliferation of residential myeloid cells 
and enhance the secretion of inflammatory factors such 
as histamines, cytokines etc., within TME. Addition-
ally, it activates adaptive immune cells, and results in 
recruitment of anti-tumorigenic cytotoxic T lympho-
cytes (CTLs) [59]. Acute inflammation therefore creates 
a hostile condition for the tumor growth and progres-
sion [60–62]. However, persistent inflammation, hypoxic 
condition and a nutrient-restricted microenvironment 
within tumor results in the formation of an immuno-
suppressive microenvironment through accumulation 
of large number of immunosuppressive cells like M2 
macrophages, MDSCs, Treg cells, Breg cells etc., These 
cells secrete pro-tumor cytokines such as IL-6, IL-1β, 

IL-17, IL-11, and growth factors like TNF-α which pro-
motes tumor growth, proliferation,metastasis [63, 64] 
and therapy resistance which act as a barrier for effective 
therapeutic intervention (Fig.  1). Furthermore, multiple 
signaling pathways, such as NF-kB, JAK-STAT, TLR path-
ways, cGAS/STING, and MAPK pathways are known to 
play important role in regulating pro-tumor inflamma-
tion [59]. Targeting inflammatory microenvironment is 
therefore a potential opportunity, and at present, many 
anti-inflammatory drugs are undergoing clinical trials 
(Fig.  2A). One such drug, Statins have shown promis-
ing anti-tumor effect in different cancer types including 
CRC, breast cancer etc. [65, 66]. Aspirin, a non-steroid 
anti-inflammatory drug (NSAID) have shown beneficial 
effect in many kinds of cancer [67, 68]. Sulindac, another 
NSAIDs and selective COX-2 inhibitors are given to 
patients who are at high risk of getting colorectal can-
cer [68]. Targeting IL-6 is also emerging as an attrac-
tive strategy for cancer prevention and Tocilizumab, an 
IL-6R-specific antibody is under clinical trials. Chimeric 
monoclonal antibody siltuximab that binds IL6 is cur-
rently investigated for the treatment of several tumor 
types including prostate cancer and metastatic renal cell 
cancer. Several natural anti-inflammatory agents like 
curcumin, resveratrol, ursolic acid, capsaicin, silibinin, 
silymarin, guggulsterone, and plumbagin have also been 
enormously explored in cancer prevention. The recent 
review by Zhao et al. has comprehensively described the 
tumor-associated inflammation, cytokines/chemokines 
involved, and the targeting drugs under clinical trials 
[59].

Innervated microenvironment
Neuronal involvement in promoting tumor progres-
sion and metastasis is another level of complexity within 
TME. Intra-tumoral nerves are either newly formed 
or recruited fibers that infiltrate the TME from nearby 
tissues [19, 69]. Moreover, neuronal progenitor cells 
migrate from the brain to home in the developing tumor 
[70]. These progenitor cells facilitate tumoral neurogen-
esis through the formation and recruitment of functional 
neurons within the tumor [20, 71]. Additionally, TME 
also secretes chemokines that stimulates the nearby 
nerves to sprout and grow in the tumor [72, 73]. Collec-
tively, this phenomenon has been termed as tumor inner-
vation, and is found to be associated with an aggressive 
tumor phenotype, cancer-related pain, and poor prog-
nosis in clinical studies [19, 74, 75]. Innervation within 
TME relies on the release of neurotransmitters or neu-
ropeptides, such as dopamine, catecholamine, and ace-
tylcholine. Crosstalk between the nerves and other TME 
components such as ECM, immune cells, stromal cells, 
endothelial cells and tumor cells has also been coupled 
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with the poor prognosis and acquired resistance to cur-
rent targeted therapies [76]. Therefore, assessment of 
tumor innervation might serve as a potential predictive 
marker of disease severity. Some studies have shown 
that surgically severing of nerves entering the tumor can 
inhibit tumor growth and metastasis [19, 77, 78]. Anti-
neurotrophic therapies have also shown the promising 
outcomes in targeting densely innervated therapy-resist-
ant tumors (Fig. 2). However, targeting TME innervation 
is relatively new field, and further studies are required to 
clearly understand the role of nerves in tumor progres-
sion. In a recent review, Li et  al. describes the present 
status, future perspectives and the associated challenges 
associated with targeting of tumor innervation [79].

Tumor vascularization
Tumor-associated dysfunctional and leaky blood ves-
sels regulate tumor perfusion and maintains the immu-
nosuppressive microenvironment necessary for tumor 
survival and progression. The abnormal morphology and 
behavior of these tumor blood vessels is because of the 

disorganized network of the tortuous endothelial cells 
and lack of the normal hierarchical artery-arteriole-cap-
illary arrangement [80, 81]. However, irrespective of its 
tissue of origin, several critical functions such as regula-
tion of transport of oxygen, nutrients and other solutes 
from bloodstream to tissues, maintaining blood flow by 
providing non-thrombogenic surface, and controlling 
the infiltration of leukocytes between tissues has been 
attributed to these endothelial cell populations [82]. 
Hence, under malignancies, inhibiting the formation of 
such dysfunctional and leaky blood vessels, interrupt-
ing the supply of oxygen and nutrients, and increasing 
the leukocytes infiltration could be a promising thera-
peutic intervention (Fig. 1). Therefore, tumor-associated 
endothelial cells can act as an attractive target for thera-
peutic purposes [83]. Several anti-angiogenic compounds 
have been developed and tested in clinical trials (Fig. 2D); 
the results are promising with an increase in the overall 
survival. Bevacizumab (Avastin), the first anti-angiogenic 
antibody approved by the FDA is already in use [84]. 
Furthermore, sunitinib (Sutent), a multi-tyrosine kinase 

Fig. 1  Tumor microenvironment (TME): TME is a complex ecosystem of cellular. niche, acidic niche, inflammation etc. Extracellular matrix (ECM), 
the major non-cellular and acellular components, and several specialized microenvironments such as hypoxic component, provides architectural 
support, and act as a store house for factors such as chemokines, cytokines, growth factors etc., required for continuous tumor transformation 
process. Cellular components consist of non-immune and immune cell populations. Non- immune cell types include tumor cell, cancer associated 
fibroblast (CAF), neuron, and endothelial cell (blood vessel) that helps in tumor invasion, progression, and metastasis. Immune cells within TME 
comprise of tumor-associated macrophages (TAMs), tumor- associated neutrophils (TANs), dendritic cell (DCs), regulatory T cell (Treg), B cell, Natural 
killer (NK) cell, and cytotoxic T lymphocytes (CTLs). In immuno-competent conditions, CTL identifies and bring about tumor cell killing by releasing 
cytotoxic molecules such as granzyme-B, interferon-γ (IFN-γ), perforins etc. The figure is prepared by using BioRender software and publication 
license is obtained
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inhibitor of VEGF, platelet-derived growth factor recep-
tor (PDGFR), and receptor tyrosine kinase—oncogene 
c-KIT (KIT) is a potent anti-angiogenic drug approved 
for the treatment of various tumors [85]. Recent review 
by Zheng et  al. has comprehensively described various 
approaches employed in targeting tumor vascularization 
[86].

Major components of TME and targeting strategies
Stromal cells
Cancer cells and other TME cells secretes growth factors 
like transforming growth factor beta (TGF-β), fibroblast 
growth factor 2 (FGF2), platelet-derived growth fac-
tor (PDGF), and epidermal growth factor (EGF) which 
are key regulators of fibroblast recruitment and activa-
tion [87, 88]. Cancer associated fibroblasts (CAFs) pro-
vide the physical support to the cancer cells by secreting 
ECM (Fig. 1). CAFs also secrete MMPs, which are ECM-
degrading proteases; hence regulates ECM turnover and 
plays crucial role in tumor invasion [89]. Additionally, 
CAFs also play a critical role in the angiogenesis, pro-
gression and metastasis of tumors by producing many 
growth factors and proinflammatory cytokines like vas-
cular endothelial growth factor (VEGF), IL-6, CXC-
chemokine ligand (CXCL12), TGFβ, NF-κB, TNF-α, 
IFN-γ, SDF-1α, EGF, galectin-1 [90–95]. CAFs therefore 
are the key determinant in the tumor development, and 
are emerging as a potential target for cancer therapies 
[96] as described in Fig.  2. One of the most success-
ful approaches is targeting fibroblast activating protein 
(FAP) expressed by stromal cells. FAB is known to be 
involved in the proliferation of stromal cells as well as 
ECM secretion [97, 98]. Anti-FAB antibody conjugated 
with cytotoxic drug like maytansine (DM1) has shown 
promising results in xenograft mice models studies [99]. 
Besides, all-trans retinoic acid (ATRA) has also been 
observed to inhibit FAP, TGFβR and αSMA expression in 
CAFs, and therefore, currently being used for the treat-
ment of multiple cancer types in conjunction with other 
drugs [100, 101]. Furthermore, drugs-like paricalcitol, a 
vitamin D receptor agonist, has been used to reprogram 
pro-tumor CAFs to a quiescent-like state [102]. In a com-
prehensive review, Chen et  al. describes various strate-
gies available to target CAFs, and different drugs under 
evaluation presently [103].

Extracellular matrix (ECM)
Extracellular matrix (ECM) is the major non-cellular 
component of TME and mainly comprise of collagen. In 
addition to providing structural framework, ECM also 
acts as a store house of several chemokines, cytokines 
and growth factors which plays important role in creat-
ing immune-suppressive tumor microenvironment [104]. 

Approximately 60% of the total mass of the solid tumors 
are comprised of ECM deposits that provides structural 
stiffness to them. Such ECM rigidity enables the cancer 
cells to proliferate aggressively and undergo directed 
cell migration [105, 106]. High matrix stiffness has been 
observed in aggressive tumors such as triple negative 
breast cancer and associated with poor prognosis [107] 
(Fig.  1). TGF-β, which regulates collagen synthesis, has 
been shown to inhibit tumor growth in several in  vitro 
studies [108–110]. Fresolimumab, a monoclonal antibody 
that targets TGF-β mediated collagen synthesis, under-
went several clinical trials (clinicaltrials.gov identifier: 
NCT01401062 and NCT02581787) [111–113]. Similarly, 
ronespartat (SST0001), showed strong anti-tumor effect 
in multiple myeloma in a Phase 1 clinical trial (Clinical 
Trial NCT01764880) [114]. Since the high expression of 
MMPs in the TME regulates ECM homeostasis and facil-
itates tumor invasion and metastasis, MMPs inhibitors 
have also been evaluated as potential therapeutic target 
and have shown promising results [115]. Drugs target-
ing MMPs like incyclinide, have been through several 
clinical trials for AIDS-related sarcomas (Clinical tri-
als NCT00004147, NCT00003721, NCT00001683, and 
NCT00020683) [116]. Other MMPs-targeting agents 
include JNJ0966, which is highly selective towards MMP-
9, and the antibody Fab 3369, which targets MMP-14 
[117, 118]. In a recent review, Huang et al. has described 
various ECM targeting strategies in detail [119].

Major immune components—innate and adaptive
Immune cells are essential components of TME. Depend-
ing on the stage and complexity of the TME, immune 
cells can either be anti-tumorigenic or promote tumor 
growth. Chronic inflammation at the site of tumor 
growth activates the residential and circulatory immune 
cells to accumulate in the vicinity of tumor. Furthermore, 
components of tumor microenvironment especially stro-
mal cells secrete cytokines and chemokines which attract 
infiltration of immune cells from both innate and adap-
tive immune system. Various review articles discussing 
diverse immune components of TME in detail are widely 
available in literature, hence, the description of immune 
components of TME is kept concise in the current review 
[33, 120–126].

Macrophages  Macrophages are specialized cells of the 
innate immune system that are derived from monocytes. 
Several soluble factors secreted by the cancer or stromal 
cells are responsible for recruitment of macrophages 
within TME. These soluble molecules include IL-3, col-
ony stimulating factor 1 (CSF-1), and CCL2 [61]. CSF-1 
induce monocyte transformation into highly plastic non-
polarized (M0) macrophages. M0 macrophages can be 
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stimulated by interferon-γ (IFN-γ) into activated anti-
tumor M1 macrophages which exerts cytotoxic effect on 
tumor by secreting cytokines like IL-2 and TNFα. Con-
versely IL-4, IL-10 and IL-13 secreted by tumor or stro-
mal cells can stimulate conversion of M0 to pro-tumor 
M2 macrophages. These tumor-associated macrophages 
(TAMs) secrete anti-tumor cytokines IL-6, IL-8 and IL-10 
and matrix metalloproteinases (MMPs) which regulates 
neo-vasculogenesis in TME [127]. The cytokines and 
chemokines secreted by macrophages and tumor cells 
within TME further impede CD8 + T-cell infiltration, thus 
creating an immunosuppressive microenvironment which 
support tumor growth and metastasis [61]. High infiltra-
tion of TAM within TME has been shown to be associ-
ated with poor prognosis in many tumor types [128–131]. 
Targeting macrophages therefore is a promising strategy 
verified in many clinical trials; however complete removal 
of macrophages has shown severe liver toxicity. Various 
indirect approaches to target TAMs are presently under 
evaluation in several studies Fig. 2F, G. For example, tar-
geting colony stimulating factor by CSF1R inhibitors 
alone or in combination with other agents have shown 
promising anti-tumor efficacy in various tumor types. 
Several studies targeting pro-inflammatory CCR2/CCL2 
axis have shown initial promising outcomes. PF-04136309 
(CCR2 inhibitor) is in a phase 1 clinical trial and has been 
tested in combination with FOLFIRINOX chemotherapy 
in PDAC patients [132]. Similarly, changing the polariza-
tion of pro-inflammatory M2 to anti-inflammatory M1 
state within TME can enhance the anti-tumor effect of 
TAMs, and such strategy is under evaluation in several 
clinical trials. Recent developments regarding therapeutic 
targeting of macrophages within TME have been exten-
sively described in the review by Pathriaet et al. [133].

Neutrophils  Tumor-associated inflammation drives 
accumulation of neutrophils within TME. The chemokine/
cytokine composition of the TME determines the anti-
tumor (N1) or pro-tumor (N2) phenotype of tumor-
associated neutrophils (TANs). Anti-tumor N1 TANs 
possess high levels of TNFα, CCL3, ICAM-1, and are also 
involved in the production of ROS which is cytotoxic to 
tumor cells. In the later stages of tumor development, 
there is high infiltration of N2 neutrophils that support 
tumor growth and progression [134, 135]. IL-8 secreted by 
tumor cells in the TME stimulates neutrophils to release 
arginase enzyme which is responsible for degradation of 
arginine. Arginine is essential for the activation and pro-
liferation of T-cell. Hence, TANs play important role in 
suppression of T-cell immune response. Additionally, 
TANs also suppress NK cells activation by regulating the 
secretion of IL-18. Tumor-associated neutrophils (TANs) 

therefore contribute substantially to tumor progression, 
invasion, and angiogenesis [136, 137]. A comprehensive 
account of targeting TAN in cancer immunotherapy has 
been recently described by Rahmy et al. [138].

Dendritic cells  Tumor infiltrating dendritic cells (DCs) 
are the chief antigen-presenting cells (APCs) which scan 
and phagocytose the tumor associated antigens, process 
the antigen peptide to present with MHC class II molecule 
and prime CD8 + T cells. The pro-inflammatory cytokines 
and other soluble factors present in TME such as, IL-15, 
IL-2, IL-21, IFN-α, and GM-CSF further enhance the anti-
tumor characteristic of DC.

Tumor cells and other TME components like stromal 
cell, endothelial cells, tumor infiltrating immune cells 
also secrete cytokines, chemokines, prostaglandins and 
growth factors which can modulate the DCs to behave 
in a pro-tumor fashion. These soluble factors like IL-6, 
IL-10, IDO, M-CSF, TGF-β1, PGE2, VEGF present in 
TME reprogram DCs to possess inefficient antigen-
presenting capabilities, and an immunosuppressive 
regulatory phenotype that supports tumor progression 
[139–143]. The balance between the levels of different 
cytokines and growth factors in TME determines the 
pro-tumor or anti-tumor nature of DC. Targeting these 
cytokines therefore can be promising strategy to poten-
tiate the immunotherapies like immune checkpoint 
blockade and CAR-T therapy. Personalized vaccines 
comprise of patient derived DCs which are engineered 
and amplified and injected back to host circulation have 
shown promising tumor suppressing effect [144] Fig. 2J. 
Similarly, delivery of ligand for toll-like receptor 3 (TLR3) 
or STING agonist to activate DCs at the site of tumor 
are showing promising result in enhancing DC based 
immune response [145]. Furthermore, combination 
therapy of DC vaccines with anti-inflammatory drug like 
aspirin have shown promising outcome in pre-clinical 
models [146]. Wculek et al. has described the role of den-
dritic cells in TME and DC-targeting strategies in a com-
prehensive review [147].

Natural killer cells  Natural killer (NK) cells are key com-
ponents of the innate immune system and are highly effi-
cient in identifying and killing undifferentiated or poorly 
differentiated tumor cells in the tumor or in circulation 
[148, 149]. The major mode of action of NK cells is by 
releasing perforins and granzyme B to induce necrotic 
or apoptotic cell death. NK cells secrete a wide variety 
of anti-tumor cytokines such as IL-10, IL-5, IL-13, GM-
CSF, IFN-γ, TNF-α [150, 151]. IFN-γ is one of the major 
anti-tumor cytokines secreted by NK cells. The balance 
between the cytokines secreted by tumor infiltrating 



Page 7 of 27Tiwari et al. Journal of Biomedical Science           (2022) 29:83 	

immune cells, tumor cells or stromal cells in the tumor 
microenvironment determines the pro-tumor or anti-
tumor characteristic of NK cells [152]. Immunosuppres-
sive factors secreted by tumor cells include TGF-β, VEGF, 
indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 
(PGE2), and adenosine which inhibit antitumor immune 
functions. Tregs, MDSC, and M2-macrophages secrete 
immunosuppressive cytokines such as IL-10 and TGF-β 
which inhibits NK cells activation and function. There-
fore, enhancing the NK cells activity within the TME is a 
promising direction in cancer therapy [153, 154] Fig. 2I. 
Wu et al. has provided a detailed description of NK cell-
based targeting strategies for cancer therapy [153].

T cells  T-cells forms the major line of anti-tumor adap-
tive immune response in TME. Tumor-infiltrating lym-
phocytes (TILs) present in TME include CD4 + helper 
cells, immunosuppressive CD4 + FOXP3 + regulatory 
T-cells (Tregs) and CD8 + cytotoxic T-cells (CTLs). 
Higher CD8 + T cells infiltration is mostly associated with 
better prognosis and therapy response. Naive CD8 + T 
cells gets activated and differentiate into cytotoxic effec-
tor T cells on encountering tumor-associated antigens 
(Fig. 1-Active T cell mediated tumor killing). Under nor-
mal circumstances, once the antigen is eliminated, most 
effector T cells undergo apoptosis while a small fraction 
differentiate into memory T cells. However, in cancer, 
persistent stimulation of CD8 + T cells in tumor micro-
environment results in a hyporesponsive state of T cell 
known as T cell exhaustion. T cell exhaustion shows pro-
gressive loss of effector function like loss of IL-2, TNF-α, 
and IFN-γ production and sustained expression of inhibi-
tory receptors. High expression of inhibitory receptors 
such as PD-1, CTLA-4, Tim-3, LAG-3, B- and T-lympho-
cyte attenuator (BTLA), T-cell immunoreceptor with Ig 
and ITIM domains (TIGIT), NK cell receptor 2B4, and 
the glycoprotein CD160 are associated with the sever-
ity of the dysfunctional T cell phenotype. Reactivation 
of CD8 + T cells therefore presents a huge opportunity 
to target advanced tumors. Indeed, immune checkpoint 
blockers (ICBs) emerged as most promising therapeutic 
intervention in many types of cancer. At present, all the 
cancer immunotherapeutic approaches are based on the 
objectives of sustaining the activation of T-cells, and stim-
ulating T-cell infiltration within the tumor [155] Fig. 2K. 
In the recent review, Waldman et al. has defined various 
T cell-based targeting approaches in cancer therapy [156]. 
The major immunotherapeutic strategies employed cur-
rently to attain these objectives include immune check-
point blockers (ICBs), chimeric antigen-receptor (CAR)-
based therapies, and cancer vaccines. In the following 
sections, the above-mentioned major cancer immuno-
therapeutic approaches have been described in detail.

Cancer immunotherapeutic approaches
Immune checkpoint blockers
Drugs targeting immune checkpoints, or their associated 
ligands have emerged as one of the most successful can-
cer immunotherapeutic approaches in several cancer types 
such as melanoma, non-small cell lung cancer (NSCLC), 
microsatellite instability high colorectal cancer, gastric 
cancer etc. Immune cell populations like T-cells, B-cells 
and cancer cells express repressor proteins, which when 
activated marks the termination of the immune response. 
These checkpoint proteins help in maintaining homeosta-
sis of the immune response by controlling hyper immune 
activity to prevent autoimmunity. The major checkpoint 
proteins expressed by immune cells are programmed cell 
death protein 1 (PD1) and cytotoxic T lymphocyte-asso-
ciated protein-4 (CTLA4). Recent studies have reported 
a few other checkpoint proteins, which include VISTA, 
TIM3, TIGIT, and LAG3. T- cell exhaustion is associated 
with high expression of checkpoint protein which inhib-
its T-cells clonal expansion and inactivates T cell immune 
response (Fig.  1—Immune evasion). Additionally, can-
cer cells also express high levels of checkpoint protein as 
well as its ligands (Fig. 1). TME containing high levels of 
exhausted T cells expressing checkpoint proteins ben-
efits most from CPBs. Mostly, a three-factor metric sys-
tem is used to predict the efficacy of immune checkpoint 
inhibitors. These factors include 1) expression levels of 
checkpoint proteins and their ligands, 2) tumor mutation 
burden, and 3) presence of CD8 + T cells within the tumor. 
However, these factors cannot be considered as the gold 
standard to ensure the therapeutic response, because pri-
mary resistance can strongly limit the efficacy of immune 
checkpoint therapy in a majority of cancer patients.

T‑cell based therapeutic strategies
Adoptive T-cell therapy is based on the principle of 
expanding the patient’s T-cell pool to enhance the 
immune system’s ability to identify and destroy tumor 
cells. Adoptive cell therapy involves isolation of autolo-
gous or allogenic T-cells from the patient or donor 
respectively, followed by ex  vivo expansion and injec-
tion into the patient. Adoptive cell therapy has become 
a potential therapeutic option in many types of cancer 
[157, 158]. Infusing tumor-infiltrating lymphocytes (TIL) 
along with interleukins like IL-2 and lympho-condition-
ing showed promising results in a subset of patients with 
metastatic melanoma [159]. However, major disadvan-
tages associated with these therapies include difficulty in 
predicting which patients will respond, and the cost and 
time involved in ex  vivo production of T lymphocytes 
[160]. Recently, Morotti et al. has described in detail the 
promises and challenges of adoptive T cell therapy [161].
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CAR-T cell therapy involves production of genetically 
engineered T cells expressing synthetic T-cell receptors 
(TCRs) specific to the tumor antigens. CAR-T cells have 
been proved to be very impactful cancer therapy in most 
of the relapsed or refractory hematological cancers. Sev-
eral clinical trials involving CAR-T cell therapies have 
shown promising results [157]. The astonishing outcomes 
of these trials has resulted in the approval of several 
drugs by the European Commission (EC) and U. S. Food 
and Drug Association (FDA) between 2017 and early 
2021 [162]. The major drawback associated with CAR-T 
cell therapy is the development of systemic inflammatory 
toxicity in the host body [163, 164]. Further studies are 
ongoing, which aim to reduce the bottlenecks associated 
with this line of cancer therapy. Fesnak et al. has provided 
a detailed review on the promises and challenges associ-
ated with CAR-T cell therapy [165].

Alternatively, CAR-NK cellular immunotherapy has 
been developed to overcome the CAR T-cells therapy 
limitations like graft-versus-host disease (GVHD), 
cytokine release syndrome (CRS), neurotoxicity etc., 
[166, 167]. Abundant availability from various sources 
and no HLA-matching restriction are the two major 
advantages associated with CAR engineered NK cells 
[168]. In contrast to CAR T-cells, CAR-NK cells are con-
sidered as safer because they may rarely cause GVHD, 
CRS and neurotoxicity. Additionally, CAR-NK cells 
secrete a totally different set of cytokines (e.g., GM-CSF 
and INF-γ) as compared to those pro-inflammatory 
released by CAR T-cells (e.g., TNF-α, IL-2, IL-6) [169]. 
Moreover, CAR-NK cells can identify and neutralize 
tumor cells both in CAR-dependent as well as CAR-inde-
pendent manner [167]. CAR-NK cells pro-tumor effects 
are contributed by their ability to release of immunosup-
pressive cytokines (e.g., TGF-β, adenosine and indoleam-
ine 2,3-dioxygenase) within immuno-suppressive TME, 
and also to express inhibitory receptors (e.g., TIGIT, 
PD-1, CTLA-1, NKG2A, CISH) [170, 171]. Therefore, 
the future efforts should aim at increasing the efficacy 
of the CAR-NK cell immunotherapy. Recently, a clini-
cal trial (NCT03056339) was conducted on 11 patients 
to target CD19-expressing B-cell malignancies through 
CAR-NK cells derived from umbilical cord blood (UCB) 
[59]. 8/11 patients in this trial showed clinical response, 
and seven of those had rapid response and complete 
remission [172]. Altogether, the results from this trial 
and other ongoing clinical trials suggest that the CAR-
NK cell therapy may represent the future opportunity in 
cancer immunotherapy. In the review by Albinger et al., 
an extensive comparative study describing the potential, 
limitations and ongoing clinical trials of CAR-based ther-
apies i.e., the CAR-T and CAR-NK, has been described 
extensively.

Cancer vaccines
Therapeutic cancer vaccines are personalized to patients 
and are based on the principle of activating host T cells 
by exposing them to tumor-specific neo-antigens (i.e., 
mutated proteins on cancer cells). The major hurdle to 
this therapeutic strategy is to identify and obtain the 
tumor-specific neoantigens. In several studies, cancer 
cells obtained from biopsies or whole cell lysate were 
used as vaccines, but in most of the cases it had failed to 
activate the host immunity-possibly due to an insufficient 
amount of tumor-specific neo-antigens. Hence, other 
approaches using dendritic cells are employed, in which 
host DCs are activated by tumor-specific neo-antigens, 
primed, expanded and injected back in the host circula-
tion [173]. One such vaccine sipuleucel-T showed some 
initial success and was ultimately approved by the FDA in 
2010 [174, 175]. mRNA vaccines are recently emerging as 
a mode to express neo-antigen peptides. However, these 
strategies are far from getting into the treatment regi-
mens due to the complications associated with the pro-
duction and administration [23]. Recently, Hu et  al. in 
their review has provided a detailed account of the status 
of cancer vaccines in cancer therapy [176].

Despite the promising response observed with cancer 
immunotherapies, a large section of patients does not 
respond to the initial treatment or develop resistance 
later during the treatment. Several possible intrinsic and 
extrinsic factors contribute to such primary or acquired 
resistance. Aberrant intracellular signaling pathways in 
tumor cells is one of the key factor which inhibits T cell 
function and infiltration in the TME. One of the major 
pathways reported to be overactive in many cancer 
types, is the MAPK/ERK pathway which results in over-
production of VEGF and IL-8, and establishment of an 
immunosuppressive environment for the T-cells [177]. 
Genetic mutations in EGFR and loss of function muta-
tion in PTEN can activate the MAPK or PI3K pathways, 
which are reported to cause resistance to immune check-
point therapy [178]. Genetic alterations in interferon-γ 
(IFN-γ), a prominent anti-tumor factor secreted by T 
effector cells, can also lead to immunotherapy resist-
ance [179]. Aberrant β/Wnt signaling is also associated 
with primary or acquired resistance in many cancer types 
[180]. Furthermore, tumor cells are proficient in hiding 
from cytotoxic T-cells either by 1) preventing exposure 
of tumor-specific antigens on major antigen present-
ing cells by altering the MHC, or 2) by extensive trim-
ming or modification of the antigen to be recognized 
by the T cells which lead to primary or acquired resist-
ance. Furthermore, overexpression of immune check-
point proteins and their corresponding ligands in the 
TME is a characteristic feature of many cancer types 
and is associated with T-cell exhaustion. This is one of 
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the prominent factors involved in acquiring resistance 
against immunotherapy.

The extrinsic factors that contribute to primary or 
acquired resistance to immunotherapy include the com-
ponents of the TME other than tumor cells. Myeloid 
lineage cells in the TME including tumor-associated 
macrophages, neutrophils, monocytes etc., inhibit T cells 
trafficking in the tumor, and sustain tolerance towards 
immunotherapy. Tregs, professional checkpoint cells, 
control T cells activity by secreting inhibitory cytokines 

or direct killing. High recruitment of Tregs in TME is 
associated with immunotherapy resistance [181]. TME’s 
acellular components such as hypoxia, ECM, low pH 
etc., also creates a highly hostile nutrient depleted, low 
oxygenated, acidic niche which favors T cell depletion 
or inactivation, thus playing a crucial role in acquiring 
resistance to various immunotherapies. Sharma et al. in 
their latest review provides a comprehensive account of 
the mechanism involved in immunotherapy resistance 
[2].

Fig. 2  Targeting different TME components for cancer therapy: Current strategies available for targeting major TME components for effective 
cancer therapy are shown. A Targeting inflammation, B targeting hypoxic TME, C targeting TME nerve supply, D targeting TME vascularization and 
cellular components like E targeting cancer associated fibroblasts (CAFs), targeting innate immune components by F Inducing M1Polarization, 
G Inhibiting M2 Polarization, H targeting Neutrophils, I targeting Natural Killer cells, J targeting Dendritic cells, and targeting adaptive immune 
components by K Activation of CTLs and L Targeting B cells are promising targets. Various drugs/inhibitors/antibodies targeting these components 
are in preclinical studies, under clinical trial or FDA approved for cancer treatment. The figure is prepared by using BioRender software and 
publication license is obtained
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Highly efficient preclinical models are therefore 
urgently warranted to understand the complexity of the 
TME and it’s possible reprogramming for therapeutic 
interventions and the mechanism associated with ther-
apy resistance.

Models to study interactions of the TME
Several attempts have been made towards in  vivo and 
in vitro modelling of the TME interactions, and most of 
these studies are based on 2D co-cultures, xenografts, 
humanized mice, and syngeneic mouse models [5, 182, 
183]. Undoubtedly, 2D models offers a cost-effective 
model system with high degree of reproducibility of the 
conditions. However, the cells in 2D co-cultures form a 
monolayer, and thus the models are unable to accurately 
mimic the TME’s complex cellular interactions and sign-
aling pathways [30, 184, 185]. Furthermore, the 2D mod-
els are unable to maintain the original morphology and 
polarization of the TME components. On the other hand, 
animal model systems are very expensive. Also, very often 
these in vivo model systems lack true representations of 
human-specific immune response [186, 187]. This par-
tially explains why only 27% of the drugs with high effi-
cacy in animal models can successfully reach to phase II 
clinical trials [188, 189]. Bioengineered 3D in vitro model 
systems can overcome several of the abovementioned 
challenges posed by 2D and animal models [182]. In the 
following sections, various 3D in vitro models and their 
utility in studying complex interactions within the TME 
will be described.

Cell/extracellular matrix‑based 3D models
In concordance with the fact that ECM is a major com-
ponent of the TME with tumor-inducing capabilities, 
several cell/ECM-based 3D models have been devised to 
study interactions of the TME components [182].

Tumor cells are cultured within decellularized native 
tissues or natural/synthetic biomaterial scaffolds that 
provide proper cell adhesion, differentiation, and migra-
tion properties, and closely mimic the cell-ECM inter-
actions [190–199]. While synthetic polymer provides 
higher degree of control and modulation of scaffold’s 
properties, the natural or decellularized ECM (dECM) 
recreate biochemical and structural environments simi-
lar to that of in vivo conditions by maintaining ECM and 
tissue-specific architecture [198, 199]. dECM have an 
additional advantage over other scaffolds as it considers 
ECM environment as a whole, whereas scaffolds focus 
on specific ECM components. The major concern with 
dECM-based 3D models is the intactness of the tissues, 
as decellularization procedure involves treatment with 
enzymes and detergents [200]. Along with selection of 
scaffolds biomaterials, cell types and physical/chemical 

conditions are other critical factors that determine the 
experimental outcomes of tumor modeling. For instance, 
seeding porous scaffolds with different cell populations 
of the TME, and allowing them to proliferate and rear-
range, result in a 3D matured scaffold culture condition. 
Whereas cells cultured in a hydrogel-based scaffolds, 
after proliferation and undergoing rearrangement gen-
erate a matured cell-laden hydrogel. Further, depend-
ing on the hydrogel and cell type used for seeding, such 
matured cell-laden hydrogels can form cell clusters/
organoids. While maintaining the original hydrogel net-
work, matured and rearranged cell populations can also 
produce ECM in such in vitro 3D models. The hydrogel-
based model’s mechanical properties can be modulated 
in order to closely mimic tumor ECM [182].

Based on these considerations, Rijal et  al. developed 
a native ECM based tissue matrix scaffold (TMS) [201]. 
This in vitro model consists of multilayered tissue culture 
platform derived from mouse mammary tissue. Cultur-
ing of the stromal and cancer cells in compartmentalized 
manner, induces the expression of extracellular and intra-
cellular biomarkers of breast cancer, thus confirming the 
correct proliferation and cancer growth. Therefore, this 
model mimics mammary tissue, and can be used for spe-
cific tumor biomarkers screening [201]. Similarly, Hume 
et al. created a 3D tumor model by culturing tumor cells 
and adipocytes in collagen scaffolds [197]. Presence of 
adipocytes was observed to promote cancer cell invasion 
by increasing tumor cells migration, while decreasing the 
total number of drifting cells. Thus, this 3D tumor model 
clearly demonstrates the heterogeneous cell behavior 
within TME [197].

Scaffolds can also be used to develop more recent 
in  vitro 3D bioprinted models, and investigate spatio-
temporal patterning of cells in tumor [187]. In 3D bio-
printing technique, bioinks (sorted individual cell types 
and/or scaffold/hydrogel) are deposited in a predefined 
manner using a 3D bioprinter and then crosslinked to the 
carrier material (scaffold/hydrogel) to generate a stable 
culture. Depending on the bioinks and the specific aim of 
the study, different types of mature 3D bioprinted models 
can be obtained after cells proliferation and rearrange-
ment, i.e., scaffold-free culture, semi-scaffold free culture 
and scaffold-based cultures. Such 3D in  vitro model’s 
composition and architecture is well-defined with higher 
degree of reproducibility. These model systems have ena-
bled us to introduce tumor cells into the complex TME, 
and to study ECM deposition, interaction of different 
TME cell types, and self-organization of the tissue itself 
[202]. Recently, Langer et  al. has bioengineered a more 
desmoplastic TME by sequentially incorporating breast 
cancer cell core surrounded by human mammary fibro-
blasts, umbilical vein endothelial cells, primary human 
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preadipocytes and mesenchymal stem cells [202]. Using 
this 3D tumor model, self-organization of tissue, inter-
action of tumor and stromal cells, and ECM deposition 
in complex tumor microenvironment could be learned 
[202].

Bioprinted 3D in  vitro models can also be used to 
investigate time-dependent studies such as the kinetics 
or dynamics of administered drugs, growth factors and 
metastatic dissemination of cancer cells over time [203]. 
For instance, Meng et al. bioprinted 3D model to recre-
ate TME that primes metastatic spread of lung cancer 
[203]. Taken together, with the advent of 3D bioprint-
ing technique, creation of spatially defined 3D in  vitro 
models has been improved. Well-defined composition 
and architecture, provision to use variety of materials 
with higher precision while fabrication, and commercial 
availability has further enhanced the utility of these 3D 
model systems. The common limitations associated with 
development and utilization of such in vitro 3D models 
include toxicity of bioinks, slow printing speeds and lack 
of reproducibility to devise state-of-the-art model system 
[204, 205].

Cell‑based 3D models
In cell-based 3D models, the cells are present as aggre-
gates, and usually they formulate their own intrinsic 
ECM. Thus, these models closely mimic tumorigenesis, 
the physiological framework of tumor organization, 
and tumor-stromal interactions within the TME [182]. 
Depending upon the differences in the initial stages of 
constitution, cell-based 3D models can be broadly classi-
fied as 3D (hetero)spheroids and organoids.

3D (hetero)spheroids model system
3D (hetero)spheroids are the most extensively used 3D 
model system in cancer biology and are specifically used 
for anticancer drugs testing. Such spheroid models are 
formed as a result of forced aggregation of selected cells 
that manifest high deposition of ECM or high cell–cell 
contact [182]. The main advantage of using cell-based 3D 
(hetero)spheroids model systems is its ability to precisely 
recreate important in  vivo tumor microenvironment 
features such as morphology constituted by multiple 
cell layers, cell–cell/cell-ECM interactions, cellular het-
erogeneity, gene expression patterns, and cell signaling 
pathways [206]. Moreover, these 3D (hetero)spheroids 
provide flexibility to maintain different types of physi-
cal/chemical gradients and integrate multiple cell types 
[182, 206]. In conjunction with 3D bioprinting technolo-
gies, 3D (hetero)spheroids are cost-effective 3D culture 
method with an ability to create more physiologically 
representative tumor model. Although the cell-based 
3D (hetero)spheroids model systems have immensely 

advanced our cancer biology knowledge, there are few 
constraints associated to it such as slow fabrication rate 
and more costly as compared to 2D cultures [182]. Fur-
thermore, lack of homogeneity in the size/morphology of 
cell aggregates in spheroids compromise the reproduc-
ibility, and thus impedes the development efforts of the 
cell-based 3D standard models [207].

Organoids‑ 3D tumor model system
Organoids are 3D tumor models generated as a result of 
proliferation and self-organization of a single progeni-
tor cell. Therefore, these models can closely mimic the 
architecture and the complexity of the tissue of origin 
[208]. Unlike spheroids, organoids are developed based 
on the genetic programming of the progenitor cell, thus 
mimicking the actual tumor development more closely. 
The major advantage of organoid 3D models is their dis-
tinct capability to follow different stages of native tumor 
progression trajectory, and therefore its capability of 
retaining the cellular heterogeneity and maintaining the 
pathophysiology of the tumors in vitro [209]. Moreover, 
as organoids can retain salient tumor features in three-
dimensional space, these models are suitable for study-
ing tumor-stroma interactions. However, organoids has 
some limitations such as its development is time-con-
suming with high degree of variability between experi-
ments, some of the mature organoid models does not 
truly represent in  vivo conditions, and lack stroma and 
vasculature system [210]. Furthermore, the tumor orga-
noid models lack immune-competent microenvironment 
and stromal components because of the epithelial origin 
of the progenitor cells. This drawback has been overcome 
by co-culturing organoids with stromal and patient’s 
immune cells [211, 212]. More advanced organoid culture 
systems with well-defined architecture, cellular composi-
tion and signaling profiles can be developed by combin-
ing 3D bioprinting technique with organoids [211, 213]. 
Such combined strategy has the potential to ensure both 
precise spatial arrangement of cells in 3D models and 
maintaining the hierarchical-like architecture of the TME 
[182].

3D organoid models developed using patient-derived 
tissues are known as patient-derived organoids (PDOs). 
These tumor model systems have removed the bottle-
neck of extrapolation of results from animal and patient-
derived xenografts (PDX) models [210, 211]. PDOs 
can be generated from various types of adult stem cells 
(ASCs) and pluripotent stem cells (PSCs) from distinct 
tissues through a procedure like human organogenesis 
[214, 215]. PDOs derived from ASCs contain epithe-
lial cells and are suitable model system to study tissue 
regeneration and homeostasis. Contrastingly, PSCs 
derived PDOs can contain cells of both epithelial and 
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non-epithelial origins, and are appropriate to study organ 
development [216]. Stability of gene expression pro-
files and reproducibility of model system are the major 
advantages associated with the usage of PDOs [217]. 
PDOs recreates basic characteristics of primary tumors 
while maintaining genomic and transcriptomic profiles 
of primary tumors [209, 218–226]. The heterogenei-
ties specific to patients and cancer subtypes can be cap-
tured using individual PDOs, which has been reported 
to be in more consent with the actual patients response 
to drugs [227]. Additionally, PDOs can also be very 
useful in developing patient-specific treatment strate-
gies. By combining organoids derived from healthy and 
tumor tissues from a patient, the efficacy of large number 
of drugs can be tested at the same time. The best drug 
for a patient responds by selectively killing tumor cells 
without damaging the healthy ones [227]. Moreover, the 
ease of manipulation of PDOs through CRISPER/Cas9 
approach has encouraged its implementation for tumor 
modelling and identifying significant driver mutations 
involved in the tumor development and progression 
[228]. Recently, circulating tumor cells (CTCs) isolated 
through non-invasive liquid biopsies of cancer patients 
has also been used to develop PDOs. These CTC-derived 
organoids could be pivotal in gaining genetic and epi-
genetics insights about cancers in patient-specific man-
ner [229]. Collectively, the development of PDOs has 
enormously transformed the drug and target discovery 
research arena, providing new avenues for drug testing, 
and designing personalized therapeutic interventions in a 
pre-clinical setting [230].

While PDOs models have many advantages, there 
are several limitations associated to it. These cell-based 
3D models have been reported mostly to be deficient of 
essential components like blood vessels, stromal cells, 
immune cells, surrounding mesenchyme and neurons, 
thus lacking the typical TME [208]. Deficiency of immune 
cells within PDOs TME appears to limit its value in stud-
ies evolving tumor immunotherapy approaches [227]. 
For instance, at present, the efficacy determination of the 
inhibitors of immune checkpoints programmed death-1/
programmed death ligand-1 (PD-1/PD-L1) using PDOs 
model cannot be conclusive and need further research 
attention [231]. Recently, there have been efforts to create 
a native immune microenvironment within PDOs by co-
culturing of more complex immune and stromal compo-
nents in a more compartmentalized manner [232, 233].

In summary, PDOs are good substitute model for 
understanding tumor biology, drug screening, and 
development of therapeutic approaches because of the 
aforesaid advantages. Currently, research involving the 
development of PDOs and its clinical applications are 

still in its early stage. In future, PDOs-oriented research 
should focus on the improvement of TME by overcoming 
present barriers and conducting more clinical trials on 
PDOs model systems with precisely defined composition 
and architecture.

Microfluidics models
Development of microfluidic systems, and their applica-
tion in building organ-on-chip devices (platforms that 
can model physiological functions of tissues and organs) 
have revolutionized the field of tumor biology [182]. 
The main advantage of these in vitro 3D culture models 
is their flexibility to modulate various parameters inde-
pendently. In these models, optimized cell survival con-
ditions can be achieved by maintaining desired cellular 
heterogeneity and localization, chemical gradients, tissue 
interfaces orientations and mechanical forces [234]. Such 
tumor biology-specific microfluidic cancer-on-a-chip 
(CoC) models are now becoming preferred systems due 
to their microscale volume requirement which makes it 
cost-effective as compared to other 3D culture protocols 
and bioreactors [234–238]. Moreover, heterotypic can-
cer-on-a-chip 3D model systems generated by culturing 
multiple cell types in a dynamic microenvironment of 
the microfluidic chip can be used to understand distinct 
interactions/communications between tumor cells and 
various TME cellular and acellular components [239]. 
For instance, T-cell infiltration rates within TME has 
been studied on a heterotypic 3D microfluidic platform 
developed from breast cancer cell, human umbilical vein 
epithelial cells (HUVECs) and monocytes confined spa-
tially in a gelatin hydrogel, and T cells dispersed in the 
medium [239]. The results showed higher rates of T-cells 
infiltration in presence of monocytes in the medium as 
well as extreme hypoxic conditions stimulated by using 
tumor spheroids instead of diffused cancer cells [239]. 
Furthermore, the effects of different growth factors (GFs) 
or drugs in a biomimetic microenvironment and stroma-
driven ECM remodeling can also be studied using these 
microfluidic chip-based in  vitro 3D models with a high 
degree of monitoring [240, 241]. Carvalho et  al. have 
developed a microfluidic chip-based in  vitro 3D model 
to mimic human colorectal cancer TME’s microvascu-
lar tissue functions. This model system allowed radial 
drug access into solid tumors and was used to assess 
the dynamic interaction between endothelial cells and 
colorectal tumor cells in a time-dependent manner 
[240]. Additionally, Gioiella et  al. made a tumor-on-a-
chip model with a stromal compartment to investigate 
tumor-stroma activation-dependent ECM remodeling 
[241]. Recently, innovative 3D in vitro models have been 
developed by combining the features of tumor spheroids/
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organoids and microfluidic chip systems. These mod-
els can be used to study tumor-stroma interactions and 
their systemic effects simultaneously [27, 242, 243]. For 
example, a 3D microvascular network of endothelial cells 
generated in two distinct microenvironments i.e., bone 
and muscle with osteo-differentiated cells and smooth 
muscle mesenchymal stromal cells (MSCs) respectively, 
showed different tumor cell extravasation rates, and thus 
confirming the TME’s role in cancer progression [244]. 
Moreover, in contrast to inadequately aligned endothelial 
cells grown in 2D culture system, cells in this model man-
ifested phenotypes similar to in vivo conditions.

Although these microfluidic models have enabled us to 
define the different aspects of TME, there are certain lim-
itations associated to its usage. Microfluidic model sys-
tem needs to be more robust and reliable such that they 
should not be affected by any external or internal impair-
ments like air bubbles, hindered laminar flow etc., [245]. 
Moreover, development of a new chip fabrication mate-
rial is urgently needed, as polydimethylsiloxane (PDMS), 
the most commonly used material, can retain small mol-
ecules non-specifically [27, 246]. Taken together, these 
microfluidic systems in combination with other 3D 
in vitro tumor models and emerging integration/fabrica-
tion technologies have potential to reveal the tumor-stro-
mal interactions at higher resolutions.

In conclusion, 3D culture model systems are success-
ful up to a certain extent in reconstituting the complex 
TME in vitro. However, they are still in their early stage 
of development, and therefore, limitations must be 
addressed appropriately before deriving any conclusions. 
One of the most critical features to consider in clinical 
tumor samples is the patient heterogeneity contributed 
by patient-specific tumor burden, immune cell types 
within TME, and the tumor stroma content. The incor-
poration of all these variables in in vitro models is para-
mount, however, it makes the model complex, and may 
compromise the reproducibility. Moreover, at present, 
the development of novel culture methods/protocols that 
allows long term in  vitro maintenance of different cell 
sub-populations, and integration of multiple cell types in 
a single model is urgently required. Additionally, research 
should also be focused on the development of strategies 
required for the inclusion and continuous renewal of 
the diverse immune cell populations within 3D models. 
Along with overcoming challenges at experimentation 
front, the advanced in silico approaches can partially 
complement the pace of understanding different under-
lying features of the TME and defining its therapeutic 
potential. In the following sections, different aspects of 
TME profiling that can be achieved using state-of-the-art 
computational approaches have been described.

In silico approaches of TME profiling
In the backdrop of biological significance, the extent of 
the success of cancer immunotherapy approaches highly 
relies on the intricate interplay between tumor cells 
and TME’s immune and stromal components. Detailed 
molecular- and cellular-level characterization of this 
dynamic ecosystem can delineate strategies for design-
ing more effective therapeutic interventions and identify 
novel biomarkers capable of classifying therapy respond-
ers and non-responders [247]. With the advent of high-
throughput technologies, it is now possible to study TME 
complexities experimentally at the genomics, epigenom-
ics, transcriptomics and proteomics levels at resolutions 
ranging from whole organisms to single cells. However, 
most of these assays require dissociation of the tumor 
tissues, which in turn can modify cells phenotypic and 
population representations [248, 249]. In order to over-
come the above-mentioned challenges, computational 
methods have been devised. These in silico methods have 
helped us to understand the complexities of the TME and 
derive inferences from bulk tissue gene expression pro-
files. In the following sections, we will discuss various in 
silico analysis tools developed to determine tumor purity, 
immune repertoire profiling, and neoantigen predictions. 
We will also describe the computational methodology 
and models developed to screen prognostic genes in the 
TME.

Tumor purity and TME immune cell types profiling
Computational approaches to determine tumor tissue 
composition can be broadly classified into two categories, 
namely enrichment methods and deconvolution methods 
[250]. The success of both these classes of approaches 
depends on the prior acquaintance of the marker genes 
with the cell types of interest. The enrichment strategies 
aim at identifying tissue-specific differentially expressed 
gene sets or pathways that depict distinct cell populations 
[251]. However, such methods are unable to compute 
proportions of discrete cell types and cannot differentiate 
between cell subtypes with common gene markers [250]. 
In contrast, deconvolution methods can perform in silico 
evaluation of the proportions of distinct cell types along 
with closely related cell subpopulations. Deconvolution 
strategies can also overlay gene expression data from 
bulk tissue transcriptomes to specific cell types [249, 
252–254]. Additionally, ATAC-seq and DNA methyla-
tion profiles can be used to evaluate tumor tissue com-
positions [255, 256]. In the recent years, the combination 
of automated tissue dissection protocols and scRNA-
seq data has emerged as the preferred methodology to 
explore novel cell sates in bulk tissues [247].

Identification of diverse immune cell types in tumor 
based on precise signatures is an urgent task. The 
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presence of hierarchical sub-clonal populations, and dif-
ferences in the TME background composition with that 
of normal cells pose additional intrinsic complexities 
[257]. However, a deeper understanding of the immune 
cells repertoire in TME both qualitative and quantita-
tive is essential for designing successful therapeutic 
interventions. Similar to TME composition’s delineating 
computational efforts, several tools have been developed 
specifically for estimating relative proportions of different 
immune cell types and subtypes within a sample using 
their specific gene expression profiles [254, 258]. Details 
of the bioinformatics tools commonly used to assess 
tumor purity, estimate stromal or immune fractions from 
bulk tumor transcriptomes, and identify immune cell 
types are tabulated in Table 1.

Few of the tools listed in Table  1 have already been 
used to discover potential prognostic and therapeutic 
biomarkers [259–261]. ESTIMATE in particular, has 
emerged as one of the widely used method, and is cur-
rently employed in several standard analysis pipelines 
of The Cancer Genome Atlas (TCGA). It determines 
the general fractions of stromal and immune compo-
nents of the tumor based on stromal and immune scores 
derived from the gene set enrichment analysis (GSEA) 
of the stromal and tumor signature genes. Integration of 
immune and stromal scores resulted in an estimate score 
that defines the tumor purity in a sample. Recently, four 
distinct consensus molecular subtypes (CMSs) of colo-
rectal cancer has been identified based on the immune 
subtype signatures characterization using ESTIMATE 
[262]. These subtypes have distinguishing features: CMS1 
(14%) highly mutated, strong immune activation, micro-
satellite unstable; CMS2 (37%) epithelial origin, marked 
activation of MYC and WNT signaling pathways; CMS3 
(13%) epithelial origin, highly dysregulated metabolic 
pathways; CMS4 (23%) mesenchymal origin, marked 
TGF-β activation, highly aggressive stromal invasion and 
angiogenesis. Approximately 13% of colorectal cancer 
samples in the study cohort showed features of multiple 
consensus molecular subtypes, which can be probably 
linked to intra-tumoral heterogeneity or transition phe-
notypes. DeMix, a linear model-based tool, computes 
the proportion of stromal and tumor cells in samples by 
considering the transcripts contributed by the epithelial 
and stromal component of a tumor sample [263]. As an 
input, this tool requires gene expression profile of at least 
one gene of each cell type. Recently, the characterization 
of heterogeneity among 333 primary prostate carcinomas 
samples has been performed using DeMix, and has led 
to the identification molecular targets with therapeutic 
potential [264]. Moreover, the Bayesian statistics-based 
PurBayes tool evaluates the tumor purity and sub-clon-
ality of tumor samples by utilizing the expression data 

of tumor, stroma and matched normal signature genes 
[265].

Initial methods devised to estimate the relative frac-
tions of distinct immune cell types within the tumor sam-
ples require some degree of prior information regarding 
defined cell types, their relative proportion, and specific 
gene signatures with or without expression profiles [257]. 
However, the recent developments utilize data mining 
approaches, and aims at minimizing this dependency of 
prior knowledge by defining distinct immune cell types 
based on marker genes [263, 266, 267]. csSAM and Dsec-
tion are two popular bioinformatics approaches that cap-
italizes on these recent developments [254, 268]. csSAM, 
a linear regression model, uses information of known 
cell proportions in the sample to determine the cell-spe-
cific expression profiles. Using csSAM, the comparative 
gene expression profiling of whole-blood from patients 
with stable kidney transplant and those experiencing 
acute rejection has revealed several hundreds of dif-
ferentially expressed genes that has remained undetect-
able previously [254]. Dsection, an implementation of a 
probabilistic approach, determines cell type proportions 
in heterogeneous tissue samples, and differential cell-
specific expression patterns under various experimental 
conditions by using previously estimated cell proportions 
and their reference expression profiles [268]. Nanodis-
section is a supervised machine learning-based iterative 
framework that identifies cell/tissue specific transcripts 
within the sample. For model training purpose, nanodis-
section method require a small set of marker genes and 
the reference expression profiles [269]. Quigley et al. has 
used this algorithm to identify cell type-specific tran-
scripts, and used them successfully to examine the pres-
ence of cytotoxic T-lymphocytes, T-helper 1, T-helper 
2 and B cells in the breast tissue. This study also shows 
higher cytotoxic T-lymphocytes infiltration in integra-
tive cluster 10 (IC10)/basal-like breast cancers with wild 
type TP53 mutation, thus suggesting association between 
inactivation of TP53 and tumor immunosurveillance fail-
ure [270]. CIBERSORT is another popular supervised 
machine learning algorithm used to quantify immune 
cell types in a highly heterogeneous transcriptome sam-
ples. As an input, this tool requires precisely defined 
signature genes specific to various immune cell types 
populations and their proportions [271]. In clinical set-
ting, CIBERSORT has been recently used to identify leu-
kocyte diversity and prognostic genes within and across 
25 tumor types from TCGA database [270]. In addition, 
Gentles et  al. applied CIBERSORT on bulk transcrip-
tomics data from 40,000 tumors to investigate immune 
and tumor heterogeneity, and identified intricate corre-
lation between 22 leukocyte cell types and survival out-
comes [272]. In another study, Thorsson et al. integrated 
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tumor-infiltrating lymphocytes genomics, hematoxylin 
& eosin imaging data, CIBERSORT deconvoluted tran-
scriptomic data of immune cell fractions, TCR & BCR 
repertoire, neoantigen prediction, expression of immune 
gene, somatic DNA alterations, and viral RNA expres-
sion. By implementing this multi-omics approach, six 

immune cell types shared across multiple tumor catego-
ries were identified [11]. An implementation of CIBER-
SORT, i.e. MethylCIBERSORT uses DNA methylation 
data from bulk tumors, deconvolution estimates and hot/
cold tumors data from TCGA to define composition of 
tumor tissues. Singh et  al. has identified distinct tumor 

Table 1  Bioinformatics tools developed to assess tumor purity, compute cell proportions, and identifying specific cell-type subsets

In silico tools for 
determining tissue 
composition

Description References

UNDO Identify cell type-specific marker genes, compute sample-wise cellular proportions, and deconvolute mixed 
expressions into cell-specific expression profiles

[306]

contamDE Estimate cell proportions and perform differential gene expression analysis from RNA-seq data considering 
tumor-infiltrating normal cells as contaminants

[260]

ISOpureR Cancer cells fraction estimation, and personalized patient-specific mRNA abundance profiling from a mixed 
tumor profile

[261]

ISOLATE Primary site of origin prediction, sample heterogeneity effect removal and deconvolution, and determination 
of differentially expressed genes of tumor purity

[307]

ESTIMATE Gene set enrichment analysis method that uses expression profile of immune, stromal, and tumor cells signa‑
ture genes to give tumor purity scores

[259]

DeMix Maximum likelihood-based statistical approach for computing cell fractions, and differential gene expression 
analysis of tumor purity

[263]

PurBayes Bayesian statistics modelling approach that uses RNAseq data to estimate sub-clonality and tumor purity [265]

DeconRNASeq Deconvolution of heterogeneous tissues using mRNA-seq data. Estimates proportions of distinct immune 
cell subsets

[308]

PSEA Computes cell fractions from marker genes expression profiles [309]

csSAM Differential gene expression analysis using microarray data for each cell type in the sample and their relative 
frequencies of occurrence

[254]

NMF Computes cell-type-specific expression profiles and their proportions without any a-priori information [310]

DSA Probabilistic model-based approach that uses RNA-seq data from heterogeneous samples to estimate cell-
type-specific transcript abundances

[311]

MMAD Simultaneous calculation of cell proportions and cell-specific expression profiles; prior knowledge of cell frac‑
tions and reference expression profiles are required

[312]

PERT Probabilistic gene expression deconvolution strategy that corrects perturbations in reference expression 
profiles of different cell populations of a heterogeneous sample

[313]

LLSR Computes different cells proportions from reference microarray expression profiles [314]

CIBERSORT Estimates cell proportions from complex tissues using their gene expression profiles [271]

Nanodissection Computes gene expression profiles of specific cells/tissues using reference expression profiles as training 
data for this genome-scale machine-learning based approach

[269]

Dsection Probabilistic model using reference expression profiles and predicted cell proportions information. Estimate 
cell proportions and cell-specific expression profiles with better accuracy

[268]

MCP-counter Estimates abundance of two stromal and eight immune cell types of populations in bulk tissues [251]

EPIC Computes absolute fractions of tumor and different immune cell types using transcriptomic data [315]

xCell Infers abundance of 64 stromal and immune cell types based on cell-specific gene signatures enrichment [316]

TIMER Six immune cell-types infiltration quantification across different cancer types based on RNA-seq data [317]

MethylCIBERSORT CIBERSORT-based deconvolution method. Uses DNA methylation data from bulk to infer tumor cell fractions [318]

DeMixT Extract component-specific proportions and gene expression profiles for every sample [252]

MuSiC Single cell RNA sequencing data derived cell type specific expression profiles are used to define cell compo‑
sitions from bulk RNA sequencing data in complex tissues

[319]

CPM Deconvolution algorithm that uses single cell RNA sequencing reference expression profiles to infer cellular 
heterogeneity in complex tissues from bulk transcriptome data

[320]

CIBERSORTx Estimates sample-wise cell type frequencies from bulk RNA sequencing data using single cell RNA sequenc‑
ing or bulk-sorted gene expression reference profiles data, and minimizes platform-specific variations

[249]

quanTIseq Using bulk RNA sequencing data, this method quantitates proportions of 10 types of immune cells [321]
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clusters based on immune cell proportions in glioblas-
tomas. In contrast to isocitrate dehydrogenase (IDH) 
wild type glioblastoma cases, where five optimum clus-
ters were recognized based on immune cell types pro-
portions, the IDH mutant glioblastoma samples have 
only two optimal consensus clusters [273]. Also, in IDH 
wild-type glioblastomas, tumor clusters were found to be 
associated with oncogenic alterations like CDKN2A/B 
deletion and EGFR amplification [273]. Similarly, chro-
matin accessibility profiles (estimated using ATAC-seq 
protocol) of tumors has also been used to define 16 major 
cell types of normal hematopoietic and leukemic hier-
archies in human blood from 12 acute myeloid leuke-
mia (AML) and 9 healthy humans [255]. Taken together, 
the advancements to determine tumor purity and 
immune cell heterogeneity within TME has contributed 
immensely to our present understanding of both tumor 
and immune biology.

Screening of TME‑related prognostic genes
The identification of prognostic TME-related genes for 
predicting outcomes has enormous potential [274, 275]. 
The first step towards building a prognostic model is 
the acquisition of gene expression and clinical data for 
the given cancer type. Single-sample gene set enrich-
ment analysis for each sample in the cohort generates 
stromal and immune scores. Patients are then grouped 
as high/low stromal and high/low immune subgroups 
based on the median values of the respective scores. 
For each of the stromal and immune score groups, dif-
ferentially expressed genes are identified. Functional 
enrichment analysis of the intersecting differentially 
expressed genes across different score subgroups helps 
to elucidate the potential and significant biologic func-
tions [275]. Furthermore, survival analysis is performed 
to analyze intersecting differentially expressed genes and 
their prognostic association with patient’s overall sur-
vival (OS). Protein–protein interaction (PPI) networks 
are constructed for differentially expressed genes with 
prognostic values, and central genes with higher degrees 
of connection are identified. Further univariate and mul-
tivariate regression analyses are performed to obtain 
the most significant prognostic value genetic signature, 
which in turn is used to establish a risk score formula for 
predictive purposes.

Recently, Chen et  al. has systematically investigated 
pancreatic tumor microenvironment, and established 
biomarkers associated with tumor/stromal cell popu-
lations. Overall survival analysis showed that the high 
immune/stromal group of pancreatic patients are 
closely related with poor prognosis [274]. In this study, 
four signature genes COL2A1, CXCL10, TRPC7 and 
CUX2 emerged as independent prognostic factors. The 

prognostic model created using these signature genes 
assigned high risk scores to KRAS and TP53 mutations. 
Additionally, at single cell resolution, CXCR3 was found 
to be highly expressed on T cells, whereas its ligand 
CXCL10 is abundant on tumor associated macrophage 
population [274]. Similarly, Ye et  al. performed thor-
ough examination of breast cancer (BC) microenviron-
ment, and identified three signature genes namely SIT1, 
KLRB1 and GZMM as prognostic factors [275]. All these 
three genes were found to be negatively correlated with 
tumor purity, and positively associated with the intru-
sion of immune cells like B cells, neutrophils, CD4 T 
cells, CD8 T cells, macrophages and dendritic cells in BC 
microenvironment [275]. In conjunction with the neces-
sary experimental validation, these identified prognos-
tic genes could be promising candidates for therapeutic 
interventions.

Immune cell receptor profiling and neoantigen prediction
Immune cell repertoires i.e., T-cell receptors (TCRs) 
and B-cell receptors (BCRs), recognize and neutral-
ize a highly diverse range of antigens [247]. Quantita-
tive studies of these immune cells repertoires in various 
cellular compartments can be performed using high-
throughput sequencing. Lymphocyte-specific TCR and 
BCR sequencing approaches have enabled the analy-
sis and tracking of diverse lymphoid cell populations, 
which in turn has further increased our understanding 
of intra-tumoral, inter-tumoral and clinical outcomes 
heterogeneity. The ability to profile only a subset of cel-
lular heterogeneity, and inability to discriminate between 
cellular states, i.e., naive vs. activated, are the two major 
shortcomings of these immune cell receptors profiling 
methods [247].

Immune repertoire sequencing has provided oppor-
tunity to study immune cell heterogeneity in the TME 
of various cancer types [276, 277]. For instance, TCR 
sequencing has been used routinely to understand the 
T cells repertoires after immune checkpoint blockade 
therapy. In melanoma patients, anti-CTLA-4 and anti-
PD-1 therapies have been shown to increase the diver-
sity of TCRs, and T cell clonotypes [278, 279]. The major 
challenge for tools analyzing immune cells repertoires 
include making a clear distinction between rare clones 
in bulk data, and identifying sequencing and/or PCR 
errors. Furthermore, recent technological advances have 
enabled simultaneous transcriptomics analysis and BCR/
TCR profiling at single-cell resolution. Various bulk and 
single-cell repertoire analysis tools are listed in Table 2.

Early methods of immune cell repertoire profiling 
include IgBLAST, IHMMUNE-ALIGN and IMGT/V-
QUEST [280–282]. MiXCR is a more recent and widely 
used sequencing-based approach of bulk BCR and TCR 
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profiling. This method is capable of correcting PCR 
errors, and identifying germline hypermutations by 
applying multilayer clustering algorithm [283]. Ma et al. 
analyzed the impact of functional DNA damage repair 
(DDR) gene polymerase epsilon (POLE) mutations on 
tumor immune microenvironment post immune check-
point blockade (ICB) therapy [284]. The authors observed 
upregulation of immune-related pathways in post-ICB 
PoleP286R tumors. Evaluation of the TCR-beta CDR3 clo-
notypes isolated through MiXCR showed a higher rate 
of clonal expansion, richness and decreased evenness 
in post-ICB PoleP286R tumors [284]. Another method 
GLIPH, clusters TCRs based on their global similarity 
between CDR3 sequences, and the conserved motifs that 
provide common specificity to the receptors [285]. Subu-
dhi et al. have shown that the autoreactive T cell clonal 
expansion and diversification of T cells repertoire occurs 
in prostate cancer patients treated with CTLA-4 blocking 
antibody or those experiencing immune-related adverse 
events (irAEs). This supports the hypothesis that newly 
established responsiveness to shared antigens may led 
to inflammatory response in cancer patients undergoing 
blockade therapy [286].

With the advent of single cell technologies, it is now 
possible to perform single-cell TCR analysis. Such 
analysis has enabled the pairing TCR of α and β chains 
sequences. TRACER tool generate all possible pair of 
TCR α and β chains by aligning all the possible V and 
J segments, then assembling the reads in contiguous 
sequences [287]. Zheng et  al. implemented TRACER 
tool for TCR profiling of > 5 k single T cells isolated from 
blood, tumor and adjacent normal tissues of hepatocellu-
lar cancer patients. The coupled TCR and transcriptional 
profiles facilitated the identification of functionally 11 T 
cell subsets, and their developmental path [288]. Moreo-
ver, to understand the activity of cells and their correla-
tion with antigen receptor sequences, new methods of 
RNA-seq and repertoire sequencing from the same cell 
has been developed.

In addition to TCR sequencing of T cells in the TME, 
the prediction of neoantigens from patient’s DNA or 
RNA represents a major step towards personalized thera-
peutic approaches [289]. Neoantigens are present only 
on tumor cells but not on normal cells; therefore, neo-
antigens can elicit tumor-specific immune responses. 
These mutation-associated cancer antigens are cleaved, 
and short peptides are presented to TCRs on MHC 

Table 2  Bioinformatics tools of immune cell repertoire analysis

Insilco tools of cell repertoire analysis Description References

Bulk cell repertoire analysis tools

 IGMT/V-QUEST Analyze cell repertoire generated from rearrangement of nucleotide sequences of antigen 
receptors (immunoglobulin or antibody, and T cell receptors (TCRs))

[281]

 IgBLAST Perform sequence analysis of immunoglobulin’s variable domain [280]

 iHMMune-align Hidden Markov model-based immunoglobulin heavy chain (IGH) gene characterization pro‑
gram that identifies germline genes in rearranged immunoglobulin sequences

[282]

 MIGEC Corrects PCR and sequencing errors from immune cell repertoires while maintaining the 
indigenous diversity

[322]

 MiXCR Quantitate clonotypes from large immunome sequencing data, identifies germline hypermu‑
tations, and corrects PCR/sequencing errors using heuristic multilayer clustering

[283]

 TRUST Detect tumor-infiltrating T cells by de novo assembly of hypervariable CDR3 sequences, and 
aligning it to sequence of reference genes from International Immunogenetics Information 
System (IGMT)

[323]

 GLIPH Estimates T-cell response diversity by grouping different TCRs sequences that can identify the 
same antigen-MHC complex

[285]

Single cell repertoire analysis tools

 TraCer T-lymphocytes single cell RNA sequencing data is used to regenerate paired and full-length 
TCR sequences
Transcriptional profiles based clonal relationships is used to link T-cell specificity with func‑
tional response

[287]

 scTCR-seq Using single cell TCR sequencing data, accurate identification and assembly of full-length T-cell 
receptor sequences

[324]

 TRAPes Algorithm uses paired end, short reads from single cell RNA-seq libraries to reconstruct TCR 
repertoire, and understand cell state heterogeneity

[325]

 VDJPuzzle Single cell RNA seq reads overlapping to VDJ or constant region of reference set are assembled 
using Trinity, filters with IgBlast to create new TCR reference set, and aligns against this new 
reference

[326]
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molecules. In view of the unprecedented possibilities of 
neoantigens, TCR rearrangements, and large variations 
in MHC molecules, there is an urgent need of neoanti-
gens prediction tools [290]. Neoantigen prediction is a 
three-step process: identifying the mutation-associated 
cancer proteins, HLA typing, and determining neoanti-
gen affinity towards MHC binding [290]. List of in silco 
tools and pipelines developed to analyze different steps 
of neoantigen prediction independently or combined are 
listed in Table 3.

MUTECT and GENOME ANALYSIS TOOLKIT 
(GATK) are two well-known variant analysis tools that 
implement Bayesian classifier principle to detect single 
nucleotide polymorphism [291, 292]. A limitation asso-
ciated with such variant analysis tools is to determine 
the functional implications of a variant on different tran-
scripts, so the choice of tools and database is critical. In 
the second step of neoantigen prediction, i.e. HLA typ-
ing, a sensitive assembly or mapping strategy is involved, 
which in turn relies on well-annotated reference genome. 
OptiType and PolySolver are examples of some of the 
popular HLA typing tools [293, 294]. Park et al. used the 
HLA-I genotype information of > 1500 patients suffering 

from 11 different cancer types from two independent 
studies using OptiType and PolySolver tools for predic-
tion. The results revealed that HLA-I heterozygosity is 
positively correlated with early onset of tumor [295]. 
Finally, at the MHC-binding affinity estimation step the 
non-linear, machine-learning based methods such as 
NETMHC, NETMHCII have shown improved predic-
tion accuracy as compared to those early sequence-based 
methods like SYFPEITHI and BIMAS [296–300]. EDGE, 
a neural network-based computational model for epitope 
prediction has been developed using HLA mass spec-
trometry neoantigen peptides and genomic data of 74 
cancer patients [301]. In comparison to tumor sets bind-
ing-affinity features, EDGE have a nine-fold higher posi-
tive predictive value.

Bioinformatics analysis pipelines integrating the above-
mentioned multiple steps of neoantigen prediction are 
tabulated in Table 3. For instance, FRED 2 provides a uni-
fied immunoinformatics framework for T-cell epitope 
prediction, selection, assembly and HLA typing [302]. 
Loffler et  al. implemented FRED2 pipeline for defining 
different aspects of tumor neoantigens in hepatocellular 
carcinoma, and concluded that the mutated HLA ligands 

Table 3  In silico tools and pipelines for Neoantigen predictions

Bioinformatics tools Description References

Identification of genome variant

 GATK Genome analysis toolkit
Identify variants across genome using next generation sequencing data

[292]

 MuTect Somatic point mutation identification in cancer genomes [291]

HLA typing

 Polysolver Three major MHC I genes alleles identification based on whole exome 
sequencing data

[294]

 OptiType HLA genotyping algorithm that predicts all major and minor HLA class I alleles 
from next generation sequencing data

[293]

MHC-binding affinity

 netMHC/netMHCII/netMHCpan/netMHCpanII Prediction of MHC binding affinity to Class I and Class II MHC molecules [298–300, 327]

 SMM Sequence specificity-based quantitative model to identify binding affinity to 
MHC I molecules

[328]

 SMMPMBEC An amino acid similarity matrix derived based on experimental peptide-MHC 
binding interactions
Act as Bayesian prior for prediction of peptide-MHC class I complex interac‑
tion

[329]

 MHCflurry Allele-specific neural networks trained on MHC ligands identified by mass 
spectrometry and binding affinity measurements to develop a model for 
prediction of MHC I complex proteins and their ligands

[330]

 EDGE Deep learning approach of HLA prediction based on training data from 74 
patients

[301]

Pipelines combining all steps of neoantigen prediction

 FRED 2 Prediction, selection, assembly and HLA typing of T-cell epitope [302]

 NetTepi Predicts peptide-MHC (pMHC) binding affinity based on integration pMHC 
stability and T-cell propensity predictions

[304]

 pVAC-Seq Predicts tumor-specific neoantigen based on the integration of tumor muta‑
tion and expression data

[331]
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derived from exome represent the limited targets for per-
sonalized immunotherapy approaches [303]. Therefore, 
an increase in the neoantigen search space is needed 
to identify potential targets and enhance the efficacy of 
tumor immunotherapy approaches, especially in case of 
malignancies with lower or similar mutational burden. 
NetTepi is another integrated approach of T cell epitope 
discovery that combine predictions of peptide-MHC 
(pMHC) binding affinity, stability and T cell propensity 
[304]. Recently, Buckley et  al. identified NetTepi as one 
of the best peptide immunogenicity prediction tools in 
an unbiased comparative evaluation of existing models 
[305].

In a nutshell, the development of bioinformatics tools 
and methodologies has created new opportunities for 
the researchers to study tumor characteristics and its 
microenvironment complexities in silico. In addition to 
providing deeper understanding of the intrinsic hetero-
geneity associated with tumor development, progression 
and immune evasion, these tools have guided us toward 
therapeutic and diagnostic discoveries. By applying the 
current computational tools, it is now possible to predict 
the distinct immune and stromal components diversity 
within TME. Also, the available methods can create high 
resolution TME cell type-specific interaction network, 
which may eventually help in improving our understand-
ing of cancer therapy responders and non-responders 
patients as well as to the development of immune-mod-
ulatory drugs.

Conclusion
In this review, various aspects of TME, including its ther-
apeutic potential has been described. TME heterogene-
ity is contributed by its highly diverse and non-uniformly 
distributed cellular and acellular components (Fig.  1). 
Variability of these components within the TME gives 
rise to several physiologically different specialized tumor 
microenvironments such as the acidic niche, hypoxic, 
innervated and inflammatory microenvironments. In 
the recent years, these specialized tumor microenvi-
ronments have emerged as the hotspots for therapeutic 
interventions. TME-specific therapeutic strategies can be 
broadly categorized based on the TME components tar-
geted such as ECM, non-immune cells and immune cells. 
Major cancer immunotherapy approaches involving tar-
geting of the immune components of TME include adop-
tive-T lymphocytes and CAR-based therapies, cancer 
vaccines, and employing immune checkpoint inhibitors. 
Thus, various TME components provides an opportunity 
to target tumor progression and metastasis through ther-
apeutic interventions as summarized in Fig. 2. However, 
one of the major limitations associated to these cancer 

immunotherapy approaches targeting TME include pri-
mary or acquired resistance due to various extrinsic and 
intrinsic factors. A deeper understanding of the dynamic 
TME components and their real-time interaction could 
help in overcoming these limitations. Towards this end, 
several in  vitro 3D experimental model systems have 
been developed to precisely mimic the TME conditions. 
Also, bioinformatics tools can be used to estimate tumor 
purity, immune repertoire profiling, predict neoantigens 
and prognostic genes in the TME. Altogether, this article 
gives an overview of TME components, and their prom-
ising future potential as therapeutic targets in the light of 
knowledge gained through experimental 3D model sys-
tems and bioinformatics predictions.
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Polymerase epsilon; PDMS: Polydimethylsiloxane; PPI: Protein–protein interac‑
tion; pMHC: Peptide-MHC; ROS: Reactive oxygen species; TGF-β: Transforming 
growth factor beta; TILs: Tumor-infiltrating lymphocytes; TNF-α: Tumor necrosis 
factor-α; TAMs: Tumor-associated macrophages; TANs: Tumor-associated 
neutrophils; TLR3: Toll-like receptor 3; Tregs: Regulatory T-cells; TIGIT: T-cell 
immunoreceptor with Ig and ITIM domains; TCRs: T-cell receptors; TME: Tumor 
microenvironment; TMS: Tissue matrix scaffold; TCGA​: The Cancer Genome 
Atlas; VEGF: Vascular endothelial growth factor; UCB: Umbilical cord blood.
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