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Abstract 

Head and Neck cancers (HNC) are a heterogeneous group of upper aero-digestive tract cancer and account 
for 931,922 new cases and 467,125 deaths worldwide. About 90% of these cancers are of squamous cell origin 
(HNSCC). HNSCC is associated with excessive tobacco and alcohol consumption and infection with oncogenic viruses. 
Genotyping tumour tissue to guide clinical decision-making is becoming common practice in modern oncology, 
but in the management of patients with HNSCC, cytopathology or histopathology of tumour tissue remains the main-
stream for diagnosis and treatment planning. Due to tumour heterogeneity and the lack of access to tumour due 
to its anatomical location, alternative methods to evaluate tumour activities are urgently needed. Liquid biopsy 
approaches can overcome issues such as tumour heterogeneity, which is associated with the analysis of small tissue 
biopsy. In addition, liquid biopsy offers repeat biopsy sampling, even for patients with tumours with access limita-
tions. Liquid biopsy refers to biomarkers found in body fluids, traditionally blood, that can be sampled to provide 
clinically valuable information on both the patient and their underlying malignancy. To date, the majority of liquid 
biopsy research has focused on blood-based biomarkers, such as circulating tumour DNA (ctDNA), circulating tumour 
cells (CTCs), and circulating microRNA. In this review, we will focus on ctDNA as a biomarker in HNSCC because of its 
robustness, its presence in many body fluids, adaptability to existing clinical laboratory-based technology platforms, 
and ease of collection and transportation. We will discuss mechanisms of ctDNA release into circulation, technologi-
cal advances in the analysis of ctDNA, ctDNA as a biomarker in HNSCC management, and some of the challenges 
associated with translating ctDNA into clinical and future perspectives. ctDNA provides a minimally invasive method 
for HNSCC prognosis and disease surveillance and will pave the way in the future for personalized medicine, thereby 
significantly improving outcomes and reducing healthcare costs.
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Introduction
Head and neck cancers (HNCs) are the 7th most com-
mon cancer in the world, with 931,922 new cases and 
467,125 deaths in 2020 [142]. The Organization Global 
Cancer Observatory estimates that the number of 
HNSCC patients will rise by 30% in 2030 [142]. Over 
90% of head and neck malignancies are squamous cell 
carcinomas (SCCs). HNSCCs generally originate from 
the squamous cells lining the mucosal surfaces inside 
the head and neck region. They can be categorized by 
anatomical location: oral cavity, pharynx (nasopharynx, 
oropharynx, hypopharynx), larynx, paranasal sinuses, 
nasal cavity, and salivary gland cancer [24].

The International Agency for Research on Cancer 
(part of the World Health Organization) has identi-
fied diverse risk factors that contribute to the develop-
ment of HNSCC. Excessive consumption of alcohol and 
tobacco use are the two major risk factors for the devel-
opment of HNSCC. It is estimated that at least 75% of 
HNSCCs are caused by tobacco smoking and alcohol 
consumption [10, 11, 56]. Heavy users of both ciga-
rettes and alcohol have a 35-fold higher risk of devel-
oping the disease [10]. High-risk human papillomavirus 
(HPV) [2, 19] and Epstein-Barr virus (EBV) [166] infec-
tions are also important risk factors for the develop-
ment of oropharyngeal cancers and nasopharyngeal 
carcinomas (NPC) respectively. Certain types of viruses 
are common in certain communities. For example, in 
the Chinese population, especially the Cantonese living 
in Southern China, they have a higher incidence of EBV 
associated NPC [167]. Betel quid products are linked 
to a high incidence rate of oral cavity cancer in China 
and India [47]. Abnormal eating habits such as intake 
of preserved or salted food and diet lacking in vegeta-
bles [39], have been shown to increase morbidity. In 
low- and middle-income countries, occupational expo-
sure to carcinogenic air pollutants is closely linked to 
the development of HNSCC [89]. Gender also matters, 
as compared to women, men are at 2 to fourfold higher 
risk of developing HNSCC [64]. Genetic factors can 
also predispose to the development of HNSCC [35]. 
It has been demonstrated that people with Fanconi 
anemia (a rare inherited genetic disease) have a 500–
700-fold higher risk of developing HNSCC [7, 157]. 
In addition, people with poor oral health are also at a 
higher risk of developing HNSCC [50, 141]. Also, peo-
ple who have not had the fortune of being vaccinated 
with HPV vaccination  (Gardasil®) are at risk of devel-
oping HPV associated oropharyngeal squamous cell 
carcinoma (OPSCC) [1]. It is also known that patients 
with HPV-positive OPSCC have a more favorable prog-
nosis than HPV-negative OPSCC [64].

Current diagnostics and treatment strategies for managing 
patients with HNSCC
Current diagnostic methods for HNSCC include physi-
cal examination, endoscopy, imaging studies, biopsy and 
tumour biomarker testing [120]. Tissue biopsy either by 
resection or fine-needle aspiration (FNA) is invasive, and 
in some cases, it is difficult to access the tumour due to its 
anatomical location. Also, FNA biopsy results in a small 
of amount of tumour tissue that is available for both his-
tologic diagnosis/subtyping and genetic testing for most 
advanced stage cancer patients, and in most instances, 
the tissue often becomes insufficient for genomic analy-
sis after initial histology diagnosis. In addition, inter- and 
intra-tumoral heterogeneity may also limit the tumour 
tissue-based genotyping, and this issue amplifies when 
determining mechanisms for treatment resistance [130]. 
Therefore, alternative diagnostic methods are warranted.

Currently available treatments for patients with 
HNSCC include surgery, radiotherapy, chemotherapy, 
targeted therapy and immunotherapy [110]. Treatment 
decision making is currently based on the tumour-node-
metastasis (TNM) stage, tumour p16 status, anatomic 
site, performance status (a scoring system that quantifies 
cancer patients’ activity of daily life and overall well-being 
and activities of daily life) and patient preferences. For 
example, for patients with locoregionally advanced oral 
cavity cancer (OC), the first line of treatment is surgery, 
whereas chemoradiotherapy (CRT) is more commonly 
used for oropharyngeal (OPC) and laryngeal cancers 
(LC) [64]. Postoperative radiation and postoperative 
chemotherapy are usually applied to patients with patho-
logical risk factors of developing recurrence and metasta-
sis [25]. Immunotherapies are currently approved to treat 
HNSCC patients with recurrence or metastasis, such as 
Pembrolizumab  (Keytruda®) and Nivolumab  (Opdivo®), 
they are recommended in the National Comprehensive 
Cancer Network (NCCN) guideline.

The need for biomarkers to triage patients with head 
and neck cancers
In recent decades, new cases of OPSCC are increas-
ing globally due to increasing rates of HPV infections. 
OPSCC has now surpassed cervical cancer to become the 
number one cause of HPV-related cancer in the United 
States and in Australia [24, 155]. There are differences 
in terms of molecular mechanisms and oncogenic pro-
cess between HPV-positive OPSCCs and HPV-negative 
HNSCCs. A better prognosis can be seen in HPV-posi-
tive OPSCC [77]. One of the ways to early detect OPSCC 
is to initiate a screening program targeting individuals 
within the community who are at a higher risk. However, 
this approach has not been applied in many countries 
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where OPSCC disease burden is high due to our inabil-
ity to detect occult OPSCC. This perspective changed in 
2020, with the detection of 2  mm occult OPSCC at the 
back of the throat of an asymptomatic in a healthy indi-
vidual, a world first, using serial saliva testing for HPV 
[146].

Before biomarkers can be integrated into a clinical 
workflow, they will have to undergo five phases of devel-
opment (preclinical exploratory work, clinical assay 
development for clinical disease, retrospective longitu-
dinal repository studies, prospective screening studies 
and cancer control studies [114]) to prove their clinical 
utility in terms of sensitivity and specificity. Biomarkers 
that can be sampled using non-invasive methods (saliva 
and urine) will be a game changer, especially managing 
patients living in rural and remote communities. Dur-
ing the COVID-19 pandemic, the urgency for rapid, 
non-invasive, remote testing has come to the forefront, 
in which salivary diagnostics is showing promise as an 
alternative diagnostic medium to blood and tumour tis-
sue testing [68]. Salivary diagnostics is still in a research 
phase but is expected to transform healthcare practice 
because of its ease of collection and the ability to be done 
at the conform of one’s home [160].

The application of liquid biopsy to head and neck cancers
The use of precision, targeted genomic therapies in 
HNSCC lagged behind many other cancer types, lead-
ing to poor survival outcomes. As an example, oncogenic 
PI3KCA mutations are commonly found in HNSCCs [90], 
and patients with this mutation are most likely to benefit 
from PI3K pathway inhibitor treatment [46]. However, 
mutation analysis of the tumour tissue is not routinely 
done for HNSCC. This would mean that those patients 
with PI3KCA mutations would not benefit PI3K pathway 
inhibitor. Given the drawback of using tumour tissue to 
diagnose and predict treatment response in HNSCC 
patients, alternative methods are urgently needed to bet-
ter manage patients with HNSCC [130]. Liquid biopsy, 
the use of cancer specific biomarkers that are present in 
body fluids to evaluate tumour activities and to discern 
underlying disease pathogenesis, is an emerging field in 
oncology. Some of the biomarkers used include CTC, 
ctDNA/RNA and exosome, to name a few. The ease of 
sampling and the ability to collect multiple samples “in 
real-time” from a cancer patient makes liquid biopsy as 
an alternative tool to managing HNC patients.

Origin of cell‑free DNA and circulating tumour DNA
Mandel and Metais in 1948 detected for the first time 
cell-free DNA (cfDNA), which is now referred to as short 
fragments of nuclear acids in circulation [91]. cfDNA 
is released from both normal and tumour cells into 

circulation through cellular apoptosis and necrosis [62], 
having a half-life of 10–15  min. cfDNA is degraded by 
blood nucleases, and/or eliminated by macrophages in 
kidney, liver and spleen [148, 159].

Circulating tumour (ctDNA) is derived from tumour 
and is part of the total cfDNA pool, representing only 
small fraction of cfDNA. It ranges from 0.01% to 90% 
[36], but is usually less than 1% of the total cfDNA. 
ctDNA is released either through passive (apoptosis and 
necrosis) or active secretion (Fig.  1). ctDNA fragments 
that are released into circulation due to apoptosis are 
of 160 bp–180 bp, whilst the ctDNA fragments that are 
actively secreted into circulation are of 150  bp–250  bp. 
In contrast, ctDNA released through necrosis are much 
larger, ranging from 320  bp to more than 1000  bp [36]. 
In addition, the lysis of CTCs also thought to contribute 
to the volume of ctDNA detected in circulation, although 
the exact mechanism is still not well understood [113]. 
Studies have found high molecular weight DNA frag-
ments associated with ctDNA through electrophoresis 
techniques, and this is released into circulation due to 
cell lysis [48]. Sutton et  al. [145], revealed that M2-like 
tumour-associate macrophages (TAMs) can regulate 
CTCs metastasis by breaking down the basement mem-
brane, promoting angiogenesis and protecting tumour 
cells from anti-tumour immunization [145]. TAMs can 
lyse CTCs through phagocytosis and release DNA into 
circulation [138]. The amount of ctDNA in circulation 
is influenced by the type of cancer, stage of the tumour, 
cancer burden, cellular turnover, and therapy response 
[32]. Muhanna et  al. found that the volume of tumour 
necrosis was positively correlated with plasma ctDNA in 
a preclinical rabbit model of HNSCC [101].

Overview of the tumour mutational landscape in head 
and neck squamous cell carcinoma
The mutational profiles of HNSCC have been reported 
by The Cancer Genome Atlas (TCGA) and cBioPortal 
databases. In general, the majority of HNSCCs present 
loss of function in tumour suppressor genes [139], and 
this is also common in genes regulating key cell cycle and 
cell differentiation pathway. By definition, a driver gene 
is defined as “a gene whose mutations accelerate net cell 
growth” [152], but there is no gold standard to identify 
driver genes. So far, they are mostly defined by compu-
tational algorithms that model the genes tumour specific 
rates compared to its hypothetical background. There are 
several databases for cancer driver genes/driver muta-
tions, including, Integrative OncoGenomics (N = 691 for 
HNC) [94], Network of cancer genes and healthy drivers 
(NCG 7.0, N = 1002 for HNC) [122], Oncovar (N = 2798 
for HNC data available in TCGA) [161], DriverDBv3 
(N = 2798) [88]. Also, Dietlein et  al.,’s publication in 
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Nat Genet (N = 425 for HNC) [33] summarized differ-
ent cancer drivers in over 28 cancer types. Notably, the 
mutational profiles between HPV-negative HNC and 
HPV-positive HNC are different [134], they are likely to 
have different driver genes because of their biological 

differences. Figure  2 summarizes HNC driver genes 
that have been reported in the five databases mentioned 
above. We are reporting the diver genes that have been 
reported in more than two databases, along with their 
roles in HNSCC.

Driver gene mutations in head and neck squamous cell 
carcinoma
The most common mutation in HPV-negative HNSCC is 
TP53, whose mutations are in 73–100% of HPV-negative 
HNSCC cases [152]. TP53 is a tumour suppressor gene 
that functions as a gatekeeper for cell growth and divi-
sion [79]. This involves, arresting cells in cell cycle, ini-
tiating apoptosis or senescence when there are errors in 
cellular DNA synthesis and replication. However, TP53 
mutation is rarely seen in HPV-positive HNSCC, this 
may be because of the HPV E6 viral protein initiating the 
degradation of TP53 [5]. The presence of TP53 mutation 
can be regarded as an early event during tumourigen-
esis in HNSCC [124]. HNSCC patients who have a TP53 
mutation usually respond poorly to cisplatin-fluorouracil 
neoadjuvant chemotherapy [14], leading to local recur-
rence after radiation therapy [44]. In addition, TP63 
(tumour protein 63) encodes a member of the p53 fam-
ily of transcription factors. Recurrent focal amplification 
for 3q26/28 involving the TP63 locus occurs in 15% of 
HNSCC [16].

Cyclin D1 (CCND1) and cyclin dependent kinase inhib-
itor 2A (CDKN2A) are two genes involved in cell cycle 
and DNA repair pathways. Amplification of CCND1 

Fig. 1 ctDNA originates from the tumour and is released into circulation

Fig. 2 A Venn graph illustrating the numbers of head and neck 
cancer driver genes in five databases. 5 genes are included in all 
the databases, 8 genes are included in four databases, 6 genes 
are included in three databases, and 24 genes are included in two 
databases
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and deletion of CDKN2A occur in 94% of oral squamous 
cell carcinoma (OSCC) [76] and structural alterations 
(homozygous deletion, intra and inter chromosomal 
fusions) appear to be prominent in CDKN2A [16]. In 
addition, studies have shown a mutation (8–12%) and a 
homozygous deletion in Protocadherin FAT1 (FAT atypi-
cal cadherin 1) (6%) in HNSCC [139]. Moreover, func-
tional loss of FAT1 either by mutation or homozygous 
deletion can activate Wnt signaling pathway to promote 
tumorigenesis [100].

Epidermal growth factor receptor (EGFR) is a recep-
tor tyrosine kinase (RTK) that is frequently altered in 
HNSCC [98] and stimulation of EGFR or other RTKs can 
active the PI3K/Akt pathway. More than 10% HNSCC 
patients have amplifications on EGFR of chromosome 
7 [124, 147]. Grandis et  al. observed that EGFR copy 
number variations (CNV) is linked to poor prognosis in 
HNSCC [49].

Ajuba LIM Protein (AJUBA), a gene in WNT/β-catenin 
signaling pathway, is found to inactivate mutations in 
HPV-negative HNSCC [6]. It can negatively regulate the 
NOTCH1/CTNNB1 signaling pathway [8].

Family with sequence similarity 135, member 
(BFAM135B) is a cancer-related gene on chromosome 
8q. It has been shown to increase progression of esopha-
geal squamous cell carcinoma (ESCC), and mutation of 
FAM135B in ESCC corelated to poor prognosis [137]. Its 
mutation rate in HNSCC is relatively high, mostly mis-
sense mutations in > 10% of patients [33], but its exact 
role in HNSCC remains to be explored.

Ras homolog family member A (RHOA) encodes a 
small GTPase in the Rho family, regulating cell motility 
and tissue development [61]. RHOA mutations in gastric 
cancers [153] can induce cell proliferation [60], its role in 
HNSCC remains yet to be explored.

Nuclear receptor-binding SET domain protein 1 
(NSD1) encodes a protein containing a SET domain. 
Truncating mutations, novel focal deletions (includes 
homozygous deletions and inframe deletions), missense 
point mutations and inactivating mutations are found in 
NSD1 in HNSCC [16, 111]. In laryngeal cancer, inactivat-
ing mutations in NSD1 are seen as a favorable prognostic 
biomarker [116].

Nuclear Factor Erythroid 2-Related Factor 2 (NFE2L2) 
acts as an oxidative stress factor regulating antioxidant 
and stress-responsive genes. It only mutates in HPV-neg-
ative HNSCC, and heavily related to smoking [8].

Caspase-8 (CASP8) is located on chromosome 2 and is 
involved in cell death through the death receptor path-
way. Knockdown of CASP8 makes HNSCCs susceptible 
to necroptosis [154]. Li et al. illustrated a six-nucleotide 
deletion variant (−  652 6N del) in the promoter region 
of CASP8, inversely contributing to the risk of HNSCC 

development [80]. A lower CASP8 mutation frequency is 
associated with lower aggressiveness in HNSCC. In addi-
tion, CASP8 mutations are found in 10% OSCC tumours 
[117].

In HPV-positive HNSCC, PI3K/Akt signaling path-
way is the most mutated signaling pathway [90] and has 
shown to correlate with genomic instability. The PI3K/
Akt pathway is involved in cell proliferation, survival 
and morphology [109]. Concurrent mutations of mul-
tiple PI3K pathway genes have been shown in patients 
with advanced-stage HNC [90]. PI3K/Akt mutations are 
associated with the anatomical site where the tumour 
originates from, particularly in anatomical locations 
such as the larynx [45]. Of note, about 10–15% HPV-
positive HNSCC patients have an activating mutation 
in the coding region of the PIK3CA gene, making it the 
most common mutation [90]. HPV-positive OPC has the 
highest number of PIK3CA mutations compared with 
other HPV-negative tumours [106]. PI3K is regulated 
by tumour suppressor phosphatase and tensin homolog 
(PTEN). Lui’s et  al. discovered PTEN gene copy loss in 
4/45 HNSCC cases [90], and this can be seen in both 
HPV-positive and HPV-negative tumours [76, 124].

Mutations in HRAS gene are seen in low frequencies 
(5%) in both HPV-positive and HPV-negative HNSCC 
[139]. HRAS is an oncoprotein, which interacts with the 
PI3K complex in a GTP-dependent manner to increase 
the catalytic activity of PI3K kinase [125].

Although the NOTCH pathway is oncogenic in some 
types of cancer, its role in HNSCC seems to be tumour 
suppressive [117, 139]. Nearly 66% of HNSCC tumours 
carry genetic mutation in at least one member of the 
NOTCH pathway [3]. An in  vitro study indicated that 
abrogated or absent NOTCH1 causes loss of prolifera-
tion and senescence in HNSCC cell lines [117]. Approxi-
mately 15% of patients with HNSCC (both HPV-negative 
and HPV-positive) have NOTCH1 mutation [3, 117, 139].

FBXW7 is a member of F-box protein family and 
acts as a tumour suppressor gene that mainly targets 
NOTCH1 [3]. Its mutations are mostly seen in HPV-
negative HNSCC, with little proportion in HPV-positive 
[134]. Lechner et  al. reported copy number variations 
of FBXW7 in HPV-positive HNC [76], whilst Agrawal 
et  al. reported indels and missense mutations [3]. It is 
hypothesized that mutation of FBXW7 can modulate the 
NOTCH pathway. Studies have also shown that HNSCC 
patients with TP53 mutations had significantly higher 
mutation rates in FBXW7 [108].

E1A binding protein P300 (EP300) is located on chro-
mosome 22 and acts as a histone acetyltransferase. It reg-
ulates transcription by chromatin remodeling [30]. It is 
also involved in the NOTCH pathway, which affects cell 
growth and apoptosis.
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cAMP-response element binding protein-BP (CREBBP) 
acts as a tumour suppressor gene and encodes a protein 
that participates in chromatin remodeling. It is reported 
to have loss-of-function mutations in many types of 
malignancies [87] and closely related to paralogue EP300. 
Loss of function of CREBBP/EP300 is documented to 
increase the proliferation ability of tumour cells [51].

KMT2D is a tumour suppressor gene encoding histone-
lysine N-methyltransferase 2D, which is vital for embry-
onic development, and it is widely expressed in adult 
tissue. Mutation in KMT2D are common in a number 
of cancers, HNC, brain, bladder, prostate, and lung [40]. 
Frameshift and nonsense mutations in the SET and PHD 
domains represent 37% and 60% respectively of KMT2D 
total mutations [119]. Mutation in KMT2D can affect 
H3K4me1-marked enhancer [15] regulation, which is a 
possible mechanism leading to cancer development. In 
addition, genomic instability during DNA replication 
and transcription can cause abnormalities in early repli-
cating fragile sites in the chromosome, leading to DNA 
breaks and formation of tumour [66]. Furthermore, 
MAPK1 (Mitogen-Activated Protein Kinase 1) mutation 
(p.D321N and E322K) correlates to Erlotinib sensitivity 
in HNC patients [105, 164].

cfDNA isolation and detection technologies
cfDNA is separated either by using centrifugal columns 
or magnetic beads [93] for downstream applications. 
ctDNA represents only a very small percentage of the 
total cfDNA, making it very challenging when isolating 
and detecting it. Based on the analysis, ctDNA technolo-
gies can be divided into three categories, single locus 
or multi-loci, targeted sequencing and whole genome 
sequencing (WGS) (Table  1). Single loci or multiplex 
assays, with a rapid turnaround time, are applied mainly 
to detect/quantify hotspot mutations and to monitor 
recurrent mutations [159]. For the detection of multi-loci 
mutations, PCR amplicons and hybrid-capture assays are 
commonly used [42]. While amplicon-based sequencing 
has better “on-target” effects, hybridization capture has 
higher uniformity [126]. In general, hybridization capture 
method requires > 1  μg DNA (SeqCap is an exception), 
but amplicon-based sequencing requires only 10–100 ng 
of total DNA. Non-targeted sequencing can detect 
unknown genomic alterations, such as detecting chromo-
somal structural variants by using WGS [159].

Besides the first generation and the next-generation 
sequencing technologies, Oxford Nanopore Technology 
(ONT) is the third-generation sequencing that relies on 
the detection of electrical changes as nucleic acids pass-
ing through a protein nanopore. This technology is pre-
dominantly used in sequencing long-length sequences, 
such as genomic DNA [163]. More recently, Marcozzi 

et al. [92], developed a new technique based on the ONT, 
CyclomicsSeq, which is able to detect ctDNA TP53 
mutation at frequencies down to 0.02%. Details of ctDNA 
detection technologies are summarized in Table 1.

Applications of ctDNA
ctDNA has been widely applied in the early detection 
of cancer, predict tumour burden, monitor response to 
treatment [129]. As illustrating in Fig. 3, researchers have 
used a wide range of tumour specific markers to capture 
tumour activity using ctDNA (Fig. 3).

Quantification of cfDNA levels
Levels of cfDNA is associated with the stage of the 
tumour and can indicate disease progress. Hilke et  al. 
sequenced 20 tumour samples from locally advanced 
HNSCC patients and followed them longitudinally dur-
ing and post treatment and found that 85% of patients 
had detectable cfDNA and that the amount of cfDNA 
correlated with the gross tumour volume [59]. Lin et al. 
analyzed plasma samples from 121 patients with OSCC 
and concluded that a higher level of plasma cfDNA were 
related to a poor prognosis, indicating that cfDNA lev-
els could serve as a prognostic biomarker [86]. Egyud 
et al. reported that 50% of HNSCC patients (N = 4) had 
detectable cfDNA levels prior to recurrence, indicat-
ing that cfDNA can be applied as a biomarker to early 
detect recurrence [34]. Mazurek et  al. detected lower 
levels of cfDNA in HNSCC patients (N = 200) compared 
with cfDNA levels detected in OPSCC patients. HNSCC 
patients with late stage (T2, T3 and stage IV) tumours 
had higher cfDNA levels than those patients from early 
stages of the disease [96], which is not surprising. In 
addition, Burgener et  al. reported shorter fragment 
lengths of cfDNA from HNSCC patients (N = 30) com-
pared to healthy controls (N = 20). In contrast, Shukla 
et al. reported no significant differences in cfDNA levels 
between OSCC patients (N = 390) and a control group 
(N = 150) [135]. Furthermore, HNSCC patients who had 
detectable cfDNA at baseline (collection of blood at diag-
nosis) were more likely to develop advanced disease and 
as a consequence showed poorer overall survival [13].

Biomarkers captured on ctDNA
HPV viral DNA
Circulating HPV DNA (ctHPVDNA) has widely been 
used as a biomarker in disease prediction and treat-
ment monitoring in patients with HNSCC. Cao et  al. 
reported that pre-treatment ctHPVDNA copy num-
ber was closely associated with the metabolic activ-
ity of lymph nodes and tumour volume in a 64 HNC 
patient cohort. A reduction in ctHPVDNA copy number 
was seen in 14 patients receiving chemoradiotherapy. 
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Similarly, the ctHPVDNA levels were elevated in 13 
HNSCC patients coinciding with the time of metasta-
sis, further providing evidence that ctHPVDNA levels 
can be used as a prognostic biomarker [17]. Dahlstrom 
et  al. reported in 262 patients with OPSCC, pre-treat-
ment ctHPVDNA levels were associated with a higher 
dissemination of cancer cells to lymph nodes, increasing 
the overall disease stage. HPV-positive OPSCC patients 
showed better progression-free survival than HPV-
negative patients [27]. Hanna et  al. discovered that the 
plasma ctHPVDNA levels were associated with tumour 
burden and metastatic potential in 22 OPSCC patients. 
In addition, they also showed that the copy number of 
ctHPVDNA levels increased in patients with metasta-
sis. They concluded that levels of ctHPVDNA was linked 
to treatment response and corelated with survival [54]. 
A separate study by the same group compared the ctH-
PVDNA levels in paired saliva and plasma samples from 
OPSCC patients (N = 21) and revealed that ctHPVDNA 
levels in both fluids can be used as a biomarker of dis-
ease surveillance [53]. Damerla et al. reported that 90/97 
patients with OPSCC had detectable ctHPVDNA and 
ctHPV16DNA in 100% of patients with low-volume dis-
ease (N1 or an isolated T1-2). Also, the copy numbers 
of ctHPV16DNA levels reduced after surgery and/or 
chemoradiation [28]. Chera et  al. in 2019 reported that 
pre-treatment ctHPV16DNA in 103 OPSCC patients 
were linked to tumour burden. In addition, a rapid clear-
ance profile of HPV DNA may predict disease control 
[22]. A more recent longitudinal study by the same group 
in 2020 reported that in 87 patients with undetectable 
ctHPVDNA at all the post-treatment time points, none 

of them had developed recurrence (NPV, 100%; 95% CI, 
96–100%) [23]. Only 28 patients had detectable ctH-
PVDNA levels during post-treatment surveillance, 15 of 
them were diagnosed with recurrence which was proved 
by tissue biopsy. 15/16 patients who were detected to 
have two consecutively positive ctHPVDNA blood tests 
had developed biopsy-proven recurrence. Two con-
secutively positive blood test of ctHPVDNA indicated a 
positive predictive value of 94% (95% CI, 70–99%). The 
median lead time between positivity of ctHPVDNA 
and recurrence proven by tissue biopsy was 3.9 months 
(range, 0.37–12.9  months) [23]. Similarly, Reder et  al. 
concluded that elevated ctHPVDNA levels were asso-
ciated with tumour size based on a study involving 50 
OPSCC patients. Whilst OPSCC patients with continu-
ously high levels of ctHPVDNA developed residual dis-
ease or recurrence (5/8), patients without recurrence had 
decreased ctHPVDNA after treatment (N = 25) [121]. 
In a mono-institutional prospective biomarker study by 
Veyer et al. using OPSCC patients (p16-positive/HPV16-
positive) reported 47 patients (71%) showed ctHPVDNA 
at the time of diagnosis. Moreover, the abundance of 
baseline ctHPV16DNA levels being assessed by ddPCR, 
was significantly related to the T/N/M status and tumour 
stages. Furthermore, all recurrences and the majority 
of death (83%) were reported to have positive baseline 
ctHPV16DNA. The kinetic of pretreatment or posttreat-
ment ctHPVDNA (N = 6) was apparently co-related to 
treatment success or failure [158]. Haring et al. reported 
ctHPV16DNA test in HPV-positive recurrence/metas-
tasis OPSCC patients (N = 16) could predict progres-
sive disease prior to radiographic imaging [55]. Rettig 

Fig. 3 Application of cfDNA/ctDNA (Icons made by Flaticon, www. flati con. com). cfDNA can be used to quantified levels and depict cancer 
genomic landscape

http://www.flaticon.com
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et al. [123], reported ctHPVDNA also had pre-diagnostic 
value, since they could detect HPV16 several years before 
the onset of HPV16-related HNSCC. Among 10 patients 
diagnosed with HPV16-positive tumour, three of them 
were found to had ctHPVDNA at least six months before 
the diagnosis.

However, it is worth mentioning that even though the 
above studies all focused on ctHPVDNA, they used dif-
ferent probes of HPV, controls, and analysis methods. 
The following Table 2 summarized the probes or analysis 
method in each study.

EBV viral DNA
Infection with Epstein-Barr Virus (EBV) contributes to 
the development of nasopharyngeal carcinoma (NPC) 
[21]. Similar to ctHPVDNA, circulating plasma EBV 
(ctEBVDNA) or cell-free EBV DNA (cfEBVDNA) [20, 
78] have been used as a prognostic biomarker for inves-
tigating tumour burden, treatment response and disease 
progression [21]. He et  al. reported that the present of 
ctEBVDNA in 949 NPC patients at multiple time points 
of treatment was associated with poor overall survival 
(OS), distant metastasis free survival (DMFS), and pro-
gression-free survival (PFS) [57]. Lin et  al. reported 
higher concentrations of ctEBVDNA in NPC (N = 99) 
patients who relapsed than those who did not. Further-
more, NPC patients with persistently detectable ctE-
BVDNA had shorter OS than those with undetectable 
ctEBVDNA [85]. Similarly, Edward et al. reported a rapid 
decrease in ctEBVDNA levels post-surgery in 21 NPC 
patients. Importantly, they documented that failure of 
rapid elimination of ctEBVDNA was predictive for dis-
ease recurrence [151]. Chen et  al. conducted a longitu-
dinal study involving 1984 NPC patients and found that 
during the follow-up, 767/1984 NCP patients had detect-
able ctEBVDNA, and among them, 489/767 (63.8%) 

developed recurrence. Thus, they concluded that ctEB-
VDNA can be an early indicator of tumour recurrence 
[20].

Mutations
ctDNA mutation profiles have been evaluated to moni-
tor response to treatment in HNSCC patients [129, 130]. 
However, the application of such technology is still in 
its infancy. The current clinical practice is to profile 
tumour tissue for mutation and then track these muta-
tions using ctDNA. This works well when the concen-
tration of ctDNA levels is high, as seen in patients with 
metastatic cancer. However, this approach fails when 
ctDNA amounts are low, which is the case for most non-
metastatic cancers. To overcome this issue, a study by 
Burgener et  al. combined both mutation and methyla-
tion analysis and found that 20 out of 30 HNSCC patients 
had similar mutation frequencies to that of the tumour 
data derived from TCGA data base [13]. In addition, 
there was a correlation (r > 0.85) between mutations and 
methylation levels. HNSCC patients who had detect-
able pre-treatment ctDNA (using mutation and methyla-
tion) showed worse overall survival (HR = 7.5; P = 0.025) 
independent of clinical stages. Schirmer et al. compared 
copy number aberrations (CNAs) and genome-wide copy 
number instability score (CNI) and showed that the CNI 
may assist in predicting lymph node involvement and 
prognosis in HNSCC [128].

Schwaederle et  al. analyzed ctDNA from various can-
cer types (HNC = 25) and concluded that HNC was an 
independent predictor for a higher number of alterations 
in ctDNA (P = 0.019, median of 3 alterations (95%CI 
1–68%) [133]. Braig et  al. found that over one third of 
HNSCC patients showed acquired KRAS, NRAS or HRAS 
mutations after cetuximab treatment [12]. van Gink et al. 
reported TP53 mutations in plasma of six HPV-negative 

Table 2 An overview analysis method in ctHPVDNA studies

Study Detection regions Analysis method Control

Cao et al. [17] HPV L1, HPV 16/18, E6, E7 TaqMan PCR β-globin

Dahlstrom et al. [27] HPV16 E6, E7 Real-time PCR β-actin

Hanna et al. [54] HPV16,18,31,33,45 E7 Droplet digital PCR pUC57 plasmid

Hanna et al. [53] HPV16,18,31,33,45 E7 Multiplexed droplet digital PCR pUC57 plasmid

Damerla et al. [28] HPV16, HPV33 Droplet digital PCR EIF2C1

Chera et al. [22] HPV16,18,31,33,45 E7 Droplet digital PCR ESR1

Chera et al. [23] HPV16 E6, 37; HPV18,31,33,35,37 E7 Digital PCR ESR1

Reder et al. [121] HPV16 E6, E7 Real-time quantitative PCR β-globin

Veyer et al. [158] HPV16 E6 Droplet digital PCR Albumin gene

Haring et al. [55] HPV16 E6 TaqMan probe-based ddPCR UM-SCC-104, UM-SCC-105

Retting et al. [123] HPV16, 18, 31, 33, 35 Droplet digital PCR ESR1
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HNSCC patients [156]. PIK3CA E545K mutations were 
detected in the plasma samples from 9/29 HNSCC 
patients [129].

Tumour and ctDNA mutations
When compared with other cancer types, there is dearth 
of data relating to tumour tissue mutations and ctDNA 
mutation profiling in HNSCC. Table  3 highlights stud-
ies that have used both tumour and ctDNA. This further 
infers that cfDNA can be used as a proximity to tumour 
DNA to determine outcomes in patients. More so, 
ctDNA holds unique mutation profiles, thus giving cli-
nicians the opportunity to early detect minimal residual 
disease and may also provide new insights for therapy 
choice.

DNA methylation
When regulatory regions of tumour suppressor genes 
are methylated (tumour suppressor genes), their 
expression levels are reduced, leading to the develop-
ment of tumour [84, 110]. Sanchez et  al. investigated 
the methylation alterations in common tumour sup-
pressor genes (CDKN2A, MGMT, GSTP1, and DAPK1) 
in primary tumour samples and matched serum sam-
ples from HNSCC patients (N = 50). They found simi-
lar DNA methylation profiles between tumour tissue 
and serum DNA (21 and 50 respectively). For those 
patients with serum positive hypermethylated DNA, 5 
out of 21 developed recurrence, while only 1 out of 29 
patients who relapsed had negative serum methylation 
DNA [127]. Tian et  al. analyzed the promoter hyper-
methylation of five tumour suppressor genes in blood 
samples from NPC patients (N = 41) and healthy con-
trols (N = 41). They reported percentage methylations 
of RASSF1 (17.5%), CDKN2A (22.5%), DLEC1 (25.0%), 
DAPK1 (51.4%) and UCHL1 (64.9%). When combin-
ing four-gene methylation markers (CDKN2A, DLEC1, 
DAPK1 and UCHL1) in predicting NPC, it gave the 
highest sensitivity and specificity [150]. Mydlarz et  al. 
detected EDNRB, p16 and DCC methylation by analyz-
ing serum DNA from HNSCC patients and revealed 
that serum EDNRB hypermethylation was highly spe-
cific for HNSCC but it was not sensitive [102]. Schröck 
et  al. showed that methylation levels of SHOX2 and 
SEPT9 in serum from HNSCC patients (N = 284) cor-
related with tumour and nodal category and was 
associated with higher risk of death [131]. Jesus et  al. 
compared methylation status of CCNA1, DAPK, CDH8 
and TIMP3 between FFPE tumour samples (N = 52) and 
corresponding plasma samples (N = 15). They detected 
methylation in 73% of plasma samples, while methyla-
tion of CCNA1 was related to recurrence-free survival 
[29]. Patel et  al. [112], compared methylation profiles 

of pre-treatment and post-treatment ctDNA in HNC 
patients (N = 8). Significant methylation changes have 
been seen in the promoter regions of PENK, NXPH1, 
ZIK1, TBXT and CDO1 between pre-treatment and 
post-treatment ctDNA. Table  4 highlights genes that 
are mutated and methylated in HNSCC.

Microsatellite instability
Microsatellite sequences are short non-coding repeat 
sequences that vary in length between individuals. Naw-
roz-Danish et al. reported that 45% (68/152) of HNSCC 
patients had microsatellite alterations in the DNA iso-
lated from serum samples and was identical to the 
alterations observed in corresponding tumour samples. 
Furthermore, 16 HNSCC patients with distant metasta-
sis, 11 had detectable microsatellite alterations in DNA 
derived from serum with one or more markers [103]. 
Nunes et  al. compared microsatellite alterations in 91 
paired blood and tumour samples from HNSCC patients 
and found that 58 of the tumour tissues displayed micro-
satellite alterations, 29% also exhibited the same altera-
tions in ctDNA [107]. Kakimoto’s et  al. discovered that 
90% of OSCC patients (N = 20) showed microsatel-
lite alterations in serum DNA, with 10 patients show-
ing allelic imbalance post-operative serum DNA. 70% 
patients showed an allelic imbalance at pre-operation and 
post-operation, with a poor prognosis [65].

Allelic imbalance
Allelic imbalance (AI) is a condition in which the expres-
sion levels of two alleles of the same gene differ in the 
same cell, either as a result of the epigenetic inactivation 
of one of the alleles or as a result of genetic changes in the 
regulatory regions. Hamana et al. analyzed AI in tumour 
tissue and serum samples from OSCC patients (N = 64) at 
three time points (pre-operatively, post-operatively, and 
4  weeks post-operatively) and found that 52% patients’ 
serum samples showed AIs in at least one locus and AIs 
were frequently detected pre-operatively and post-oper-
atively. Importantly, OSCC patients who had AIs during 
the post-operative period but turned negative 4  weeks 
post-operatively were free of disease. In contrast, patients 
who were AI-positive both post-operatively and 4 weeks 
post-operatively deceased due to distant metastasis. 
Therefore, microsatellite status in the serum DNA could 
be used as a potential biomarker in monitoring disease 
progression [52]. Jiang et al. analyzed plasma DNA length 
(integrity index) in HNSCC patients (N = 58) and control 
subjects (N = 47) and concluded that plasma DNA integ-
rity index was increased in HNCC patients compared 
with non-cancerous healthy controls [63].
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Combining biomarkers present in blood and saliva 
samples as a means of increasing cancer detection rates
Ahn et  al. investigated HPV16DNA levels in saliva and 
plasma samples from OPSCC patients (N = 93) pre-treat-
ment and post-treatment. For pre-treatment samples 
combining saliva and serum, the sensitivity, specificity, 
negative predictive value, and positive predictive values 
of HPV16DNA were 76%, 100%, 42%, and 100% respec-
tively [4]. Similarly, Wang et  al. analyzed saliva and 
plasma samples from 93 HNSCC patients and reported 
that tumour DNA (referred to either somatic mutations 
or human papillomavirus genes) detection rate was 100% 
in early-stage patients, 95% in late-stage disease, 100% 
in OC, 91% in OPC, and 100% in LC. In saliva, tumour 
DNA was detected in all the patients with OC and 70% of 
patients with cancers from other sites. In plasma, tumour 
DNA was detected in 80% of patients with OC, and all 
the patients with cancers from other sites [162]. Hanna 
et al. discovered that paired blood-saliva HPV DNA can 
be used in disease surveillance [53]. Carvalho et al. ana-
lyzed salivary oral rinse, serum and tumour tissues from 
211 HNSCC patients and 527 healthy controls. They 
used quantitative methylation specific PCR as well as 

a 21-gene panel and concluded that compared to single 
marker, combining data from saliva and serum samples 
showed an improved detection [18].

Future perspective
Next-generation sequencing (NGS) of tumour tissue 
DNA is emerging as a promising avenue to comprehen-
sively characterize tumour mutation burden. High non-
synonymous tumor mutational burden (TMB), evaluated 
by WES has shown to correlate with improved clinical 
outcomes for patients with other types of cancer (lung 
cancer). However, the use of tumour biopsies to discern 
clinically available biomarkers have limitations. These 
include tumour heterogeneity, access to tumour tissues 
in anatomically challenging locations, insufficient quan-
tity of tumour DNA and the inability to monitor response 
to treatment in patients who have undergone surgical 
resections.

Liquid biopsy-based applications are revolutionizing 
the management of patients with cancer [73]. Studies 
have shown that using NGS to capture tumour specific 
mutations is an emerging field of importance to track 
response to treatment. To confirm whether ctDNA 

Table 4 Mutated and methylated genes in HNSCC ctDNA

Mutated genes in ctDNA Studies

TP53 Burgener et al. [13]; Flach et al. [37]; Galot et al. [43]; Khandelwal et al. [69]; 
Kogo et al. [72]; Mes et al. [99]; Perdomo et al. [115]; Porter et al. [118]; van 
Gink et al. [156]; Wilson et al. [165]

PIK3CA Burgener et al. [13]; Galot et al. [43]; Liebs et al. [83]; Porter et al. [118],

MYC Burgener et al. [13]; Galot et al. [43],

CDKN2A Galot et al. [43]; Mes et al. [99],

NRAS Braig et.al., [12]; Wilson et al. [165],

EGFR Galot et al. [43]; Wilson et al. [165],

NOTCH1 Burgener et al. [13]; Mes et al. [99],

FAT1 Burgener et al. [13]; Liebs et al. [83],

BRCA1, KIT, BRAF, ESR1, FGFR2, FGFR3, MAP2K1, ARID1A, ATM, MET Wilson et al. [165],

ACACA, ATR, LAMA2, SMARCA4, RELN, PDGFRA, EZH2 Liebs et al. [83],

CASP8, NSD1, KMT2D, Mes et al. [99],

KRAS, HRAS Braig et.al. [12],

GRIN3A Burgener et al. [13],

FBXW7 Khandelwal et al. [69],

Methylated genes in ctDNA

 CDKN2A Sanchez et al. [127]; Tian et al. [150],

 DAPK1 Sanchez et al. [127]; Tian et al. [150],

 CCNA1, DAPK, CDH8, TIMP3 Jesus et al. [29],

 PENK, NXPH1, ZIK1, TBXT, CDO1 Patel et al. [112],

 EDNRB, p16, DCC Mydlarz et al. [102],

 RASSF1, DLEC1, UCHL1 Tian et al. [150],

 MGMT, GSTP1 Sanchez et al. [127],

 SHOX2, SEPT9 Schröck et al. [132],
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recapitulates de novo tumour tissue genomic landscape, 
increasing studies are comparing tumour tissue DNA 
from a patient with HNSCC to their ctDNA derived 
from blood. As an example, when a drug targets a par-
ticular mutation, analysing whether ctDNA carries the 
same mutation, would allow more precise delivery of 
treatment, enabling a precision medicine approach. We 
envisioned that in the future ctDNA analysis will become 
part of routine clinical management of HNSCC patients, 
whereby improving outcomes through targeted therapies.

Conclusion
The lack of biomarkers to triage the risk of relapse at 
diagnosis, disease surveillance and predicting recur-
rence are considered as the main contributors for poor 
outcomes in HNSCC. To date, most of the research in 
liquid biopsies has focused on blood-based biomarkers, 
predominantly using ctDNA. The analysis of ctDNA has 
several benefits over traditional tumour biopsy testing. 
Liquid biopsy enables real-time monitoring of response 
to treatment, also including those patients with tumours 
in anatomically challenging locations. However, well-
designed multi-center clinical trials using homogene-
ous HNSCC patient cohorts where the use of ctDNA 
as a biomarker for disease management should provide 
meaningful benefits to patients before it is broadly imple-
mented clinically.
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