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Abstract 

Background Carbapenem‑resistant Klebsiella pneumoniae (CRKP) is a clinically critical pathogen that causes severe 
infection. Due to improper antibiotic administration, the prevalence of CRKP infection has been increasing consider‑
ably. In recent years, the utilization of matrix‑assisted laser desorption ionization time‑of‑flight mass spectrometry 
(MALDI‑TOF MS) has enabled the identification of bacterial isolates at the families and species level. Moreover, 
machine learning (ML) classifiers based on MALDI‑TOF MS have been recently considered a novel method to detect 
clinical antimicrobial‑resistant pathogens.

Methods A total of 2683 isolates (369 CRKP cases and 2314 carbapenem‑susceptible Klebsiella pneumoniae [CSKP]) 
collected in the clinical laboratories of Taipei Medical University Hospital (TMUH) were included in this study, and 80% 
of data was split into the training data set that were submitted for the ML model. The remaining 20% of data was used 
as the independent data set for external validation. In this study, we established an artificial neural network (ANN) 
model to analyze all potential peaks on mass spectrum simultaneously.

Results Our artificial neural network model for detecting CRKP isolates showed the best performance of area under 
the receiver operating characteristic curve (AUROC = 0.91) and of area under precision–recall curve (AUPRC = 0.90). 
Furthermore, we proposed the top 15 potential biomarkers in probable CRKP isolates at 2480, 4967, 12,362, 12,506, 
12,855, 14,790, 15,730, 16,176, 16,218, 16,758, 16,919, 17,091, 18,142, 18,998, and 19,095 Da.

Conclusions Compared with the prior MALDI‑TOF and machine learning studies of CRKP, the amount of data in our 
study was more sufficient and allowing us to conduct external validation. With better generalization abilities, our 
artificial neural network model can serve as a reliable screening tool for CRKP isolates in clinical practice. Integrat‑
ing our model into the current workflow of clinical laboratories can assist the rapid identification of CRKP before 

†Yu‑Ming Zhang and Mei‑Fen Tsao contributed equally to this work and share 
first authorship

*Correspondence:
Hsiu‑Chen Lin
jane2@tmu.edu.tw
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12929-023-00918-2&domain=pdf
http://orcid.org/0000-0003-1076-1121


Page 2 of 10Zhang et al. Journal of Biomedical Science           (2023) 30:25 

the completion of traditional antimicrobial susceptibility testing. The combination of MADLI‑TOF MS and machine 
learning techniques can support physicians in selecting suitable antibiotics, which has the potential to enhance the 
patients’ outcomes and lower the prevalence of antimicrobial resistance.

Keywords Carbapenem‑resistant Klebsiella pneumoniae, MALDI‑TOF MS, Machine learning, Artificial neural network, 
Antimicrobial resistance, Feature selection

Background
Carbapenem-resistant Klebsiella pneumoniae (CRKP) 
was rated as one of the most critical pathogens in the 
list of antibiotic-resistant pathogens that pose the great-
est threat to human health released by the World Health 
Organization in February 2017 [1]. CRKP is resistant 
to not only carbapenems but also multiple antibiotics. 
Therefore, the antibiotics available to treat CRKP infec-
tion include only polymyxins, tigecycline, aminoglyco-
sides, and fosfomycin; However, certain antibiotics had 
been associated with potential toxicity concerns, such as 
polymyxins which had been linked to the development of 
nephrotoxicity and neurotoxicity, while aminoglycosides 
were known to have side effects including nephrotoxic-
ity and ototoxicity. In addition, concerns had been raised 
regarding the efficacy of some of these antibiotics, such 
as the low serum concentrations of tigecycline, which 
rendered it unsuitable for treating patients with CRKP 
bacteremia [2]. A large systematic review published in 
The Lancet in February 2022 demonstrated the severities 
of the global burden of bacterial antimicrobial resistance 
(AMR) [3]. Moreover, this review indicated that K. pneu-
moniae is among the six leading pathogens associated 
with AMR, resulting in over 600,000 deaths in 2019, and 
particularly causes lower respiratory and thorax, blood-
stream, and intra-abdominal infections. Another sys-
tematic review included 62 studies and reported that the 
pooled mortality rate was 42.14% in 2462 patients with 
CRKP infection but 21.16% in those with carbapenem-
susceptible K. pneumoniae (CSKP) infection. In addi-
tion, this review reported that mortality rates in North 
America, South America, Europe, and Asia were 33.24%, 
46.71%, 50.06%, and 44.82%, respectively, indicating 
that CRKP is already a global problem that needs to be 
addressed urgently [4]. In terms of healthcare costs, Li 
et al. [5] further demonstrated that patients with CRKP 
infection had a longer hospitalization duration and a 
higher proportion of intensive care unit admissions 
(70.7% vs. 17.7%), which had posed a large burden in 
infection control measures in recent years.

Because of the high AMR of CRKP, the growing rate 
of inappropriate empiric antibiotic therapy and delayed 
diagnosis has become a crucial problem. Thus, a rapid 
detection method for carbapenem resistance is urgently 
required. Disk diffusion and broth dilution tests, which 

are used to determine the minimum inhibitory concen-
tration (MIC), are the most commonly employed tradi-
tional methods for antimicrobial susceptibility testing 
(AST) in accordance with international guidelines. An 
additional day after the culturing of bacteria is required 
to determine AMR. Reverse transcription-polymerase 
chain reaction (RT-PCR) is another rapid, accurate, and 
reliable method that can be used to detect the expres-
sion levels of AMR genes. However, the cost of RT-PCR 
is considerably high and can only be used to detect 
known genes which were not the synonyms of pheno-
typic resistance in bacteria [6]. In contrast, the target of 
MALDI-TOF were expressed peptides or proteins from 
the specific bacteria, which contributed to the AMR 
directly. A review study represented that matrix-assisted 
laser desorption ionization time-of-flight mass spectrom-
etry (MALDI-TOF MS) had been widely used in clinical 
microbiology laboratories and is a rapid, low-cost tool 
for accurately identifying microorganisms and even the 
AMR [7]. Compared with the traditional methods, the 
use of MALDI-TOF MS for AMR detection reduced the 
30-day mortality of patients with bloodstream infection, 
length of hospital stay, and total hospital cost for infec-
tion control [8].

MALDI-TOF MS is a promising tool for future clinical 
AMR detection and has been exhibited in previous stud-
ies on different bacteria such as MRSA [9]. However, the 
potential genetic mutations in bacterial regulators and 
adaptations to growth environments could cause modi-
fications in protein expression, leading to peak shifts 
with variable intervals on the MALDI-TOF MS signals 
[10]. The mass shift effects had presented a challenge 
in the preprocessing of MALDI-TOF MS data. Moreo-
ver, a systematic review had surveyed 36 studies about 
machine learning for detecting AMR on MALDI-TOF 
MS data published before 31 January 2020 and indicated 
the major limitations in these studies, such as small sam-
ple sizes, wide genetic diversity of certain pathogens and 
lack of external validation [11]. Addressing these limita-
tions, several subsequent researches increased their sam-
ple sizes, collected data from multiple departments and 
conducted external validations to improve the reliability 
and accuracy of the MALDI-TOF MS models for clinical 
AMR detection [9, 12, 13].
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In this study, we established a new scheme to clas-
sify CRKP and CSKP by using machine learning (ML) 
techniques. A methodological review had reported that 
artificial neural network (ANN) models were frequently 
employed in medical researches and had above-average 
accuracy in most cases [14]. Furthermore, compared to 
other models such as decision tree, random forest, sup-
port vector machine, ANN models offer more flexibility 
in terms of architecture-modifying and can be fine-tuned 
with various machine learning techniques such as early 
stopping, weight decay and dropout layer, leading to 
decreased overfitting effect and enhanced generaliza-
tion abilities. We concatenated MALDI-TOF MS data 
and AST results, then constructing an ANN predic-
tion model. In our new scheme, we were able to utilize 
the neural network model to analyze MALDI-TOF MS 
data immediately after obtaining the colony culture, and 
thereby aided physicians in making prompt and effec-
tive choices of antimicrobial drugs for K. pneumoniae 
infection.

Materials and methods
Data source
MALDI-TOF MS and AST data were collected from 
the clinical microbiology laboratories of Taipei Medical 
University Hospital (TMUH) from April 2018 to March 
2022. Because all personal information was encrypted, 
this study was exempted from the requirement of writ-
ten informed consent from patients. This study was 
approved by the Joint Institutional Review Board of Tai-
pei Medical University (TMUH-JIRB reference number: 
N202207046). In TMUH, BD Phoenix M50 (Becton, 
Dickinson and Company, Maryland, USA) is used to ana-
lyze the AST of clinical isolates. All clinical isolates were 
collected from urine, sputum, blood, swabs from pus, 
wound, vagina, and other clinical specimens. Accord-
ing to the Clinical Laboratory Standards Institute M100 
guidelines, K. pneumoniae isolates derived from clinical 
samples and exhibited resistance to any carbapenem anti-
biotics (ertapenem, imipenem, doripenem, and merope-
nem) were classified as CRKP. The other K. pneumoniae 
isolates were defined as CSKP.

Identification of K. pneumoniae through MALDI‑TOF MS
We used streaking method from collecting various speci-
men (Table 1) at agar plate (BAP, EMB, PEA and choco-
late agar what agar?), and put them in 5%  CO2 incubator 
to incubate bacteria according to Clinical Microbiology 
Procedure Handbook 4th ed. After the culturing of clini-
cal specimens, we isolated single colonies from the and 
smeared them onto spots in the target plate of MALDI-
TOF MS. MALDI-TOF MS samples were prepared in 

accordance with the manufacturer’s instructions (Bruker 
Daltonik, Bremen, Germany). Briefly, 1 µL of 70% for-
mic acid was overlaid on the spots, and the target plate 
was dried at room temperature. Subsequently, 1 µL of 
α-cyano-4-hydroxycinnamic acid (10 mg/mL) was added 
to the matrix solution (50% acetonitrile) and 2.5% tri-
fluoroacetic acid was added to the sample spot. Then, 
the sample matrix was dried at room temperature again 
before performing MADLI-TOF MS. MALDI-TOF MS 
was conducted using the MALDI-TOF mass spectrom-
eter (Microflex LT, Bruker Daltonik, Germany). The 
spectrum was analyzed using MALDI Biotyper Compass 
software version 4.1. For MADLI-TOF MS, we used the 
settings recommended by the manufacturer. Each mass 
spectrum consisted of 240 laser shots obtained in 40-shot 
steps (linear positive mode; accelerating voltage, + 20 kV; 
and nitrogen laser frequency, 60 Hz). The calibration of 
Bruker MADLI-TOF MS was performed using the bacte-
rial test standard prior to the analysis of clinical samples 
to ensure the validity of the identification of K. pneumo-
niae. We followed the instructions from the manufac-
turer, only using the isolates whose identification scores 
were higher than 2 as analytes in our study. The average 
identification score and standard deviation of these K. 
pneumoniae isolates were 2.39 ± 0.11. Moreover, in this 
study, the K. pneumoniae isolates with incomplete AST 
or MALDI-TOF MS data were excluded and we did not 
use machine learning techniques such as over-sampling 
method to make copies of the CRKP data.

Table 1 Demographics of clinical Klebsiella pneumoniae isolates 
sample demographics (univariate analysis)

CRKP carbapenem-resistant Klebsiella pneumoniae, CSKP carbapenem-sensitive 
Klebsiella pneumoniae, ER emergency, ICU intensive care unit, OPD outpatient 
department, in chi-square Test with α = 0.05

CRKP, n (%) 
(N = 369)

CSKP, n (%) 
(N = 2314)

P‑value

Specimen collection

 Urine 200 (54.2%) 1134 (49.0%) 0.016

 Sputum 63 (17.1%) 458 (19.8%)

 Blood 31 (8.4%) 153 (6.6%)

 Pus 26 (7.1%) 283 (12.2%)

 Wound 17 (4.6%) 80 (3.5%)

 Vagina 4 (1.1%) 53 (2.3%)

 Others 28 (7.6%) 153 (6.6%)

Location of sampling

 Ward 160 (43.4%) 738 (31.9%) < 0.0001

 ER 72 (19.5%) 613 (26.5%)

 OPD 55 (14.9%) 552 (23.9%)

 ICU 33 (8.9%) 249 (10.8%)

 Unspecified 49 (13.3%) 162 (7.0%)
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MALDI‑TOF MS data preprocessing
Raw data of mass spectrum were first preprocessed using 
the R package MaldiQuant v.1.21 and MALDIquant-
Foreign v0.13 [15, 16]. Raw data of intensity from mass 
spectrum were preprocessed through square-root trans-
formation, smoothed using the Savitzky–Golay filter, 
and subjected to baseline reduction by using the sensi-
tive nonlinear iterative peak clipping algorithm. After the 
preprocessing of data in R, we performed data preproc-
essing and model construction in Python v3.7 as follows. 
First, we trimmed the spectra in the 2000 to 20,000-Da 
range and assigned a zero value for the missing intensity 
data to prevent errors in the ML model. To reduce the 
shift effect of the mass spectrums, we used the binning 
method that has been employed by several MALDI-TOF 
studies to determine the mean intensity of the spectrum 
in a specific binning size, which mostly ranges from 3 to 
20 Da [12, 13]. However, we did not observe a consider-
able benefit of increasing the binning size to more than 1 
Da in our study. We presumed that numerous computing 
units in our neural network models are capable of han-
dling the deviation in the mass spectrum. The averaging 
of the intensity of the spectrum may result in the loss 
of some information from the mass spectrum, thereby 
reducing the efficacy of our model. Thus, for the mass 
spectrum data of each isolate, we considered each 1 Da 
as one feature, resulting in a total of 18,000 vectors from 
2000 to 20,000 Da.

We used “StandardScaler” in the Python Scikit-learn 
package to transform the intensity to Z score in accord-
ance with each feature; the loss function of the ML model 
converged rapidly toward the minima, resulting in a bet-
ter outcome. Next, we used the AST labels (CRKP and 
CSKP) to divide MADLI-TOF MS data into two groups 
and set a minimum threshold of intensity to obtain a 
meaningful peak, which may suggest the characteris-
tics of CRKP and CSKP isolates. Then, we calculated the 
ratios of meaningful peaks respectively in the CRKP and 
CSKP groups for each vector. To prevent our model from 
“curse of dimensionality”, which can reduce the efficacy of 
the ML model [17], we used the interquartile range (IQR) 
based on ratios of meaningful peaks in the two groups to 
classify each vector into different quarters (Q1, Q2, Q3, 
Q4). The best outcome of models we achieved in our 
study was via including vectors which were rated above 
Q3 (> 75%, 4500/18,000). Finally, we used these 4500 vec-
tors as features to establish our ML model.

Construction of the ANN model
We constructed the ANN model by using Python v3.7. 
Before the model training process, all data were shuf-
fled (random state value = 20) and split into 80% train-
ing and 20% independent validation data sets, stratified 

by AST labels to ensure the absence of imbalance in 
both data sets. This independent validation data set was 
not used for the model training process. We employed 
this data set only to externally evaluate the perfor-
mance of our model. In this study, we constructed an 
ANN model to predict the resistance of K. pneumo-
niae to carbapenems. This model included 4500 fea-
tures selected from Q3 based on the calculated IQR. 
The established neural network model included one 
input layer, two dense layers with the rectified linear 
unit (ReLU) activation function, two dropout layers, 
and one output layer with the softmax activation func-
tion (Fig. 1). The input layer consisted of 4500 vectors 
selected using the IQR method, and the output layer 
with the softmax activation function yielded two pre-
diction values for both classes (CRKP and CSKP).

The illustration was generated using this web tool: 
http:// alexl enail. me/ NN- SVG/ index. html.

Model evaluation
During the model training process, we used tenfold 
cross validation to evaluate the accuracy of our model 
and simultaneously modified weights in the neurons of 
the model to minimize the loss of function. This pro-
cess helped in evaluating the model performance and 
obtaining a better outcome. After the completion of 
the training process, we shuffled the independent vali-
dation data set (random state value = 1) and chose a 
balanced number of CSKP and CRKP isolates from the 
above data set to perform external validation, verifying 
the efficacy of our model with, sensitivity, specificity, 
F1-score, accuracy, area under the receiver operating 
characteristic curve (AUROC) and of area under preci-
sion–recall curve (AUPRC).

Statistical analysis
Statistical analyses were performed using the SPSS 
statistics program version 19 (IBM Corporation: New 
York, NY, USA). The chi-squared test was applied to 
compare nonparametric frequency of categorical vari-
ables between the two groups. A two-sided p value of 
< 0.05 indicated statistical significance. Receiver oper-
ating characteristic (ROC) curve was used to evaluate 
the performance of machine learning models and preci-
sion–recall curve (PRC) was suitable for evaluating the 
performance of models when the data distribution was 
imbalanced. The efficacy of our prediction model was 
presented as sensitivity, specificity, F1-score, accuracy 
as follows: Sensitivity = [True Positives (CRKP)]/[True 
Positives (CRKP) + False Negatives]; Specificity = [True 
Negatives (CSKP)]/[True Negatives (CSKP) + False 

http://alexlenail.me/NN-SVG/index.html


Page 5 of 10Zhang et al. Journal of Biomedical Science           (2023) 30:25  

Positives]; Accuracy = [True Positives (CRKP) + True 
negative (CSKP)]/[True Positives (CRKP) + True Nega-
tives (CSKP) + False Positives + False Negatives].

Results
Overview of AST and MALDI‑TOF MS data
After matching AST data with available MADLI-TOF 
MS data, we included 2683 isolates (369 CRKP and 2314 
CSKP) in this study. The collection of the specimen and 
location of the sampling significantly differed between 
the CSKP and CRKP isolates (Table 1).

Model performance for the detection of CRKP and CSKP
In the traditional workflow, after culturing, bacterial 
identification should be performed first using MALDI-
TOF. Then, AST would require 24 to 48  h. In clinical 
practice, at least 3 to 4 days would be required for the 
identification of CRKP isolates. By using our neural 
network model, we obtained the results at least 1  day 
earlier than traditional AST. Thus, this model has the 
potential to aid in the screening of CRKP and assists 
clinicians in the selection of appropriate antibiot-
ics promptly. In this study, we propose a new scheme 
for the detection of CRKP isolates (Fig.  2). Figure  2 
shows the current workflow in clinical laboratories of 
TMUH involved collecting specimens from the bed-
side to obtain an AST report, which takes at least 72 h. 

Clinicians can then determine whether they need to 
switch from empiric antibiotics to a more appropriate 
option. Integrating our model into this workflow at the 
framed part, we can screen the CRKP isolates and pro-
vide clinicians with guidance before the AST reports 
are available. The new scheme can shorten the turnover 
time of detecting CRKP and further benefit physicians 
who require AST results for specific antibiotics that are 
not part of the routine.

We established an ANN model and used 80% of total 
data as the training data set (n = 2146), enabling our 
model to distinguish CRKP from CSKP. Then we veri-
fied the efficacy of our model with sensitivity, speci-
ficity, F1-score, accuracy, AUROC and AUPRC. The 
remaining 20% of the total data were regarded as the 
independent validation data set and we chose a bal-
anced number of CSKP and CRKP isolates (N = 74, 74) 
from the data set to perform external validation. In the 
external validation, we used the sensitivity, specificity, 
F1-score, accuracy, AUROC and AUPRC to measure 
the performance of our model. Our neural network 
model had a sensitivity of 0.84, a specificity of 0.84, a 
F1-score of 0.84, an accuracy of 0.84. In external valida-
tion with a balanced number of CSKP and CRKP iso-
lates, the AUROC is 0.91 (Fig.  3). The area under the 
precision–recall curve (AUPRC) is used to assess the 
efficacy of machine learning models when the training 
or validation dataset is imbalanced. An AUPRC value of 

Fig. 1 Architecture of our neural network model for identifying CRKP and CSKP isolates
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0.90 (Fig. 4) is obtained in the external validation of the 
ANN model with an equal number of CSKP and CRKP 
isolates. This indicates that the model is robust despite 
the imbalanced distribution of the dataset.

Analysis of significant peaks by using Shap values
We further analyzed our ANN model and identified 
potential biomarkers using the Shap package in Python 
v3.7 to summarize the importance of specific peaks. As 

Fig. 2 The figure shows the current workflow in clinical laboratories of TMUH involved collecting specimens from the bedside to obtain an AST 
report, which takes at least 72 h. Clinicians can then determine whether they need to switch from empiric antibiotics to a more appropriate option. 
Integrating our model into this workflow at the framed part, we can screen the CRKP isolates and provide clinicians with guidance before the AST 
reports are available. The new scheme can shorten the turnover time of detecting CRKP and further benefit physicians who require AST results for 
specific antibiotics that are not part of the routine

Fig. 3 The area under the receiver operating characteristic curve 
(AUROC) represents the performance of the predictive ANN model 
for identifying CRKP isolates. In external validation with a balanced 
number of CSKP and CRKP isolates, the AUROC is 0.91

Fig. 4 The area under the precision–recall curve (AUPRC) is used to 
assess the efficacy of machine learning models when the training or 
validation dataset is imbalanced. An AUPRC value of 0.90 is obtained 
in the external validation of the ANN model with an equal number 
of CSKP and CRKP isolates. This indicates that the model is robust 
despite the imbalanced distribution of the dataset
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Fig. 5 Shap value, an explainable AI method, is used to evaluate the impact of each feature in models, increasing transparency and interpretability 
of machine learning models. The accompanying illustration displays the shap values of the leading 25 features in our ANN model and may provide 
valuable insights for future researches
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presented in Fig. 5, the red color represents isolates with 
specific peaks in the mass spectrum and the blue color 
represents isolates without specific peaks. Shap value, 
an explainable AI method, is used to evaluate the impact 
of each feature in models, increasing transparency and 
interpretability of machine learning models. The accom-
panying illustration displays the shap values of the lead-
ing 25 features in our ANN model and may provide 
valuable insights for future researches. The efficiency to 
predict whether an K. pneumoniae isolate is resistant to 
carbapenems increases as the distance away from the 
zero point of Shap values increases. In this study, we pro-
posed the top 15 potential biomarkers in probable CRKP 
isolates at 2480, 4967, 12,362, 12,506, 12,855, 14,790, 
15,730, 16,176, 16,218, 16,758, 16,919, 17,091, 18,142, 
18,998, and 19,095 Da.

Discussion
In the current workflow, at the first instance, physicians 
determined suitable empiric antibiotic therapy based on 
the patient’s medical history, current illness and sever-
ity. We developed an ANN model by using MALDI-TOF 
MS data and AST labels (CRKP/CSKP). Compared with 
traditional AST, this low-cost ML model could rapidly 
and accurately distinguish CRKP from CSKP despite 
the use of different specimens. Early and rapid detec-
tion of CRKP in clinical isolates can help physicians in 
providing appropriate empiric antibiotics to patients. 
In studies identifying bacteria with AMR, ML models 
based on MALDI-TOF MS data have been widely used, 
and the most discussed bacteria was Staphylococcus 
aureus [18–20]. However, only a few studies using ML 
models have focused on CRKP; There were two stud-
ies about CRKP identification based on MALDI-TOF 
MS and ML techniques published on February 2020 and 
July 2022 [21, 22]. Nevertheless, the two studies did not 
provide information on whether they had split an inde-
pendent validation data set from their whole database to 
perform external validation. There was a doubt of that 
their models might have overfitted to their own training 
data set if without performing external validations. The 
overfitting effect was particularly harmful to the perfor-
mance of models when the size of the training data set 
was small. In the two studies, the total sample sizes were 
95 and 171, respectively. Although the accuracy of the 
models in those studies was over 90%, the performance 
and generalization abilities of their models might be 
limited in the real world. The lack of external validation 
was widely noted in many studies. A systematic review 
published in October 2020 indicated that only approxi-
mately 11% (4/36) of MALDI-TOF machine learning 
studies performed external validation [11]. In our study, 
the sample size of the data set was 20 times more than 

the two previous CRKP studies on average. Moreover, 
we performed external validation by using an independ-
ent validation data set to examine the performance and 
robustness of our model in the real world, which was 
more reliable than the prior CRKP studies.

The potential biomarkers of CRKP isolates identified in 
our study are different from those reported in the previous 
two studies. This difference can be attributable to the the 
local genetic diversity and lack of the generalization abili-
ties of the models from previous studies. Moreover, in our 
study, we performed both AST and MALDI-TOF MS on the 
Bruker system in the clinical laboratory of TMUH, whereas 
the two CRKP studies performed AST and MALDI-TOF 
MS on a VITEK system. Differences in the composition 
of  the  matrix, settings of laser frequency, and processes 
might reduce comparability between the two systems.

Previous studies examining the specific strains of K. 
pneumoniae or K. pneumoniae carbapenemase-pro-
ducing K. pneumoniae (KPC-Kp) have reported dif-
ferent findings for the mass spectrum. Centonze et  al. 
[23] reported that the peak of 11,109 Da was widely 
detected in KPC-Kp and indicated that this peak can be 
beneficial in detecting KPC-Kp. Figueroa-Espinos et al. 
[24] reported that the peak of 11,109 Da only existed in 
32% of KPC-Kp and observed another peak of 28,544 
Da, where the blaKPC-2 gene was embedded. However, 
Huang et al. [25] demonstrated that no peak of 11,109 
Da was detected in their KPC-Kp isolates, and all of 
them were ST11, the dominant clone in China. They 
analyzed 235 isolates and found a peak of 4521 Da in 
blaKPC-2-positive isolates but not in blaKPC-2-nega-
tive isolates. Variable peaks on MADLI-TOF MS may 
be observed due to the different local genetic diversity 
of K. pneumoniae isolates. On account of the genetic 
variability and diverse mechanisms of antimicrobial 
resistance in CRKP isolates, we could not analyze the 
distribution of each specific strain in this study.

Limitations
Our study has some limitations. First, we did not exam-
ine the expression of genes associated with carbap-
enem resistance in K. pneumoniae, including ST11, 
KPC, VIM, IMP, NDM, and OXA-48 through PCR in 
our study. Gene identification is not required in clini-
cal practice. Second, our AST and MALDI-TOF MS 
data set of Klebsiella pneumoniae were obtained from 
the TMUH clinical laboratory. We utilized all eligible 
K. pneumoniae isolates to establish our model, but we 
did not investigate the distribution of different K. pneu-
moniae strains. Therefore, the efficacy of our model 
in predicting K. pneumoniae isolates from other labo-
ratories or countries needs to be examined in future 
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studies. More data from different hospitals, regions and 
even countries are required for training ML models to 
achieve a greater ability of generalization.

Conclusion
In this study, we established a robust ANN model by 
using AST and MALDI-TOF MS data to accurately 
identify CRKP with an AUROC of 0.91 and an AUPRC 
of 0.90. Our study differed from previous literatures 
that utilized MALDI-TOF MS and machine learning 
techniques to identify CRKP isolates, as we had a more 
comprehensive dataset and divided the entire database 
into a training set and an independent validation set 
to further validate our model. Our ANN model dem-
onstrated better generalization abilities, making it a 
dependable screening tool for CRKP isolates in clinical 
settings. Integrating our model into the current work-
flow of clinical laboratories could assist in the rapid 
identification of CRKP prior to completing traditional 
antimicrobial susceptibility testing. Our new approach, 
combined with traditional antimicrobial susceptibil-
ity testing, can aid in selecting appropriate antibiotics, 
which has the potential to improve patients’ out-
comes and decrease the prevalence of antimicrobial 
resistance.
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