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Abstract 

Background The COVID‑19 pandemic continues to pose a significant worldwide threat to human health, as emerg‑
ing SARS‑CoV‑2 Omicron variants exhibit resistance to therapeutic antibodies and the ability to evade vaccination‑
induced antibodies. Here, we aimed to identify human antibodies (hAbs) from convalescent patients that are potent 
and broadly neutralizing toward Omicron sublineages.

Methods Using a single B‑cell cloning approach, we isolated BA.5 specific human antibodies. We further exam‑
ined the neutralizing activities of the most promising neutralizing hAbs toward different variants of concern (VOCs) 
with pseudotyped virus.

Results Sixteen hAbs showed strong neutralizing activities against Omicron BA.5 with low  IC50 values  (IC50 < 20 ng/
mL). Among four of the most promising neutralizing hAbs (RBD‑hAb‑B22, ‑B23, ‑B25 and ‑B34), RBD‑hAb‑B22 exhib‑
ited the most potent and broad neutralization profiles across Omicron subvariant pseudoviruses, with low  IC50 values 
(7.7–41.6 ng/mL) and a low  PRNT50 value (3.8 ng/mL) in plaque assays with authentic BA.5. It also showed potent 
therapeutic effects in BA.5‑infected K18‑hACE2 mice.

Conclusions Thus, our efficient screening of BA.5‑specific neutralizing hAbs from breakthrough infectious convales‑
cent donors successfully yielded hAbs with potent therapeutic potential against multiple SARS‑CoV‑2 variants.

Keywords Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2), Omicron, XBB.1.5, BQ.1.1, Single B cell 
cloning, Neutralizing human antibody

Background
Since the emergence of COVID-19, humanity has faced 
continual threats from different variants of SARS-
CoV-2, including Alpha (B.1.1.7), Beta (B.1.351), Gamma 
(P.1) and Delta (B.1.617.2). Toward the end of 2021, the 
Omicron (B.1.1.529) variant was first reported in South 
Africa, and it was immediately classified as the fifth 

variant of concern (VOC) by the World Health Organiza-
tion (WHO) due to its high transmissibility and potential 
for immune evasion [8]. Within about one year, Omicron 
became the overwhelmingly dominant variant world-
wide, and it has since diversified into several different 
sublineages [11, 23, 24, 34]. While the BA.5 subvariant of 
Omicron became the major pandemic variant in the sec-
ond half of 2022, other Omicron subvariants have raised 
concern as well. These include two BA.5 sublineages 
(BF.7 and BQ.1.1), a BA.2 sublineage (BA.2.75.2), and the 
BA.2 lineage-recombinant XBB.1 [9].

The Omicron variant encodes a spike protein that 
is significantly different from previous VOCs, with 
15 amino acid changes present in the receptor bind-
ing domain (RBD). Since the RBD of SARS-CoV-2 
plays a crucial role in binding of the virus to the human 
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angiotensin-converting enzyme 2 (ACE2) receptor, these 
mutations cause Omicron to exhibit a 2.4-fold increase 
in binding affinity to ACE2. Thus, Omicron is even more 
infectious than the Delta variant, which was the fourth 
VOC [4]. Moreover, newly emerging subvariants have 
continually replaced older Omicron subvariants and 
raised global concerns about the potential for new out-
breaks. Currently, the most commonly circulating Omi-
cron subvariants are BQ.1.1 and XBB.1.5. The BQ.1.1 
subvariant is derived from BA.5 and contains additional 
R346T/K444T/N460K mutations, which confer a 2.6-fold 
increase in neutralization resistance compared to BA.5 
[34]. The other common subvariant, XBB.1, contains 
nine additional mutations in its RBD compared to BA.2. 
Furthermore, the XBB.1.5 subvariant of XBB.1 carries an 
S486P mutation, which increases its usage of ACE2 and 
leads to more effective immune evasion [16, 51]. Thus, 
both BQ.1.1 and XBB.1.5 subvariants have increased 
transmissibility and immune evasion compared to BA.5, 
and these two viral strains are currently gradually replac-
ing BA.5 as the dominant variants [10, 16, 27, 42]. On 
April 17, 2023, the WHO classified XBB.1.16 as a vari-
ant of interest [45]. This emerging substrain exhibits two 
additional mutations (E180V and K478R) in its spike pro-
tein, as compared to XBB.1.5. Despite these mutations, 
the cell entry and neutralization sensitivity profiles of 
XBB.1.16 are similar to those of XBB.1.5 [29]. Therefore, 
the increased prevalence of XBB.1.16 around the world 
might be due to mutations outside of the spike protein 
coding sequence [47].

Monoclonal antibodies (mAbs) are highly specific and 
versatile tools for basic research and clinical applications 
[26]. These properties have also allowed mAbs to become 
essential drugs for combatting COVID-19 [18]. Over the 
past three years of the SARS-CoV-2 pandemic, single B 
cell sorting and cloning of human antibodies (hAbs) has 
been a reliable approach for antibody drug development 
[14, 15, 20, 32]. Using this approach, it only takes three to 
four weeks to gather samples and identify lead sequences 
for further development. In fact, the neutralizing anti-
body  Bamlanivimab  (LY-CoV555) was selected by this 
strategy and produced by GMP manufacturing within 
only 2  months [20]. The speed of this process allowed 
Bamlanivimab to become the first SARS-CoV-2 anti-
body drug to be granted an emergency use authorization 
(EUA). Other therapeutic antibodies with EUAs were 
also derived from human single B cells, including Etese-
vimab, Bebtelovimab, Sotrovimab, Cilgavimab and Tixa-
gevimab. Unfortunately, with the emergence of different 
Omicron subvariants, most of the therapeutic antibodies 
that previously received EUAs from the U.S. FDA do not 
exhibit neutralizing activities toward currently circulat-
ing variants [1, 10, 16, 33, 42]. For instance, Bebtelovimab 

demonstrates strong neutralizing ability against the BA.5 
variant of the SARS-CoV-2 virus, but it is ineffective 
against the BQ.1.1 and XBB.1.5 variants [1, 51]. Among 
the hAbs with current EUAs, only Sotrovimab has been 
found to have any neutralizing ability against the XBB.1.5 
variant, but its activity is weak  (IC50 = 915  ng/mL) [51]. 
Thus, the development of new potent broadly neutraliz-
ing antibodies has become an urgent need for combatting 
SARS-CoV-2.

In our previous work, we identified neutralizing mAbs 
by utilizing hybridoma technology in combination with 
lipid nanoparticle (LNP)-encapsulated mRNA immuni-
zation of mice, mimicking the recently popularized vac-
cine strategy [17]. In doing so, we successfully identified 
mAbs with neutralizing activities against Omicron BA.1 
and BA.2 [25]. Although these mAbs can broadly neu-
tralize previous VOCs, we found that they are ineffec-
tive at neutralizing the BA.5 variant, an emergent variant 
at the time. In this study, we sought to quickly identify 
potent neutralizing antibodies for current Omicron vari-
ants using a single B cell cloning method. We isolated 
Omicron-specific memory B cells from individuals who 
had experienced breakthrough infections, and then we 
analyzed the neutralizing potencies of these hAbs toward 
Alpha, Beta, Gamma, Delta and Omicron variants, 
including BF.7, BA.2.75.2, BQ.1.1, XBB.1.5, and CH.1.1 
sublineages. Several of the hAbs were found to neutralize 
not only past VOCs but also current variants, which sug-
gests a high potential for clinical utility.

Materials and methods
Patients and sample collection
Plasma and peripheral blood mononuclear cells (PBMCs) 
were isolated from three convalescent patients with 
COVID-19 symptoms of fever and cough. Blood was 
collected from the patients in EDTA-containing tubes 
and separated by centrifugation. The plasma was used 
for examination of antibody binding and neutraliz-
ing abilities, and the PBMCs were isolated for further 
antigen-specific memory B sorting. All collections were 
conducted following a protocol that was reviewed and 
approved by the Institutional Review Board of Bio-
medical Science Research (IRB-BM) at Academia Sinica 
(AS-IRB-BM-20006).

Isolation of PBMCs
The blood in EDTA tubes was diluted with an equal vol-
ume of PBS containing 2% FBS. The diluted sample was 
added to a SepMate™ tube (Stemcell™ technologies), 
which contained Ficoll-Paque™ Plus (Cytiva). The tube 
was centrifugated at 800 × g for 20 min at room temper-
ature. The plasma was kept for further ELISA or pseu-
dovirus neutralization assays, and the PBMC cells were 
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transferred to a new tube and washed with PBS contain-
ing 2% FBS. After counting, the 1–2 ×  107 PBMCs were 
frozen per vial and stored at − 80  °C for 48 h. The cells 
were transferred to liquid nitrogen for storage.

RBD‑specific B cell sorting
The frozen PBMC cells were thawed at 37  °C and then 
counted. The cells were stained for 30  min on ice with 
APC-eFluor 780 (to identify live cells), PE-Cy7 mouse 
anti-human CD27 (BD Biosciences), BV510 mouse 
anti-human CD19 (BD Biosciences), and RBD-BV421 
(BD Biosciences) or RBD-PE (Abcam) in PBS contain-
ing 2% FBS. After washing, the cells were resuspended 
in PBS with 2% FBS, and RBD-specific memory B cells 
(CD19 + CD27 + RBD +) were sorted into 96-well PCR 
plates containing 10 µl capture buffer (10 µl of 1 M Tris–
HCl, pH 8.0, and 25  µl of RNasin in 1  mL RNase-free 
water) via BD FACSAria III (BD Biosciences). The plates 
were stored at − 80 °C for further experiments.

Cloning and expression of antibodies
The 96-well plates containing sorted B cells were thawed 
on the ice and used for RT-PCR (Qiagen OneStep 
RT-PCR Kit) followed by nested PCR with primers 
described in a previous study [38]. After analysis of the 
VDJ sequence by IMGT, the  VH and  VK fragments were 
amplified by PCR and subjected to appropriate restric-
tion enzyme digestion. The  VH genes were cloned into 
a modified expression vector with signal peptide and 
the human constant region of IgG1. The  VK genes were 
cloned into a modified expression vector with a signal 
peptide and the human kappa chain constant region. The 
 VH and  VK plasmids were co-transfected into Expi293F 
cells (Thermo Scientific) for antibody production. After 
5  days of culture, the individual antibodies in the cul-
ture supernatant were purified using protein G resin (GE 
healthcare). The antibodies were replaced into PBS and 
analyzed by SDS-PAGE.

ELISA
ELISA plates were coated with 1  µg/mL RBD-His of 
SARS-CoV-2 WT or different variants in coating buffer 
(0.1 M  NaHCO3, pH 8.6) at 4  °C overnight, followed by 
washing with PBS and blocking with 1% BSA in PBS at 
room temperature for 2 h. After blocking, different con-
centrations of antibodies or expression medium were 
added to the wells for 1 h at room temperature; human 
serum was diluted in 3% skim milk in PBS. The plates 
were washed with  PBST0.1 (PBS containing 0.1% Tween-
20) three times, and then horseradish peroxidase-con-
jugated anti-human IgG (Jackson ImmunoResearch) 
(1:5,000) was added and incubated for 1 h at room tem-
perature. After three washes with  PBST0.1, the signal 

was developed using TMB solution (TM1999, Scytek 
Laboratories). The reaction was stopped with TMB Stop 
Buffer (TSB999, Scytek Laboratories), and absorbance 
was measured at 450 nm by an ELISA reader (Versa Max 
Tunable Microplate Reader; Molecular Devices).

Pseudovirus neutralization assay
Pseudovirus neutralization assays were performed using 
HEK293T cells with stable expression of human ACE2 
(HEK293T/hACE2). The different variants of SARS-
CoV-2 full-length spike protein were expressed from 
pseudotyped lentiviruses provided by the National RNAi 
Core Facility (Academia Sinica, Taiwan). The HEK293T/
hACE2 cells were seeded in 96-well white plates (Corning 
Costar) at a density of 1 ×  104 cells per well, and cultured 
at 37  °C for 24  h. Various concentrations of antibodies 
were pre-incubated with different SARS-CoV-2 vari-
ant pseudoviruses at 1000 TU/well in the 96-well plates 
at 37  °C for 1 h. Then, the mixtures were added to pre-
seeded HEK293T/hACE2 cells. After 24 h incubation at 
37 °C, the supernatants were replaced with DMEM + 10% 
FBS for an additional 48  h. Next, ONE-Glo™ luciferase 
reagent (Promega) was added to each well for 3  min. 
Luminescence was measured with a microplate spectro-
photometer (Molecular Devices). The inhibition rates of 
0% or 100% were respectively defined by wells with only 
pseudovirus or cells. The half-maximal inhibitory con-
centration  (IC50) was calculated by nonlinear regression 
using Prism software version 9 (GraphPad Software Inc.). 
The average  IC50 value for each antibody was determined 
from at least two independent experiments.

Cellular ELISA
HEK293T cells were transiently transfected with wild-
type or mutant RBD plasmids in 6-well plates. The next 
day, the cells were seeded in 96 well-plates. The cells 
were fixed in 4% paraformaldehyde in PBS for 15 min at 
room temperature at 48  h after transfection. Fixed cells 
were incubated in 0.1% Triton X-100 at room tempera-
ture for 10 min. After blocking with 5% milk, antibodies 
against RBD were added to the wells (1 µg/mL) for 1 h at 
room temperature. After washing, HRP-conjugated anti-
human antibody (Jackson ImmunoResearch) (1:2000) 
was added for 1 h at room temperature. After washing off 
the excess secondary antibody, the signal was produced 
using TMB solution (TM1999). The reaction was stopped 
with TMB Stop Buffer (TSB999), and absorbance was 
measured at 450 nm by an ELISA reader (VersaMax Tun-
able Microplate Reader).

Western blotting analysis
A total of 40 ng recombinant BA.5-RBD or -spike protein 
with a polyhistidine tag was analyzed in either reducing 
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or non-reducing conditions. Each sample was separated 
by SDS-PAGE and transferred to a PVDF membrane, fol-
lowed by hybridization with RBD-hAbs (1 µg/mL), nor-
mal human IgG or anti-His antibody. The blot was then 
hybridized with HRP-conjugated anti-human immuno-
globulin and developed with enhanced chemilumines-
cence reagents.

Authentic virus neutralization assay
Omicron BA.5 (hCoV-19/Taiwan/689423/2022) was 
used for a live virus plaque reduction neutralization test 
(PRNT). The experiments were performed at the BSL-3 
facility in the Institute of Biomedical Sciences, Aca-
demia Sinica. RBD-hAbs were serially diluted in PBS 
and pre-incubated with 100 plaque-forming units (PFU) 
SARS-CoV-2 BA.5 for 1  h at 37  °C. The mixtures were 
then added to pre-seeded Vero-E6 cells for 1 h at 37 °C. 
The virus-containing culture medium was removed and 
replaced with DMEM containing 2% FBS and 1% methyl-
cellulose for an additional 4-day incubation. Cells were 
then fixed with 10% formaldehyde and stained with 0.5% 
crystal violet for 20  min. The plates were washed with 
distilled water and plaque number formed at each dilu-
tion were counted. The 50% plaque reduction  (PRNT50) 
values were calculated with Prism software.

In vivo therapeutic assay in SARS‑CoV‑2 BA.5‑infected mice
The K18-hACE2 transgenic mouse model of SARS-
CoV-2 BA.5 infection was used to evaluate the therapeu-
tic potency of RBD-hAb-B22. All animal studies were 
approved by and performed according to the guidelines 
of the Institutional Animal Care and Use Committee 
(IACUC) of Academia Sinica, Taiwan (protocol 22-11-
1921). Each mouse was intranasally inoculated with 
 104 PFU SARS-CoV-2 BA.5 (hCoV-19/Taiwan/TSGH-
8189/2022), and RBD-hAb-B22 was intraperitoneally 
injected into mice at day 2 after virus inoculation. The 
mice were sacrificed for collection of lung tissue at day 
3 post-inoculation. The tissue was homogenized and 
the supernatant was used for the  TCID50 assay (50% tis-
sue culture infectious dose). Homogenates were seri-
ally diluted and applied to a Vero-E6 cell monolayer in 
DMEM with 1% FBS for 4  days. The cytopathic effect 
(CPE) was detected and used to calculate the  TCID50, i.e., 
the amount of a virus required to infect 50% of inocu-
lated cells.

Results
Derivation of anti‑SARS‑CoV‑2‑BA.5 neutralizing human 
antibodies (hAbs) from single B cells of convalescent 
donors
To rapidly generate hAbs against RBD SARS-CoV-
2-BA.5, we performed RT-PCR on single B cells from 

convalescent patients [38], as outlined in Fig.  1A. 
Plasma and PBMCs were collected from three COVID-
19 convalescent donors, who had each received three 
vaccinations but still experienced breakthrough infec-
tions with SARS-CoV-2 Omicron. The donors showed 
symptoms of fever and cough at some time between 10 
June 2022 and 7 October 2022. Using blood samples 
from the three donors, we analyzed plasma binding 
by ELISA (Fig.  1B). The plasma from all three donors 
showed binding to SARS-CoV-2 BA.5 RBD. The plasma 
neutralizing abilities for SARS-CoV-2 BA.5 were then 
analyzed by pseudovirus assays (Fig.  1C). The plasma 
sample of donor 3 exhibited more potent neutralizing 
activity  (NT50 = 1/2431) than the samples from donor 1 
 (NT50 = 1/764) and donor 2  (NT50 = 1/1968). Therefore, 
we chose to use the blood sample of donor 3 for isola-
tion of neutralizing antibodies. Using flow cytometry-
based cell sorting, CD19 and CD27 double-positive 
and SARS-CoV-2 BA.5 RBD-bound memory B cells 
were isolated (Fig. 1D). The genes of heavy chain  (VH) 
and light chain  (VL) variable regions of selected single 
B cells were amplified with specific primers [38], and 
the VDJ sequences were analyzed by IMGT. From this 
analysis, we identified 126 antibody clones and gener-
ated each one in Expi293F cells. We then screened the 
binding and neutralizing abilities of all 126 hAbs by 
using conditioned media in ELISA and pseudovirus 
assays. Furthermore, the RBD-hAbs were purified and 
their abilities to neutralize BA.5 were tested (Addi-
tional file 1: Fig. S1A). Among the candidates, 38 hAbs 
were found to neutralize BA.5 with  IC50 < 1000 ng/mL, 
and 16 hAbs showed high neutralizing activities, with 
 IC50 < 20 ng/mL (Fig. 2A).

Characteristics of neutralizing antibodies for SARS‑CoV‑2 
Omicron BA.5 derived from single memory B cells
We conducted a comprehensive analysis of the Ig gene 
family usage among the 38 neutralizing hAbs and found 
that six  VH gene families were represented, including 
IGHV3-53 (60.53%), IGHV3-66 (15.79%), IGHV3-30 
(10.53%), IGHV1-69 (7.89%), IGHV3-15 (2.63%) and 
IGHV4-39 (2.63%) (Fig.  2B). These  VH genes have also 
been observed in memory B cells of individuals with 
breakthrough infections of BA.1 [21]. The three most 
highly represented  VL gene families were IGKV1-9 
(36.8%), IGKV1-39 (26.3%) and IGKV3-20 (15.8%). The 
CDR3 lengths were predominantly 15 amino acids of 
 VH and either 4 or 9 amino acids of  VL (Fig.  2C). The 
somatic hypermutation (SHM) rates of the 38 neutraliz-
ing antibodies ranged from 4.1 to 16.2%, with a median 
of 9.3% (Fig.  2D). Thus, our data indicated that break-
through infections elicited a higher hypermutation rate 
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of neutralizing hAbs than earlier SARS-CoV-2 variant 
infections, which induced lower levels of SHM antibodies 
[30, 53].

We renamed the 16 neutralizing hAbs with 
 IC50 < 20  ng/mL as RBD-hAb-B22 to RBD-hAb-B37. 
Then, we evaluated their neutralizing potencies 

toward current clinically relevant variants, BQ.1.1 and 
XBB.1 (Fig. 2E and Additional file 1: Fig. S1B and C). 
Pseudovirus assays showed that four of the 16 hAbs, 
i.e., RBD-hAb-B22, -B23, -B25 and -BF34, could 
broadly and potently neutralize BQ.1.1 and XBB.1 with 
 IC50 values ranging from 18.9 to 71.8 ng/mL.

Fig. 1 Isolation of memory B cells targeting SARS‑CoV‑2 BA.5‑RBD from convalescent donors. A Overview of experimental design.  CD19+CD27+ 
BA.5‑RBD+ B cells from convalescent donors were sorted by flow cytometry. The  VH and  VL fragments in single B cells were amplified 
and sequenced, and the resulting constructs were transfected to Expi293F cells for antibody production. B Determination of the binding activity 
of donor plasma by ELISA. The plasma was incubated in ELISA plates coated with 1 µg/mL recombinant BA.5‑RBD protein, followed by detection 
with HRP‑conjugated anti‑human antibody. The table below shows the types and orders of vaccinations received by the convalescent donors 
and the day of blood sample collection after breakthrough infection. AZ: AstraZeneca COVID‑19 vaccine. M: Moderna COVID‑19 (mRNA‑1273) 
vaccine. C Neutralization assay of SARS‑CoV‑2 BA.5 pseudovirus with the three convalescent donors. The neutralizing titer 50  (NT50), indicating 
the plasma dilution resulting in half‑maximal inhibition was calculated. D The gating strategy for BA.5‑RBD‑specific memory B cell from donor 
3. From left to right, the panels show gatings used to isolate lymphocytes, live cells, BV‑510‑CD19+PE‑Cy7‑CD27+ cells (Q2 population), 
and  CD19+CD27+ cells, which were further gated for BV421‑BA.5‑RBD
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Binding activities and epitopes of RBD‑hAbs 
across selected SARS‑CoV‑2 variants
To investigate whether the four RBD-hAbs share over-
lapping epitopes, we carried out ELISAs with RBD pro-
teins harboring mutations corresponding to selected 
variants (Fig.  3A). When tested against Alpha, Beta, 
Gamma, Delta and BA.5, the binding curves of RBD-
hAb-B22, -B23, -B25 and -B34 were similar with 
Bebtelovimab. However, when tested against BQ.1.1 
and XBB.1.5, RBD-hAb-B22 exhibited stronger bind-
ing than the other three hAbs, while Bebtelovimab 
showed no detectable binding. The binding curves 

of RBD-hAb-B34 exhibited similar trends toward 
decreased affinity when tested against the RBDs of 
BQ.1.1 and XBB.1.5.

Because seven key RBD residues (K417, Y453, Q474, 
F486, Q498, T500 and N501) are known to directly inter-
act with the ACE2 receptor [48], we tested whether these 
residues are involved in the binding of our four RBD-
hAbs. Each residue was individually mutated to alanine, 
and the mutant RBDs were transiently expressed in 293T 
cells. Then, we performed a series of cellular ELISAs to 
determine the impact of each residue on binding of the 
four RBD-hAbs (Fig.  3B). The results showed that the 

Fig. 2 Characteristics of 38 SARS‑CoV‑2 Omicron BA.5‑neutralizing antibodies derived from memory B cells of convalescent donors. A Heatmap 
shows the pseudovirus neutralization activities for the subset of antibodies (n = 38) with observable neutralizing activities  (IC50 < 1000 ng/mL) 
against Omicron BA.5. The colors indicate the range of  IC50: red, < 20 ng/mL; yellow, 20–100 ng/mL; green 100–1000 ng/mL. B The gene family 
usages of  VH and  VL for the 38 identified neutralizing antibodies against BA.5‑RBD protein. C The amino acid lengths of the CDR3 loop of  VH 
and  VL for the 38 antibodies. D Rates of nucleotide substitutions in  VH and  VL for the 38 antibodies. E Pseudovirus neutralization activities of the 16 
most potent antibodies  (IC50 < 20 ng/mL) against Omicron BA.5, BQ.1.1 and XBB.1 subvariants. The 16 antibodies were renamed sequentially 
from RBD‑hAb‑B22 to RBD‑hAb‑B37
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single Y453A mutation dramatically decreased the bind-
ing of all four RBD-hAbs by approximately 50%. Muta-
tions at K417, F486 and Q498, which are associated with 
Omicron subvariants, did not decrease binding potency 
for any of the four tested RBD-hAbs. In addition, Western 

blotting analysis showed that four RBD-hAbs could rec-
ognize recombinant Omicron BA.5 RBD protein and 
spike protein at the expected molecular weights in non-
reducing conditions but not in reducing conditions 
(Fig. 3C). These data suggest that the epitopes recognized 

Fig. 3 Examination of RBD‑binding abilities and epitope mapping of RBD‑hAb‑B22, ‑B23, ‑B25 and ‑B34 antibodies. A Binding activities of four 
RBD‑hAbs were measured against RBD proteins of Alpha, Beta, Gamma, Delta, Omicron BA.5, BQ.1.1 and XBB.1.5 by ELISA. Abs were threefold 
serially diluted from 900 to 0.4 ng/mL. B Epitope mapping by mutagenesis assays. HEK293T cells transiently expressing exogenous wild‑type (WT) 
or mutant RBD proteins with single or combinatorial alanine mutations. Binding of the four RBD‑hAbs to RBD mutants was examined by cellular 
ELISA. The results were normalized and are presented as percentages. C The four RBD‑hAbs were used as primary antibodies for detection 
of recombinant BA.5 RBD and spike protein‑His in Western blots. Anti‑6 × His mAb was used as a positive control. Normal human IgG (NhIgG) 
was used as a negative control
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by the four RBD-hAbs in RBD are very similar and are 
likely to be structural rather than linear epitopes.

Potent and broad neutralizing activities of RBD‑hAb‑B22, 
‑B23, ‑B25 and ‑B34 toward SARS‑CoV‑2 variants
Although the RBD-hAb-B22, -B23, -B25, and -B34 were 
initially selected according to their abilities to neutralize 
Omicron BA.5, we were curious whether the RBD-Abs 
retained potency against other SARS-CoV-2 variants. 
Therefore, we examined the broad neutralizing abilities 
of the four RBD-hAbs in pseudovirus assays with four 
previous VOCs, including Alpha (B.1.1.7), Beta (B.1.351), 
Gamma (P1) and Delta (B.1.617.2) (Fig. 4A). The results 
demonstrated that each of the four RBD-hAbs possessed 
neutralizing ability for all previous VOCs, with  IC50 val-
ues ranging from 14.1 to 152 ng/mL. For Alpha (B.1.1.7), 
Beta (B.1.351), and Gamma (P1) variants, each of the four 
RBD-hAbs exhibited potent neutralizing abilities with 

 IC50 values under 50 ng/mL. When tested against subvar-
iants of Omicron (BF.7, BA.2.75.2, XBB.1.5 and CH.1.1), 
the four hAbs also demonstrated broad neutralizing 
abilities with  IC50 values ranging from 10 to 161.8  ng/
mL (Fig. 4B). Notably RBD-hAb-B22 had the lowest  IC50 
values for Omicron variants, ranging from 10 to 41.6 ng/
mL. Based on the results of these ELISA and neutralizing 
assays, we concluded that RBD-hAb-B22 shows strong 
and consistent binding ability across all tested variants, 
and it has potent neutralization ability toward currently 
circulating Omicron subvariants.

RBD-hAb-B22 generally exhibited lower  IC50 values 
and better neutralizing activities than the other three 
antibodies for all variants. Therefore, we further evalu-
ated the neutralizing potential of RBD-hAb-B22 by con-
ducting an in  vitro plaque reduction neutralization test 
(PRNT) against authentic Omicron BA.5. In this test, 
RBD-hAb-B22 displayed high potency, with a  PRNT50 

Fig. 4 Neutralizing capacities of RBD‑hAb‑B22, ‑B23, ‑B25 and ‑B34 antibodies toward SARS‑CoV‑2 variant pseudoviruses. A Neutralization activities 
of RBD‑hAb‑B22, ‑B23, ‑B25 and ‑B34 against pseudoviruses of previous VOCs, including Alpha, Beta, Gamma and Delta (data are presented 
as mean ± SE). Representative data from two independent experiments are shown. B Neutralization activities of RBD‑hAb‑B22, ‑B23, ‑B25 and ‑B34 
against pseudoviruses of different Omicron subvariants, BA.5, BQ.1.1, XBB.1, XBB.1.5, BF.7, BA.2.75.2, and CH.1.1 (data are presented as mean ± SE). 
Representative data from two independent experiments are shown
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value of 3.8  ng/mL (Fig.  5A). We next examined the 
therapeutic effect of RBD-hAb-B22 in a SARS-CoV-2 
BA.5-infected K18-hACE2 mouse model (Fig.  5B). The 
K18-hACE2 mice were treated with RBD-hAb-B22 at 
1  day post-inoculation with BA.5. The mice were sacri-
ficed at 3  days post-infection, and infectious titers were 
determined from lung tissue. The infectious BA.5 titers 
were close to the limit of detection (LOD, 1 ×  102  TCID50/
mL) for 3 mg/kg and 6 mg/kg groups at 3 days post-infec-
tion (Fig.  5C). Thus, we concluded that RBD-hAb-B22 
exerts potent therapeutic effects in SARS-CoV-2 BA.5-
infected K18-hACE2 mice.

Discussion
Therapeutic mAbs can be generated by four major strat-
egies, including mouse hybridoma, phage-display, hAb 
transgenic mice, and single B cell cloning [26]. Among 
these strategies, the single B cell cloning approach has 

been the most widely used for generating SARS-CoV-
2-neutralizing antibodies. In our study, we performed 
single B cell cloning using blood from a subject who had 
received three doses of the Moderna mRNA vaccine and 
subsequently experienced a breakthrough infection. This 
individual had potent neutralizing plasma, and the clon-
ing yielded 38 neutralizing antibodies. We observed that 
these antibodies contained higher levels of SHM in the 
 VH gene (Fig. 2D) than antibodies derived in earlier stud-
ies. Typically, the RBD-specific neutralizing antibodies 
isolated during early convalescence exhibit very limited 
or even no SHM [22, 30, 37, 53]. However, recent reports 
indicate that the neutralizing antibodies from individu-
als with breakthrough infections or those that received 
three doses (but not two doses) of mRNA vaccines tend 
to show high SHM levels [21, 39, 44], high potency and 
cross-neutralizing activity [7, 19, 28, 31, 35]. Thus, the 
PBMCs from individuals who received three-dose mRNA 

Fig. 5 Neutralization ability and in vivo therapeutic assays of SARS‑CoV‑2 BA.5 of RBD‑hAb‑B22. A Neutralizing RBD‑hAb‑B22 antibody inhibits 
SARS‑CoV‑2 BA.5 variant according to PRNT assay. The  PRNT50 value was calculated with Prism software (data are presented as mean ± SD). B 
Schematic of the design for neutralizing RBD‑hAb‑B22 antibody against SARS‑CoV‑2 BA.5. One day after intranasal (i.n.) infection of SARS‑CoV‑2 
BA.5, the K18‑hACE2 mice were given a single intraperitoneal injection of either RBD‑hAb‑B22 3 mg/kg (n = 4), RBD‑hAb‑B22 6 mg/kg (n = 4), 
or normal human IgG control 6 mg/kg (n = 4). On day 3 after virus inoculation, lung samples were collected for analysis. C The viral loads in the lungs 
of treated mice were determined as median tissue culture infectious dose per mL  (TCID50/mL). p values were calculated by two‑tailed Student’s t 
test. *p < 0.05 ***p < 0.001
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immunizations and breakthrough infections may be a 
promising source for the discovery of broadly neutraliz-
ing antibodies.

Upon analyzing the sequences of our neutralizing 
antibodies, we observed that more than 85% of the anti-
bodies were derived from the IGHV3-53, IGHV3-66 or 
IGHV3-30  VH germline genes. Notably, the sequences 
of all 16 identified potent BA.5-neutralizing hAbs 
 (IC50 < 20 ng/mL) contained the IGHV3-53 and IGHV3-
66 gene families (Additional file  2: Fig. S2). This result 
may be expected, as antibodies that target SARS-CoV-2 
RBD frequently utilize IGHV3-53 and IGHV3-66 [36, 43, 
46], which differ by only one amino acid within frame-
work region 1 (I12 in IGHV3-53 and V12 in IGHV3-66). 
Moreover, IGHV3-53/66 antibodies generally share simi-
lar binding sites within the RBD [3, 13, 50] and are con-
sidered class I antibodies, which only recognize the “up” 
conformation of the RBD [2]. Class I antibodies tend to 
contain low SHM and short CDR3 regions, which make 
minor contributions to the antibody interaction profile. 
Consequently, germline-encoded residues dominate the 
binding interaction, allowing for potent neutralization to 
occur with minimal affinity maturation. This characteris-
tic is particularly useful in fighting infectious diseases, as 
it facilitates a rapid immune response.

Unfortunately, many class I antibodies exhibit poor 
cross-neutralizing ability toward recent SARS-CoV-2 
variants due to the presence of K417N, E484K and 
N501Y mutations in the RBD [12, 49, 52]. Moreover, 
almost all previously developed class I antibodies show 
poor neutralizing ability against Omicron. In contrast, 
the four antibodies generated in this study display broad 
cross-neutralizing ability (Fig. 4). Recent studies suggest 
that certain somatic mutations in IGHV3-55/66 (i.e., F27 
to I, L or V, and Y58 to F) may increase binding affinity 
to the RBD [40, 41]. Correspondingly, approximately half 
of our 38 antibodies exhibited F27 and Y58 mutations, 
which may contribute to their high affinities. The most 
potent and broadly neutralizing antibody we identified, 
RBD-hAb-B22, exhibited a high somatic mutation rate 
(11.3%) and contained F27Y/Y58F mutations. Collec-
tively, these data are consistent with previous studies and 
suggest that B cells in SARS-CoV-2 convalescent patients 
may undergo affinity maturation, accumulate SHM, and 
produce antibodies with improved potency and breadth.

According to recent reports, all SARS-CoV-2 mAbs 
with EUAs exhibit poor neutralizing ability for BQ.1.1 
and XBB.1.5 [1]. Only Sotrovimab retains weak neutraliz-
ing ability  (IC50 = 915 ng/mL) against XBB.1.5 [51]. It also 
appears that a cocktail of SA55 (BD55-5514) plus SA58 
(BD55-5840) can broadly and potently neutralize cur-
rent Omicron variants [6], and SA55 (not SA58) can neu-
tralize BQ.1.1 and XBB.1.5 [5, 51]. However, it remains 

unclear whether SA55 can also neutralize all four previ-
ous VOCs. Antibodies with cross-neutralization ability 
toward all VOCs and current Omicron subvariants are 
extremely rare.

Conclusions
In this study, we identified several potent broadly neu-
tralizing antibodies which can neutralize all five VOCs 
as well as multiple current Omicron subvariants. Broadly 
neutralizing antibodies hold great promise as therapeu-
tic tools, and our results provide valuable information 
regarding the successful creation of broadly neutraliz-
ing vaccines and new antibody therapies for COVID-
19. Overall, this study contributes to and highlights 
the importance of ongoing research into the develop-
ment of broadly neutralizing antibodies for treatment of 
COVID-19.
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