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Abstract 

Background  The tumor microenvironment (TME) has a central role in the oncogenesis of osteosarcomas. The 
composition of the TME is essential for the interaction between tumor and immune cells. The aim of this study was 
to establish a prognostic index (TMEindex) for osteosarcoma based on the TME, from which estimates about patient 
survival and individual response to immune checkpoint inhibitor (ICI) therapy can be deduced.

Methods  Based on osteosarcoma samples from the Therapeutically Applicable Research to Generate Effective 
Treatments (TARGET) database, the ESTIMATE algorithm was used to estimate ImmuneScore and StromalScore. 
Combined differentially expressed gene analysis, weighted gene co-expression network analyses, the Least Absolute 
Shrinkage and Selection Operator regression and stepwise regression to construct the TMEindex. The prognostic role 
of TMEindex was validated in three independent datasets. The molecular and immune characteristics of TMEindex 
and the impact on immunotherapy were then comprehensively investigated. The expression of TMEindex genes in 
different cell types and its effects on osteosarcoma cells were explored by scRNA-Seq analysis and molecular biology 
experiments.

Results  Fundamental is the expression of MYC, P4HA1, RAMP1 and TAC4. Patients with high TMEindex had worse 
overall survival, recurrence-free survival, and metastasis-free survival. TMEindex is an independent prognostic fac-
tor in osteosarcoma. TMEindex genes were mainly expressed in malignant cells. The knockdown of MYC and P4HA1 
significantly inhibited the proliferation, invasion and migration of osteosarcoma cells. A high TME index is related to 
the MYC, mTOR, and DNA replication-related pathways. In contrast, a low TME index is related to immune-related 
signaling pathways such as the inflammatory response. The TMEindex was negatively correlated with ImmuneScore, 
StromalScore, immune cell infiltration, and various immune-related signature scores. Patients with a higher TMEindex 
had an immune-cold TME and higher invasiveness. Patients with a low TME index were more likely to respond to ICI 
therapy and achieve clinical benefit. In addition, the TME index correlated with response to 29 oncologic drugs.

Conclusions  The TMEindex is a promising biomarker to predict the prognosis of patients with osteosarcoma and 
their response to ICI therapy, and to distinguish the molecular and immune characteristics.
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Introduction
Osteosarcoma, the earliest known hominin cancer [1], 
is commonly found in children and young adults [2, 3]. 
Although osteosarcoma is the most common primary 
malignant bone tumor, it remains rare with only 800 to 
900 cases diagnosed annually in the United States [4]. 
The current 5-year survival rate for patients with local-
ized osteosarcoma is about 60%, and when recurrences 
or metastases occur, it is only 20% [5]. Unlike the rapid 
advances achieved in the treatment of other solid tumors, 
outcomes for patients with osteosarcoma have not sig-
nificant improved over the past three decades [4, 6]. 
The reasons for this discrepancy are multifaceted and 
include a missing understanding of the genetic complex-
ity of osteosarcoma [4]. There is a lack of clarity regarding 
the prognosis-related mechanisms of osteosarcoma [7], 
and accurate assessment of the prognosis of individual 
patients becomes extremely difficult due to its tumor 
heterogeneity [8]. However, because patients with osteo-
sarcoma are often extremely young, there is a great need 
to further improve the prognosis of patients with osteo-
sarcoma to achieve long-term survival in young patients. 
Continued research into new biomarkers and therapeutic 
strategies is essential to predict prognosis and to improve 
individualized treatment. In addition, current directions 
to further improve the prognosis of patients with osteo-
sarcoma lie mainly in identifying effective risk stratifi-
cation algorithms to minimize treatment toxicities and 
iatrogenic secondary tumors while improving therapy 
benefits [9].

As the understanding of osteosarcoma deepens, oncol-
ogists are increasingly recognizing the difficulty of target-
ing osteosarcoma cells alone to further improve patient 
outcomes, and thus the focus is gradually being shifted 
to the tumor microenvironment (TME) of osteosarcoma 
[10]. TME, the environment in which the tumor resides, 
consists of malignant cells, immune cells, stromal cells, 
extracellular matrix, and a variety of cytokines [11, 12]. 
A large body of evidence suggests that TME has a non-
negligible role in tumorigenesis, proliferation, metastasis, 
and drug resistance acquisition in osteosarcoma [13–15], 
thereby affecting the prognosis of patients with osteo-
sarcoma. In addition, low immune cell infiltration levels 
in TME not only represent lower anti-tumor immunity, 
but also help tumor cells to evade immune attacks [16, 
17]. Stromal cells, including cancer-associated fibro-
blast, then exert a direct immunosuppressive effect [17, 
18]. This suggests that the TME status may be a poten-
tial prognostic biomarker as well as a predictive marker 
for the response to treatments such as immunotherapy in 
osteosarcoma.

Although the TME status may be a promising bio-
marker for patients with osteosarcoma, there is a lack of 

effective methods to clarify TME component in osteo-
sarcoma. In this study, by integrating extensive tran-
scriptome sequencing data from the Therapeutically 
Applicable Research to Generate Effective Treatments 
(TARGET) and the Gene Expression Omnibus (GEO) 
databases for comprehensive analysis to identify key 
TME-related genes, an osteosarcoma TME-based prog-
nostic index (TMEindex) was developed to quantify the 
status of TME. This quantitative molecular signature of 
TME is not only an intuitive and effective prognostic pre-
diction tool, but also exhibits effective predictive perfor-
mance for immunotherapeutic response.

Methods
Datasets, tissue samples, and cell lines
Standardized RNA-seq data and clinical information for 
84 osteosarcoma samples from the TARGET database 
were obtained from the UCSC Xena browser (http://​
xena.​ucsc.​edu/). Together 140 samples with normal-
ized RNA-seq or microarray data were obtained from 
the GEO database (GSE21257 [19], GSE16091 [20], and 
GSE33382 [21]) (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). 
Gene expression data for the TARGET and three GEO 
cohorts were transformed by log2(x + 1), and detailed 
clinical information for the four cohorts is summarized 
in Additional file 1: Table S1. In addition, a standardized 
pan-cancer dataset was obtained from the UCSC Xena 
browser, which included 9798 samples for 37 cancers 
from The Cancer Genome Atlas (TCGA) and TARGET 
databases. Updated prognostic information for TCGA 
cohort was also obtained from a previous study [22]. To 
explore the prognostic value of the TMEindex in patients 
receiving immunotherapy, two anti-PD-L1 cohorts, 
including the IMvigor210-Bladder urothelial carcinoma 
(BLCA) and IMvigor210-Kidney cancer cohorts, were 
extracted from the study by Mariathasan et  al. [23]. 
For the immunotherapy cohorts, detailed gene expres-
sion data and clinical annotations are available from 
IMvigor210 Core Biologies (http://​resea​rch-​pub.​gene.​
com/​IMvig​or210​CoreB​iolog​ies) based on the Creative 
Commons 3.0 license. For the raw count data, it was nor-
malized and converted to transcripts per kilobase million 
(TPM) values by the R package “preprocessCore”, and 
then a log2(x + 1) transformation was performed.

A single-cell RNA-sequencing (scRNA-seq) cohort 
containing 11 osteosarcoma samples was obtained from 
the GEO database (GSE152048) [24]. Quality control 
and downstream analysis are performed according to 
the standard process of the R package “Seurat” (v.4.3.0). 
Low quality cells (< 3 genes/cell and > 20% mitochon-
drial genes) and genes expressed in less than three cells 
were filtered out. The housekeeping and mitochondrial 
genes were then filtered out, and finally, 26,175 genes and 

http://xena.ucsc.edu/
http://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
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123,322 cells were included in the study. After perform-
ing standard data downscaling and clustering, clusters 
were annotated using previously reported cellular mark-
ers [24].

Fourteen samples of osteosarcoma tissues and five 
samples of normal tissues were collected from patients 
who underwent surgical resection at the Department of 
Orthopedics, Xiangya Hospital, Central South University, 
Hunan, China in 2018–2019. All samples were sent to 
the Department of Pathology for pathological evaluation 
after surgical resection, and the remaining samples were 
preserved in paraffin wax. All patients have completed 
follow-up information, and since most patients are still 
alive, only relapse information is currently available. This 
study was approved by the Medical Ethics Committee of 
Xiangya Hospital of Central South University (Approval 
number: 202303046).

The osteosarcoma cell lines MG-63 and U2OS were 
obtained from the Xiangya cell repository. The cells 
were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM, Biological Industries, Israel) containing antibi-
otics and 10% fetal bovine serum (Gibco, USA) at 5% CO2 
and 37 °C. The small interfering RNAs (siRNAs) of MYC, 
P4HA1, RAMP1 and TAC4 and the empty vector (si-NC) 
were synthesized by GenePharma (Shanghai, China). 
Cell transfection was performed with Lipofectamine® 
3000 (Invitrogen/Thermo Fisher Scientific, Carlsbad, CA, 
USA) per the manufacturers instructions.

Construction of the TME‑based prognostic index
The TARGET cohort was used for the development of the 
TMEindex. First, ImmuneScore and StromalScore were 
calculated for each sample using the ESTIMATE algo-
rithm [17], which quantifies immune and stromal cells 
based on molecular markers. All samples were divided 
into two groups using the median ImmuneScore or Stro-
malScore, and differentially expressed genes (DEGs) were 
calculated between the high and low ImmuneScore/
StromalScore groups based on the R package "limma" 
with false discovery rate (FDR) < 0.05 and |Fold Change 
(FC)|> 1.5 as thresholds. Subsequently, gene modules 
closely associated with ImmuneScore and StromalScore 
were further identified using the unsigned weighted gene 
co-expression network analysis (WGCNA) based on 
the R package “WGCNA” [25]. The optimal soft thresh-
old in WGCNA was determined based on the scale-free 
network and the mean connectivity. Gene modules with 
|correlation coefficients|> 0.5 were identified as TME-
related gene modules. All module genes associated with 
ImmuneScore and StromalScore were extracted, respec-
tively and intersected with the corresponding DEGs, and 
then Venn diagrams were plotted. The intersection of 
DEGs with TME-related module genes were considered 

as reliable immune-related or stromal-related genes. 
The Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regression can be combined with the Cox 
model for accurate screening of survival-related biomark-
ers [26]. Identified immune and stromal-related genes 
were, respectively, input into the LASSO regression for 
further downscaling and identification of hub genes. 
Ultimately, all immune-related and stromal-related hub 
genes were input into the stepwise Cox regression to 
construct the TMEindex, and the model with the largest 
C-index was determined to be the best model. The risk 
model was calculated using the following formula:

where βj is the coefficient of each gene in the final risk 
model, and Expi is the gene expression value.

Functional and pathway enrichment analysis
To explore TMEindex-related functions and pathway 
enrichment, the gene set enrichment analysis (GSEA) 
was performed using the GSEA software (Version 4.1.0) 
[27]. Base on the "c2.cp.kegg.v7.4.symbols" gene set and 
the HALLMARK gene set from the MSigDB database, 
different pathways and molecular mechanisms in the 
high and low TMEindex groups were evaluated. The min-
imum gene set was set to 5, the maximum gene set was 
set to 5000, and resamples were 1000. In addition, DEGs 
between high and low TMEindex groups were identi-
fied based on the R package "limma", and the threshold 
was set as P < 0.05 and |FC|> 1.5. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis of DEGs was then performed using the R pack-
age “clusterProfiler” [28]. To explore the correlation 
between TMEindex and other known core biological pro-
cesses, a series of gene sets curated by Mariathasan et al. 
were used [23], which included a total of 18 important 
gene signatures including CD8 T-effector signature, anti-
gen processing machinery, DNA replication, pan-fibro-
blast TGFβ response signature (Pan-F-TBRS) et  al. In 
addition, the correlation between TMEindex and differ-
ent immune-related biological processes were explored 
based on a study by Zeng et  al. [29], including immune 
activation-relevant gene set, immune checkpoint-rele-
vant gene set, and transforming growth factor (TGF)β/
epithelial–mesenchymal transition (EMT) pathway-rel-
evant gene set. P value of < 0.05 was considered statisti-
cally significant.

Estimation of TME cell infiltration
The single-sample gene-set enrichment analysis 
(ssGSEA) method was used to quantify the relative abun-
dance of different TME-infiltrating cell in each sample 

TMEindex = βj × Expi,
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based on the R package “GSVA”. The gene sets used to 
mark different immune cells were derived from a study of 
Charoentong et al. [30], in which 28 human immune cell 
subtypes were stored.

Association analysis of TMEindex and drug sensitivity
The standardized gene expression matrix of 809 tumor 
cell lines from the Genomics of Drug Sensitivity in Can-
cer (GDSC) database and the half-maximal inhibitory 
concentration (IC50) values of 189 drugs corresponding 
to the cell lines were used as a training set [31], then the 
oncoPredict algorithm was used to predict the IC50 value 
of every drug in individual osteosarcoma patients as we 
described previously [32, 33]. Subsequently, Spearman 
correlation analysis was used to calculate the correlation 
between TMEindex and drug sensitivity, the |correlation 
coefficient (R value)|> 0.3 and P < 0.01 was considered as 
a significant correlation.

CCK‑8 assay
Cell proliferation activity was measured using the CCK-8 
kit (Dojindo Laboratories, Kumamoto, Japan). Trans-
fected cells were cultivated for 24 h and then inoculated 
in 96-well plates with 2000 cells per well. After cell wall-
ing, 10 µl of CCK-8 reagent was added every 24 h to the 
wells for the desired assay. The absorbance was measured 
at 450 nm after 3 h of incubation at 37 °C.

Transwell assay
The invasiveness of the cells was detected by Transwell 
assay. 2 × 104 transfected U2OS and MG-63 cells were 
inoculated in the upper chamber and incubated in 5% 
serum medium, and the lower chamber was incubated in 
15% serum medium. After 24 h of incubation, the stromal 
gel was wiped off the upper chamber with a cotton swab, 
and then the cells on the chamber membrane were fixed 
with 4% paraformaldehyde and stained with 10% crystal 
violet. Five random fields of view were counted for each 
chamber.

Wound healing assay
Cell migration ability was detected using a wound heal-
ing assay (scratch assay). Transfected and untransfected 
cells were inoculated as a monolayer in a 6-well plate and 
incubated for 24 h. The monolayer of cells was scratched 
with a 100 μl pipette tip and the cells were washed with 
medium to remove cell debris. Scratch healing was 
observed using a microscope after 36 h of incubation.

Immunohistochemistry (IHC)
IHC was carried out as described previously [34]. The fol-
lowing antibody was used: rabbit polyclonal antibody to 
MYC (Sangon Biotech, D155013, 1:200 dilution), rabbit 

polyclonal antibody to P4HA1 (Invitrogen, PA5-31246, 
1:200 dilution), rabbit polyclonal antibody to RAMP1 
(Invitrogen, PA5-50253, 1:50 dilution). Two pathologists, 
who did not know the identity of the samples, indepen-
dently scored the staining results based on staining inten-
sity and percentage of positive cells. Intensity was scored 
as follows: 0 (negative), 1 (weakly positive), 2 (moderately 
positive), and 3 (strongly positive). The percentage of 
positive cells was scored as follows: 0 (0%), 1 (1–25%), 2 
(26–50%) and 3 (> 50%). The IHC score was the sum of 
the intensity score and the score of the percentage of pos-
itive cells.

Statistical analysis
All statistical calculations were performed using R soft-
ware (Version 4.1.2) and GraphPad Prism 9 (La Jolla, 
CA, USA). Differences between two groups were com-
pared using unpaired Student’s t-test or Wilcoxon rank 
sum test. Correlations between TMEindex and TME-
infiltrating cells or biological pathways were calculated 
using Spearman’s correlation analysis. The R packages 
“survival” and “survminer” were used to calculate the 
correlation between the variables and survival time and 
to find the best cutoff value. Survival curves were gener-
ated using the Kaplan–Meier (KM) method, and signifi-
cance was determined using the log-rank test. Univariate 
Cox regression analysis was used to calculate the prog-
nostic significance and hazard ratios (HR) for TMEindex 
in pan-cancer. Multivariate Cox regression analysis was 
used to determine whether TMEindex was an independ-
ent prognostic factor using age and gender as covariates. 
The R package “pROC” was used to plot receiver operat-
ing characteristic (ROC) curves to verify the validity of 
the model and obtain the area under the curve (AUC). 
p < 0.05 was considered statistically significant, and 
unless otherwise stated, p values were two-sided.

Results
Relationship between ImmuneScore/StromalScore 
and clinical features and survival
The setup of this study is shown in Additional file 1: Fig. 
S1. ImmuneScore and StromalScore were calculated for 
each osteosarcoma in the TARGET cohort. The Immu-
neScores in these patients were ranging from −  1558.1 
to 2404.6 and StromalScores were ranging from − 797.2 
to 1807.5. There was a significant positive correlation 
between ImmuneScore and StromalScore (Additional 
file 1: Fig. S2A). Age or gender had no significant effect 
on the ImmuneScore and StromalScore (Additional file 1: 
Fig. S2B, C). Survival analysis showed that patients with 
both a high ImmuneScore or a high StromalScore had a 
significant better overall survival (OS) and relapse-free 
survival (RFS) compared to patients with low scores 
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(Additional file 1: Fig. S2D, E). The AUCs of the Immu-
neScore were 0.66, 0.67 and 0.59 at 1, 3, and 5-year of OS, 
and 0.66, 0.62 and 0.54 at 1, 3, and 5-year of RFS (Addi-
tional file 1: Fig. S2D, E). The AUCs of the StromalScore 
were 0.69, 0.69 and 0.63 at 1, 3, and 5-year of OS, and 
0.78, 0.60 and 0.59 at 1, 3, and 5-year of RFS (Additional 
file 1: Fig. S2F, G).

Construction of the TME‑based prognostic index
Divided osteosarcoma patients in the TARGET cohort 
into high and low ImmuneScore/StromalScore groups 
using median as cut-off value, volcano plots indicated 
that 558 DEGs were upregulated and 150 DEGs were 
downregulated in the high ImmuneScore group (Fig. 1A; 
Additional file 2: Table S2), while 415 DEGs were upreg-
ulated and 215 DEGs were downregulated in the high 
StromalScore group (Fig. 1B; Additional file 2: Table S3). 
Subsequently, in WGCNA, the optimal soft threshold 
was determined as 5 based on scale-free and mean con-
nectivity network maps (Additional file 1: Fig. S3), and 20 
co-expressed gene modules were identified after merg-
ing modules with distances less than 0.25 (except for the 
grey module, which contains genes that cannot be clas-
sified) (Fig. 1C). Based on correlation analysis, the green 
and yellow modules were found to be strongly positively 
correlated with ImmuneScore, while the blue mod-
ule was strongly negatively correlated with StromalS-
core and the yellow module was positively correlated 
with StromalScore (Fig. 1D; Additional file 2: Table S4). 
Venn plots showed the intersection of DEGs and TME-
related gene modules in WGCNA, where 493 genes were 
identified as ImmuneScore-related genes and 475 genes 
were identified as StromalScore-related genes (Fig.  1E), 
These genes were further input into LASSO regression 
analysis for downscaling, and further screened for APB-
B1IP, CFH, GBP2, MYC, P4HA1, PPARG and SHISA5 in 
ImmuneScore-related, and screened for ACTA2, APB-
B1IP, CFH, P4HA1, PLEKHO2, PROSER2, RAMP1 and 
TAC4 in StromalScore-related genes (Fig. 1E). Finally, the 
APBB1IP, ACTA2, CFH, GBP2, MYC, P4HA1, PPARG, 
PLEKHO2, P4H, RAMP1, TAC4, and SHISA5 were input 
into stepwise regression to determine the optimal model, 
which we termed as TMEindex (Fig.  1E). The optimal 
model contains MYC, P4HA1, RAMP1, and TAC4, the 
C-index of the optimal model is 0.825. The model was: 

TMEindex =​ 0.8115 ​× MYC​ + 0.556​5 × P4H​A1 + 0.4​
634 × R​AMP1 + 0​.​342​2 ×​ TAC4.

Further, the prognostic value of MYC, P4HA1, RAMP1 
and TAC4 was also evaluated. Univariate Cox regression 
showed that these genes were strongly associated with 
OS in osteosarcoma (Additional file  1: Fig. S4A). KM 
curves indicated that patients with high expression of 
MYC, P4HA1, RAMP1 and TAC4 had significantly worse 
OS (Additional file  1: Fig. S4B–E) and RFS (Additional 
file 1: Fig. S5A–D).

Prognostic predictive value of the TMEindex in the TARGET 
cohort
In the TARGET cohort, all patients were divided into 
high and low TMEindex groups using the median 
TMEindex (TMEindex = 8.615) as the risk threshold. 
Figure  2A showed the distribution of TMEindex and 
patients, the high TMEindex group had significantly 
shorter survival time and higher expression of MYC, 
P4HA1, RAMP1 and TAC4 than the low TMEindex 
group (Additional file  1: Fig.  S6A, B). The KM curve 
shows that patients in the high TMEindex group had a 
significantly shorter OS (P < 0.0001; Fig.  2B). The AUCs 
of the TMEindex were 0.94, 0.84 and 0.83 at 1, 3, and 
5-year of OS, respectively (Fig. 2C). As shown in Fig. 2D, 
patients with high TMEindex also had a shorter RFS than 
patients with low TMEindex (P < 0.0001). The AUCs of 1, 
3, and 5-year RFS were 0.88, 0.77, 0.80 (Fig. 2E).

A stratified analysis was conducted to further deter-
mine the prognostic value of the TMEindex based 
on the clinical characteristics of the patients. There 
was no significant difference in TMEindex between 
patients < 15 years and those ≥ 15 years as well as between 
the genders (Additional file 1: Fig. S7A). Survival analy-
sis showed that OS and RFS between patients with high 
and low TMEindex in subgroups with different age and 
gender had significant differences, with shorter OS and 
RFS for patients in the high TMEindex group (Additional 
file 1: Fig. S7B–E).

Validation of the TMEindex in independent cohorts
To further assess the robustness of the TMEindex, we 
selected three independent datasets (GSE21257, GSE16091 
and GSE33382) to validate the prognostic predictive 
power of the TMEindex. In the GSE21257 dataset, the KM 

(See figure on next page.)
Fi​g. ​1  ​Constru​cti​on ​of the TMEindex. A ​Vol​can​o p​lo​t o​f d​ifferentially e​xpr​ess​ed ​genes between high-ImmuneScore group and low-ImmuneScore 
group. B Volcano plot of differentially expressed genes between high-StromalScore group and low-StromalScore group. C Gene modules 
identified by WGCNA. D Correlation analysis between gene modules and ImmuneScore/ StromalScore. Strongly correlated modules (|correlation 
coefficients|> 0.6, P < 0.05) are marked with black frames. E LASSO regression and stepwise regression for determining the final model. Venn plot 
shows the number of intersection genes between WGCNA and DEG analysis. These genes were further input into LASSO regression. The Y-axis 
shows LASSO coefficients and the X-axis is − log2(lambda). The genes obtained from LASSO regression downscaling were further input into 
stepwise regression to determine the TMEindex
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Fi​g. ​1  ​(See legend on previous page.)
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Fig. 2  Prognostic predictive role of TMEindex. A The distribution of TMEindex and survival status and the heatmap of 4 genes of the TMEindex 
in the TARGET cohort. B Kaplan–Meier curve depicts the OS difference between TMEindex-high and TMEindex-low groups (log-rank P < 0.0001) 
in the TARGET cohort. Red representing the TMEindex-high group and blue representing the TMEindex-low group. C ROC curve showing the 
OS prediction efficiency of the TMEindex in the TARGET cohort. D Kaplan–Meier curve depicts the RFS difference between TMEindex-high 
and TMEindex-low groups (log-rank P < 0.0001) in the TARGET cohort. Red representing the TMEindex-high group and blue representing the 
TMEindex-low group. E ROC curve showing the RFS prediction efficiency of the TMEindex in the TARGET cohort
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curve showed that the high TMEindex group had signifi-
cantly worse OS (P = 0.00081; Fig. 3A). The AUCs of 1, 3, 
and 5-year OS were 0.79, 0.76, 0.76, respectively (Fig. 3B). 
Additionally, the high TMEindex group also had worse 
metastasis-free survival (MFS) (P = 0.0029; Fig.  3C) and 
the AUCs of the TMEindex were 0.74, 0.77 and 0.69 at 1, 
3, and 5-year of MFS (Fig. 3D). In the GSE21257 cohort we 
analyzed the two most common subtypes of osteosarcoma 
separately. The high TMEindex group had worse OS and 
MFS in both osteoblastic and chondroblastic osteosarcoma 
(Additional file 1: Fig. S8A, B), although in chondroblastic 
osteosarcoma there was no statistical significance due to 
the sample size being too small. In the GSE16091 dataset, 
patients with high TMEindex were also validated to have 
worse OS than patients with low TMEindex (P = 0.00023; 
Fig. 3E). The ROC curve showed excellent predictive per-
formance (Fig. 3F). Due to the lack of time data to MFS in 
the GSE33382 dataset, we explored the prediction power of 
the TMEindex on metastasis status in this dataset. Patients 
who did not develop metastases within 5  years had sig-
nificantly lower TMEindex compared to those who didn’t 
develop metastases within 5  years (Additional file  1: Fig. 
S9A). Additionally, increased TMEindex was associated 
with greater probability of metastasis within 5  years, and 
the TMEindex showed good predictive performance for 
metastatic status with AUC of 0.69 (Additional file 1: Fig. 
S9B).

TMEindex is an independent risk factor of osteosarcoma
To evaluate whether the prognostic performance of 
TMEindex in osteosarcoma is independent of other 
clinical factors, we performed univariate and multi-
variate Cox analyses (Additional file  1: Table  S5). For 
OS, univariate Cox analysis indicated that TMEin-
dex was associated with unfavorable OS in both the 
TARGET cohort (P < 0.001) and the GSE21257 data-
set (P = 0.021), while multivariate Cox analysis indi-
cated that TMEindex was an independent risk factor 
for OS in both cohorts (P < 0.001and P = 0.013). In the 
GSE16091 dataset, although the univariate Cox analy-
sis failed to show a significant correlation between 
TMEindex and OS (P = 0.051), TMEindex was sig-
nificantly associated with unfavorable OS in multi-
variate Cox analysis after adjusted by age and gender 
(P = 0.049). For RFS, both univariate (P < 0.001) and 
multivariate Cox analyses (P < 0.001) in the TARGET 

cohort suggested that TMEindex was significantly 
associated with unfavorable RFS in osteosarcoma. 
For MFS, the univariate (P = 0.003) and multivariate 
(P = 0.014) Cox analyses in the GSE21257 dataset also 
showed that TMEindex was associated with unfavora-
ble MFS.

The scRNA‑seq analysis of TMEindex genes
To further understand the distribution of TMEindex genes 
in osteosarcoma TME, we analyzed the scRNA-Seq data 
from osteosarcoma patients. 11 major clusters were iden-
tified in osteosarcoma TME based on the expression of 
characteristic genes (Fig. 4A). The t-SNE plot demonstrated 
the 11 annotated cell clusters (Fig. 4B), osteosarcoma TME 
was mainly composed of osteoblastic and chondroblastic 
osteosarcoma cells, osteoclasts, fibroblasts, myeloid cells, 
and tumor-infiltrating lymphocytes (TILs). Myoblasts 
and mesenchymal stem cells (MSCs) occupied a very low 
percentage of cells in TME. As shown in t-SNE plots and 
violin plots (Fig. 4C, D), among the major cell types, MYC 
was mainly expressed in malignant tumor cells, osteoblasts 
and fibroblasts. P4HA1 was mainly expressed in malignant 
tumor cells and fibroblasts. RAMP1 was mainly expressed 
in malignant tumor cells, especially in chondroblastic oste-
osarcoma cells. The overall expression of TAC4 was low 
and mainly expressed in chondroblastic osteosarcoma cells.

Protein expression of TMEindex genes in osteosarcoma 
tissues and their effects on proliferation, invasion 
and migration of osteosarcoma cells
To further understand whether the proteins of the TMEin-
dex genes are potential biomarkers, we first performed 
IHC analysis using osteosarcoma tissues and correspond-
ing normal tissues. Although there were no available anti-
bodies to TAC4, the protein expression of MYC, P4HA1, 
and RAMP1 was found to be significantly higher in osteo-
sarcoma tissues than in normal tissues (Fig. 5A). In addi-
tion, in the independent validation cohort, it was found 
that osteosarcoma patients with high MYC, P4HA1, and 
RAMP1 protein expression had worse RFS (Fig. 5B). Fur-
ther, the effect of TMEindex genes on the malignant phe-
notype of osteosarcoma cells was explored by molecular 
biology experiments. As shown in Fig.  5C, cell prolifera-
tion was inhibited after knockdown of MYC, P4HA1 and 
RAMP1 in both MG-63 and U2OS cells, while cell pro-
liferation was not affected after knockdown of TAC4. In 

(See figure on next page.)
Fig. 3  Validation of the prognostic predictive power of TMEindex in independent cohorts. A Kaplan–Meier curve depicts the OS difference 
between TMEindex-high and TMEindex-low groups (log-rank P = 0.00081) in the GSE21257 cohort. B ROC curve showing the OS prediction 
efficiency of the TMEindex in the GSE21257 cohort. C Kaplan–Meier curve depicts the MFS difference between TMEindex-high and TMEindex-low 
groups (log-rank P = 0.0029) in the GSE21257 cohort. D ROC curve showing the MFS prediction efficiency of the TMEindex in the GSE21257 cohort. 
E Kaplan–Meier curve depicts the OS difference between TMEindex-high and TMEindex-low groups (log-rank P = 0.00023) in the GSE16091 cohort. 
F ROC curve showing the OS prediction efficiency of the TMEindex in the GSE16091 cohort



Page 9 of 22Wu et al. Journal of Biomedical Science           (2023) 30:23 	

Fig. 3  (See legend on previous page.)
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addition, the cell invasion and migration abilities of both 
MG-63 and U2OS were inhibited after knockdown of MYC 
and P4HA1, and no change in cell invasion and migration 
ability was observed after knockdown of TAC4 (Fig. 5D, E). 

Interestingly, the invasive and migratory abilities of U2OS 
cells were inhibited after knockdown of RAMP1, while the 
invasive and migratory abilities of MG-63 cells were not.

Fig. 4  The scRNA-seq analysis of TMEindex genes. A The dot plot shows the expression of 37 signature genes in 11 cell clusters. The size of the dots 
indicates the proportion of cells expressing a specific marker, and the color indicates the average expression level of the markers. B The t-SNE plot of 
the 11 main cell types in osteosarcoma. C Feature plots for MYC, P4HA1, RAMP1 and TAC4. The color legend shows the normalized expression levels 
of the genes. D Violin plots showing the normalized expression levels of MYC, P4HA1, RAMP1 and TAC4 across the 11 cell types
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Molecular characteristics of the TMEindex
To explore the potential mechanisms leading to the dif-
ferent prognostic outcomes between the high and low 
TMEindex groups, a GSEA based on the HALLMARK 
gene set was first performed. As shown in Fig.  6A, B, 
the high TMEindex samples were mainly enriched in 
MYC target genes, E2F target genes and MTOR-related 
pathway, while the low TMEindex samples were mainly 
enriched in apoptosis and immune response-related 
biological processes such as inflammatory response 
and interferon gamma (IFNγ) response. To further con-
firm these results, GSEA was performed again based 
on the KEGG gene set. Not surprisingly, apoptosis and 
immune response-related pathways such as antigen pro-
cessing and presentation, and T/B cell receptor signal-
ing pathways were enriched in the TMEindex low group 
(Additional file  1: Fig. S10B), while DNA replication, 
mismatch repair (MMR) and ribosome-related pathways 
were enriched in the high TMEindex group (Additional 
file 1: Fig. S10A). Further, a total of 612 DEGs were iden-
tified between high and low TMEindex groups (Addi-
tional file  2: Table  S6; Additional file  1: Fig. S11A). The 
KEGG pathway analysis of these DEGs revealed that 
they were mainly involved in PI3K-Akt signaling path-
way, Wnt signaling pathway, focal adhesion and other 
oncogenic related pathways (Additional file 1: Fig. S11B). 
GO enrichment analysis revealed that DEGs were closely 
related to immune-related biological processes and extra-
cellular matrix (Additional file  1: Fig. S11C), which is 
consistent with the previous results.

The previous findings suggested that the TMEin-
dex was indeed closely related to the immune process; 
therefore, immune-related signatures, stromal-related 
signatures, and mismatch repair-related signatures 
were tested in the different TMEindex groups. As 
shown in Fig. 6C, the low TMEindex group had higher 
immune-related signature scores (immune checkpoint 
and CD8 T effector) and stromal-related signature 
scores (EMT2 and Pan-F-TBRS). To better characterize 
the function of the TMEindex, the correlation between 
the TMEindex and known core biological processes 
was also tested. TMEindex was found to be positively 
correlated with cell cycle, DNA replication, MMR, and 
DNA damage repair (DDR), signatures, while negatively 

correlated with antigen processing, CD8 T effector, 
immune checkpoint, EMT, and Pan-F-TBRS signatures 
(Fig. 6D). To characterize the immune-related biologi-
cal processes of TMEindex, an analysis was performed 
based on a study by Zeng et  al. [29]. Among immune 
activation-relevant transcripts, TMEindex was found to 
be positively correlated with GZMA, PRF1 and CD8A 
(Fig.  6E). Among the immune checkpoint-relevant 
transcripts, TMEindex was positively correlated with 
CD274, HAVCR2, LAG3 and PDCD1LG2 (Fig.  6F). 
TMEindex was also positively associated with ACTA2, 
COL4A1 and TGFBR2 among the TGFβ/EMT path-
way-relevant transcripts (Fig. 6G).

Immune cell infiltration characteristics of TMEindex
The previous results have identified that TMEindex 
is closely associated with TME as well as immune 
response in osteosarcoma, and to further characterize 
the TMEindex in relation to the immune landscape, 
ssGSEA was performed to extrapolate the relative 
abundance of 28 immune cells. Figure  7A illustrated 
the distribution characteristics of immune cells associ-
ated with TMEindex, also included the clinical charac-
teristics of different TMEindex subgroups. Specifically, 
in the high TMEindex group, activated B cells, central 
memory CD4 and CD8 T cells, immature B cell, mac-
rophages, myeloid-derived suppressor cells (MDSCs), 
natural killer (NK) cells, NK T cells, monocytes, neu-
trophils, regulatory T cells (Tregs) and type 1T helper 
(Th1) cells infiltration were significantly reduced 
(Fig.  7C). Correlation analysis revealed that TMEin-
dex was negatively correlated with the infiltration 
levels of most immune activating cells (e.g. activated 
CD8 T cells, NK cells and Th1 cells) and immunosup-
pressive cells (e.g. CD56dim NK cells, MDSCs and 
Tregs) (Fig. 7B). In addition, the low TMEindex group 
was found to have significantly higher ImmuneScore 
(P < 0.01; Fig.  7D), StromalScore (P < 0.0001; Fig.  7E), 
and ESTIMATEScore (P < 0.001; Fig.  7F) than the 
high TMEindex group. The above results further con-
firmed that TMEindex was negatively correlated with 
the infiltration level of immune cell in the TME of 
osteosarcoma.

(See figure on next page.)
Fig. 5  Protein expression of TMEindex genes in osteosarcoma tissues and their effects on proliferation, invasion and migration of osteosarcoma 
cells. A IHC staining images of MYC, P4HA1 and RAMP1 in osteosarcoma tissues and corresponding normal tissues. The IHC scores indicated that the 
protein expression of MYC, P4HA1 and RAMP1 was higher in tumor tissues. B Kaplan–Meier curves depict the RFS difference between high and low 
TMEindex proteins (MYC, P4HA1 and RAMP1) groups (all log-rank P < 0.0001) in the external cohort. Red representing the high TMEindex proteins 
group and blue representing the low TMEindex proteins group. C Folded line plots showing the effect of MYC, P4HA1, RAMP1 and TAC4 knockdown 
on the proliferation of MG-63 and U2OS cells. The blue line represents the control group and the red line represents the knockdown group. D 
Transwell chamber experiment showing the effect of MYC, P4HA1, RAMP1 and TAC4 knockdown on the invasion of MG-63 and U2OS cells. Scale 
bar: 100 μm. E Scratch assay showing the effect of MYC, P4HA1, RAMP1 and TAC4 knockdown on the migration of MG-63 and U2OS cells. Data are 
represented as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Pan‑cancer analysis of the prognostic predictive value 
of TMEindex
Based on univariate Cox analysis, we evaluated the 
prognostic value of the TMEindex in 37 tumor types, 
including 9798 tumor samples. The results showed that 
TMEindex was identified as an unfavorable prognos-
tic biomarker for OS in nine tumors (Additional file  1: 
Fig.  S12A), including kidney renal papillary cell carci-
noma (KIRP), BLCA, adrenocortical carcinoma (ACC), 
head and neck squamous cell carcinoma (HNSC), pan-
creatic adenocarcinoma (PAAD), cervical squamous cell 
carcinoma and endocervical adenocarcinoma, uveal mel-
anoma (UVM), lung adenocarcinoma and ovarian serous 
cystadenocarcinoma. Interestingly, the TMEindex was 
considered to be a favorable prognostic biomarker for 
OS in lower grade glioma (LGG). Further, TMEindex was 
also found to be an unfavorable biomarker of disease-
free survival (DFS) in KIPR, ACC and PAAD (Additional 
file  1: Fig.  S12B). For progression-free survival (PFS), 
TMEindex was identified as an unfavorable biomarker in 
KIRP, PAAD, UVM, ACC, kidney chromophobe, HNSC 
and BLCA (Additional file 1: Fig. S13). Consistent with in 
OS, the TMEindex was also identified as a favorable bio-
marker for PFS in LGG.

Potential of TMEindex to predict immunotherapy, 
chemotherapy and targeted therapy response
There is no doubt that immunotherapy, represented by 
immune checkpoint inhibitors (ICIs), has emerged a 
major breakthrough in tumor therapy [35–37]. Next, 
the prognostic value of TMEindex for the ICI therapy 
was explored through two cohorts (IMvigor210-BLCA 
and IMvigor210-Kidney cancer) receiving anti-PD-L1 
therapy. In the IMvigor210-BLCA cohort, patients with 
low TMEindex exhibited significant therapeutic advan-
tages to anti-PD-L1 therapy and a markedly prolonged 
OS (P < 0.001; Fig.  8A). The TMEindex-Low group had 
a higher proportion of complete response (CR)/par-
tial response (PR) patients compared to the TMEindex-
High group (Fig.  8B). Although not significant, CR/PR 
patients also had a relatively lower TMEindex than stable 
disease (SD)/progressive disease (PD) patients (P = 0.07; 
Fig.  8C). The ROC curve confirmed the predictive role 
of TMEindex on the survival benefit of anti-PD-L1 

therapy in BLCA patients (Fig. 8D). Consistent with the 
IMvigor210-BLCA cohort, patients with high TMEin-
dex in the IMvigor210-Kidney cancer cohort also had 
relatively poorer OS (P = 0.09; Fig.  8E). In addition, the 
predictive value of the TMEindex to ICI response was 
also verified in this cohort (Fig.  8F, G). The ROC curve 
also demonstrated the predictive effect of the TMEindex 
on the survival benefit of ICI therapy in kidney cancer 
patients (Fig. 8H).

To explore the predictive potential of the TMEindex 
for drug treatment response, we extrapolated the IC50 
values of 189 compounds in the TARGET cohort. Sig-
nificant correlations between the TMEindex and the sen-
sitivity of 29 drugs were determined (Additional file  2: 
Table S7). As shown in Fig. 8I, patients in the TMEindex-
high group were more sensitive to 24 drugs including 
the cell cycle inhibitor BI.2536 and the Mitosis inhibi-
tor Paclitaxel. Patients in the TMEindex-low group were 
more sensitive to only five drugs, including Wnt signal-
ing pathway inhibitors SB216763 and XAV939 (Fig.  8I). 
In addition, the targets of these 29 drugs were analyzed, 
drugs sensitive in the TMEindex-high group mainly 
targeted apoptosis regulation, chromatin and genomic 
integrity, etc., while drugs sensitive in the TMEindex-low 
group targeted PI3K/mTOR and Wnt signaling pathways 
as described above (Additional file 2: Table S8).

Discussion
In this study, we collected osteosarcoma datasets from 
multiple platforms to develop and validate an osteo-
sarcoma TME-based risk model (TMEindex). We con-
firmed in several independent datasets that TMEindex 
is an independent prognostic factor with good pre-
dictive power for OS, RFS and MFS. In particular, the 
ROC curves demonstrated the markedly accuracy of the 
TMEindex in predicting the prognosis of patients with 
osteosarcoma. Additionally, stratification analysis further 
verified the robustness of TMEindex in prognosis predic-
tion. These results from multiple independent datasets 
support TMEindex as a valid risk stratification model. 
It is worth noting that TMEindex is a model established 
based on the osteosarcoma cohort, so its application 
value in pan-cancer remains to be further validated. In 
particular, TMEindex is a favorable prognostic marker 

Fig. 6  Molecular characteristics of the TMEindex. A, B GSEA enrichment plots base on HALLMARK gene set showing the relatively enriched 
pathways in TMEindex-high (A) and TMEindex-low (B) groups. C Differences in different signatures (immune relevant signature, mismatch repair 
relevant signature, and stromal relevant signature as indicated) between TMEindex-high and TMEindex-low groups. The upper and lower ends of 
the boxes represented interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001. D Correlations between TMEindex and known core biological processes signature scores. E Correlations 
between TMEindex and immune activation-relevant genes expression. F Correlations between TMEindex and immune-checkpoint-relevant 
genes expression. G Correlations between TMEindex and TGFβ/EMT pathway-relevant genes expression. Correlation coefficients are calculated 
by Spearman’s correlation analysis, with red representing negative correlations and blue representing positive correlations. Blank represents a 
correlation P-value > 0.05

(See figure on next page.)
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in LGG. This may be due to the fact that immunosup-
pressive factors in the TME of glioma have a very critical 
impact on prognosis [38–42], and TMEindex is nega-
tively correlated with the infiltration of immunosuppres-
sion-related cells in tumors, but the reasons need to be 
further revealed in LGG.

In addition to its prognostic role, this study validated 
the potential of TMEindex as a quantitative molecular 
signature of TME in osteosarcoma from multiple per-
spectives. The TMEindex was negatively correlated not 
only with multiple immune-related signatures but also 
with the abundance of multiple immune cells in osteo-
sarcoma TME. Previous studies have typically used the 
ESTIMATE algorithm to estimate TME for a variety of 
tumors [23, 43, 44], and Zeng et  al. also constructed a 
model (TMEscore) to quantify TME infiltration in gas-
tric cancer. However, both the ESTIMATE algorithm 
and the TMEscore involve hundreds and thousands of 
genes, which means that it is expensive to quantify TME 
based on them. In the presented study, TMEindex con-
sisted of only four genes, MYC, P4HA1, RAMP1, and 
TAC4. MYC is a recognized proto-oncogene that plays 
an important role in cell cycle, proliferation, differentia-
tion, and even global gene expression [45]. Casey et  al. 
found that downregulation of MYC enhanced antitumor 
responses by regulating CD47 and PD-L1 expression 
[46]. In osteosarcoma, MYC promotes cell invasion by 
activating the MEK-ERK pathway and facilitates malig-
nant progression of the tumor [47, 48]. A recent study 
also shown that MYC is negatively associated with multi-
ple immune cells and immune function in osteosarcoma, 
which supports the results of our study [49]. P4HA1 is 
a key enzyme in the synthesis of collagen, which is an 
important component of TME and is involved in the 
regulation of tumor immunity [50]. A pan-cancer study 
showed that P4HA1 is not only associated with poor 
prognosis in most tumors, but its overexpression also 
predicts an immunosuppressive TME [51]. P4HA1 has 
also been reported to be closely associated with the regu-
lation of hypoxic microenvironment and immune infil-
tration in osteosarcoma [52]. As for RAMP1, this gene 
is a member of the receptor activity modifying proteins 
(RAMP) family, is involved in the terminal glycosylation, 
maturation and presentation of calcitonin gene-related 

peptide (CGRP) receptors to the cell surface [53]. There 
is experimental evidence indicating that the expression 
of RAMP1 in immune cells, including T cells, is critical 
for inflammation suppression  [54, 55] and inflamma-
tion-associated lymphangiogenesis [56]. Additionally, 
targeting the CALCB/RAMP1 axis successfully inhib-
ited tumor growth in a study of Ewing sarcoma [57]. As 
for TAC4, a member of the tachykinin family that acti-
vates neurons and elicits behavioral responses, previous 
studies have reported its regulatory role in the immune 
system and inflammatory responses [58]. Tachykinins 
have been found to promote the production of memory 
Th17 cells by the inducting the expression of cytokines 
such as IL-1β in monocytes, thereby modulating the 
immune response [59]. These studies suggest that the 
genes involved in the TMEindex represent the direction 
of regulation of TME and support the TMEindex as a 
biomarker associated with immune response and tumor 
malignancy progression. Notably, the TMEindex genes 
were mainly expressed more highly in malignant cells, 
which may be a potential reason why patients with higher 
TMEindex have lower immune and stromal cell infiltra-
tion. In addition, although MYC and P4HA1 expression 
in MSCs and RAMP1 expression in Myoblasts were also 
higher, they cannot have a significant impact on TMEin-
dex since MSCs and Myoblasts occupied a very low 
percentage of TME. Further molecular biology experi-
ments showed that MYC and P4HA1 had a significant 
effect on the malignant phenotype of osteosarcoma cells, 
while TAC4 had no effect. The effect of RAMP1 on the 
malignant phenotype of osteosarcoma cells was cell type 
dependent.

To better characterize and understand the underly-
ing mechanisms of different prognosis between patients 
with a different TMEindex, we performed a GSEA for 
the high and low TMEindex groups. The high-TMEindex 
group had higher enrichment of MYC-related signaling 
pathways and mTOR signaling pathway. As previously 
described, MYC promoted tumor proliferation and sup-
pressed anti-tumor responses [46, 47], while aberrant 
activation of mTOR was a key factor in tumor growth 
and metastasis [60]. In addition, there was significantly 
lower anti-tumor lymphocyte infiltration in the high-
TMEindex group. In contrast, the low-TMEindex group 

(See figure on next page.)
Fig. 7  Immune and stromal cell infiltration characteristics of TMEindex. A Heatmap of the relationship between TMEindex and 28 immune and 
stromal cells. Age, gender, vital status, OS time, relapse status and RFS time are shown as patient annotations. B Correlations of TMEindex with 
abundance of 28 immune and stromal cells. Correlation coefficients are calculated by Spearman’s correlation analysis, with red representing 
negative correlations and blue representing positive correlations. Blank represents a correlation P-value > 0.05. C Differences in 28 immune and 
stromal cells between TMEindex-high and TMEindex-low groups. The upper and lower ends of the boxes represented interquartile range of values. 
The lines in the boxes represented median value, and black dots showed outliers. D–F Differences in ImmuneScore (D), StromalScore (E) and 
ESTIMATEScore (F) between TMEindex-high and TMEindex-low groups. The blue represents the TMEindex-high group and the yellow represents 
TMEindex-low group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Fig. 8  The relationship between TMEindex and efficacy of immunotherapy and drug sensitivity. A, E Kaplan–Meier curves depict the OS difference 
between TMEindex-high and TMEindex-low groups after anti-PD-L1 immunotherapy in the IMvigor210-BLCA (A, log-rank P < 0.0001) and 
IMvigor210-Kidney cancer (B, log-rank P = 0.09) cohorts. B, F Rate of clinical response (complete response [CR]/partial response [PR] and stable 
disease [SD]/progressive disease [PD]) to anti–PD-L1 immunotherapy in TMEindex-high and TMEindex-low groups in the IMvigor210-BLCA (B) and 
IMvigor210-Kidney cancer (F) cohorts. C, G TMEindex in groups with different anti–PD-L1 clinical response status in the IMvigor210-BLCA (C) and 
IMvigor210-Kidney cancer (G) cohorts. The red represents CR/PR patients and the blue represents SD/PD patients. D, H ROC curves showing the OS 
prediction efficiency of the TMEindex in the IMvigor210-BLCA (D) and IMvigor210-Kidney cancer (H) cohorts. I The correlation between TMEindex 
and drug sensitivity (IC50 value). Each column represents a drug. The height of the column represents the correlation coefficient. The red represents 
drugs sensitive in TMEindex-high group and the blue represents drugs sensitive in TMEindex-low group
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was predominantly enriched for anti-tumor immune 
response processes such as inflammatory response and 
IFNγ response. In addition, the low-TMEindex group had 
a higher infiltration of immune cells. The current view 
is that pre-existing antitumor immune responses usu-
ally improve the prognosis of cancer patients [61], so the 
better prognosis in the low-TMEindex group may result 
from better immune control. Overall, the prognostic 
value of TMEindex stems from a better immune response 
and lower tumor malignancy.

With the success of immunotherapy, especially ICI 
therapy, in a variety of tumors [36, 62, 63], the use of 
immunotherapy to improve survival outcomes in osteo-
sarcoma has become an attractive strategy. The benefits 
of immunotherapy strategies based on immunostimu-
lants and innate immune cells have been well docu-
mented in early studies [64–66], suggesting promising 
applications for immunotherapy in osteosarcoma. In 
addition, the high presence of tumor-infiltrating lym-
phocytes in osteosarcoma TME and the correlation 
between CD8 T cells and higher survival rate has led 
to the hypothesis that ICI therapy could be effective in 
osteosarcoma [67–69]. Unfortunately, only a very small 
number of patients in two studies of anti-PD-1 mono-
therapy for osteosarcoma showed PR [70, 71]. However, 
the combination of anti-PD-L1 and anti-CTLA-4 therapy 
showed objective responses and clinical benefits on PFS 
in metastatic osteosarcoma [72, 73]. Additionally, bio-
logical experiments based on a mouse model of osteo-
sarcoma demonstrated the effective inhibition to lung 
metastasis by PD-1 inhibitors [74]. These encouraging 
findings provide a potential rationale for further clini-
cal trials. A large number of clinical trials are currently 
underway with strategies using ICIs combination therapy 
or ICI in combination with chemotherapy or targeted 
therapy that are designed to improve the response to 
ICIs [75, 76]. The foreseeable development of immuno-
therapy for osteosarcoma highlights the need to identify 
prognostic biomarkers for immunotherapy of this dis-
ease. Tumor mutation burden (TMB) and microsatellite 
Instability (MSI) tests are genomic biomarkers currently 
used to identify patients who may benefit from ICIs [77, 
78]. Gounder et  al. performed targeted panel sequenc-
ing on 7494 sarcoma (including osteosarcoma) samples 
and found that only 3.9% of sarcoma patients had a rel-
evant TMB and the frequency of MSI was extremely low 
(< 0.3%) [79]. The proportion of relevant TMB and MSI 
in osteosarcoma was even lower. This suggests that TMB 
and MSI may not be suitable as valid biomarkers for ICI 
therapy in osteosarcoma and that new biomarkers need 
to be identified. Previous studies have shown that the 
clinical benefit and prognostic outcome of immunother-
apy is largely determined by the patient’s TME status [80, 

81]. In this study, the TMEindex is a quantitative molec-
ular signature of TME in patients with osteosarcoma. 
Patients with lower TMEindex have higher ImmuneS-
cores, immune cell infiltration levels and immune acti-
vation-related signature scores, which represent higher 
immune activity. Therefore, patients with a lower TMEin-
dex are more suitable for treatment with ICI to offset the 
immunosuppression and enhance the existing anti-tumor 
immunity. As mentioned earlier, ICIs combination ther-
apy is likely to be more effective than ICI monotherapy. 
Patients with higher PD-L1 expression tended to respond 
better to anti-PD-1/PD-L1 therapy [82], consistent with 
the fact that patients with lower TMEindex also had 
higher expression of checkpoint genes, including PD-L1 
(CD274), which further supports our conclusion. On the 
other hand, patients with higher TMEindex have lower 
immune cell infiltration and cold TME, therefore patients 
with high TMEindex may be suitable for tumor vaccines 
and immunostimulants to enhance anti-tumor immune 
cell infiltration [83]. Due to the lack of data on osteosar-
coma immunotherapy, we were unable to validate it in 
further clinical trial data. Considering that in the pan-
cancer analysis, we found the most significant prognos-
tic predictive effect of TMEindex in KIRC and BLCA, 
therefore we selected two anti-PD-L1 cohorts in kidney 
cancer and BLCA for validation. Not surprisingly, kidney 
cancer and BLCA patients with lower TMEindex were 
more likely to respond to anti-PD-L1 therapy and achieve 
longer survival benefits. Although we were unable to find 
an osteosarcoma ICI treatment cohort for validation, this 
still provides a further theoretical basis for the TMEin-
dex to predict ICI treatment response in osteosarcoma. 
In addition, this also provides a reference for the future 
application of TMEindex in other tumors.

In addition to immunotherapy, the feasibility of 
TMEindex as a sensitivity marker for chemotherapy 
and targeted therapy was also investigated in this study. 
A large number of new targeted drugs for osteosarcoma 
are currently in development [4]. The TMEindex corre-
lated positively with the sensitivity of 24 drugs targeting 
multiple pathways, meaning that patients with higher 
TMEindex were more likely to benefit from these drugs. 
This included three drugs (Buparlisib, LJI308, and Pic-
tilisib) targeting the PI3K/mTOR pathway, which has 
been identified as a potential drug target in osteosar-
coma [4, 84], and consistent with this, patients with high 
TMEindex in this study did have higher activation of this 
pathway. Moreover, these drugs also included two drugs 
(Linsitinib and NVP.ADW742) that target the insulin-
like growth factor pathway (IGF1R), the anti-IGF1R 
strategy has achieved great success in previous clinical 
trials [4, 85, 86]. A variety of other drugs, including cell 
cycle pathway inhibitor BI.2536, are also promising new 
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therapies [4]. Not to be overlooked, two (SB216763 and 
XAV939) of five drugs whose sensitivity was negatively 
correlated with TMEindex were targeting the Wnt path-
way. A recent study suggests that the lack of response to 
anti-PD-1 therapy in osteosarcoma patients may be due 
to an increase in Wnt signaling in immunosuppressive 
TME [87]. This study has demonstrated that patients 
with low TMEindex may be more likely to respond to 
ICI and that low TMEindex is likewise more sensitive to 
Wnt pathway inhibitors. Therefore, the use of Wnt path-
way inhibitors at low TMEindex to improve TME and 
enhance the efficacy of ICI therapy may be a promising 
strategy. In conjunction with the previous description, 
we further recommend trying ICI in combination with 
chemotherapy or targeted therapy (especially Wnt path-
way inhibitors) in low-TMEindex patients and trying 
multiple chemotherapy or targeted therapy in combina-
tion with immunostimulants in high-TMEindex patients.

Some limitations of our findings remain. We were 
unable to analyze the association between TMEindex 
and TMB and MSI to provide more information, because 
mutation data of osteosarcoma patients in the TARGET 
database was not available. Also, we were unable to find 
the ICI treatment data for osteosarcoma to validate the 
predictive effect of TMEindex on the response to ICI 
treatment for osteosarcoma. The predictive role of the 
TMEindex on prognosis and immunotherapy response 
needs to be validated in further prospective cohorts. 
Finally, additional in  vivo and in  vitro experiments are 
needed to explore the effect of the TMEindex genes on 
drug sensitivity. Future work should reveal the biological 
mechanisms of TMEindex and incorporate more clinical 
factors to improve accuracy.

Conclusions
In conclusion, we developed a promising predictive 
model based on the osteosarcoma TME. The TMEindex 
can be used to distinguish molecular and immunological 
characteristics, predict prognosis and provide a poten-
tial reference for the clinical benefit of ICI therapy in 
osteosarcoma.
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