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Abstract 

Phenotypic heterogeneity is very common in genetic systems and in human diseases and has important conse‑
quences for disease diagnosis and treatment. In addition to the many genetic and non‑genetic (e.g., epigenetic, envi‑
ronmental) factors reported to account for part of the heterogeneity, we stress the importance of stochastic fluctua‑
tion and regulatory network topology in contributing to phenotypic heterogeneity. We argue that a threshold effect 
is a unifying principle to explain the phenomenon; that ultrasensitivity is the molecular mechanism for this threshold 
effect; and discuss the three conditions for phenotypic heterogeneity to occur. We suggest that threshold effects 
occur not only at the cellular level, but also at the organ level. We stress the importance of context‑dependence 
and its relationship to pleiotropy and edgetic mutations. Based on this model, we provide practical strategies to study 
human genetic diseases. By understanding the network mechanism for ultrasensitivity and identifying the critical fac‑
tor, we may manipulate the weak spot to gently nudge the system from an ultrasensitive state to a stable non‑disease 
state. Our analysis provides a new insight into the prevention and treatment of genetic diseases.

Keywords Phenotypic heterogeneity, Penetrance, Expressivity, Pleiotropy, Stochasticity, Threshold, Ultrasensitivity, 
Ultrasensitive response motif (URM), Network, Edgetic mutation

Background
People do not respond uniformly to medical conditions 
and genetic perturbations. For example, upon COVID-19 
viral infection, not everyone is symptomatic. Only a small 
proportion of infected individuals become seriously ill. 
Upon COVID-19 vaccination, not everyone is protected, 
and only a small proportion of individuals develop severe 
adverse effects. Individuals carrying the same oncogenic 
mutation do not all develop a tumor, not every cell devel-
ops into a tumor, and the severity and time of onset vary 
greatly. Moreover, the response to drugs or therapy also 
varies greatly. Phenotypic heterogeneity in genetic sys-
tems and human diseases is very common. The causes 
may be genetic, non-genetic (e.g., epigenetic, environ-
mental), or stochastic (e.g., personal immune history) 
[1, 2]. In this review, we will only address those diseases 
that have an underlying genetic basis, i.e., a necessary 
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condition for expressing the basic phenotype is the pres-
ence of a genetic variant. For simplicity, we will focus 
on phenotypic heterogeneity caused by germline (herit-
able) mutations, i.e., all cells in the body carry the same 
primary (driver) mutation. Somatic mosaicism and spo-
radic cancers will not be discussed. We will use loss-of-
function variants as examples to illustrate our points. The 
same concept can also be applied to gain-of-function and 
dominant-negative variants. Some famous examples of 
phenotypic heterogeneity in human genetic disease are 
cystic fibrosis [3], Huntington’s disease [4], and Marfan 
syndrome [5].

The genotype–phenotype relationship is often 
described by several terms: penetrance, expressivity and 
pleiotropy (Fig.  1). Incomplete penetrance and variable 
expressivity are common in human genetic diseases [6, 
7]. Since a gene can have multiple variants with different 
phenotypic effects, penetrance and expressivity refer to 
the phenotype associated with a particular genetic vari-
ant or allele, not the gene. Phenotypic severity can be dif-
ferent in different affected tissues.

This genotype–phenotype variability is well established 
in classical genetics. “Partial coupling” was discussed by 
Bateson in 1907 [8]. Partial penetrance was noted in the 
first batch of Drosophila mutants identified by Thomas 
Morgan [9] in the Truncate mutation causing truncated 
wing phenotype [10]. Altenburg and Muller [10] pro-
posed in 1920 and demonstrated the existence of mul-
tiple modifier genes. Mendelian genetics was initially 
based on the high penetrance of genetic variants (e.g., 
Mendel’s pea and Morgan’s white mutation in Drosoph-
ila). It is only in genetically well controlled animals that 
the phenomenon was first noted.

Penetrance and expressivity are operational defini-
tions as they are determined by the ability to detect the 
genotype and the phenotype (clinical manifestation). 
There is variability in phenotype detection, sometimes 

determined by the clinical criteria used. In some cases, 
the phenotype may be a continuum but may become a 
step function based on artificial criteria. For example, 
the clinical definition for hypertension is an artificial 
criterion based on population studies, and a cutoff is set 
on a continuous curve. In other cases, the phenotype 
may be discrete, e.g., lethality, or appear to be discrete, 
e.g., tumor. The manifestation of phenotype can also 
depend on physiological or environmental conditions. 
Some early developmental defects can be self-corrected; 
therefore, the phenotype is not detected in later life (e.g., 
[11]). Conversely, late onset phenotypes are not detected 
early in life. There is also variation in genotype detection, 
in that not all people who carry a particular variant are 
examined. In summary, penetrance and expressivity are 
quantitative representations of “phenotypic severity” (or, 
“effect size” in medical usage).

Due to partial penetrance and variable expressivity, 
patients and carriers of a disease-causing mutation may 
not be properly diagnosed. This not only underestimates 
disease prevalence but also reduces the opportunity to 
provide proper genetic counseling or early treatment. 
More importantly, we should be asking why some indi-
viduals do not develop or have mild disease phenotypes, 
despite carrying a disease-causing variant. If we are able 
to better probe the mechanism behind this phenomenon, 
we may be able to find ways to manipulate the system 
to reduce or prevent the symptoms. Thus, studying the 
mechanism of phenotypic heterogeneity may provide an 
entry point for disease prevention and therapy.

Numerous causes for phenotypic heterogeneity
If we take the disease-causing mutation as a fixed factor 
in carriers, variability in phenotypic severity must be due 
to factors other than the primary (driver) mutation. Phe-
notypic heterogeneity among different individuals can be 
due to differences in environmental factors or in genetic 
background. Examples of environmental factors include 
nutrition, maternal–fetal interactions, environmental 
toxic compounds or microbiota [1, 12–16]. The contri-
bution of genetic background has been shown by studies 
in yeast, C. elegans, Drosophila, mice and humans [17–
26]. Differences in genetic background can be due to the 
influence of other genes, i.e., modifier genes [27]. Indeed, 
many genetic screens in model organisms are based on 
screening for modifiers, either enhancer or suppressor, 
of existing mutant phenotypes. Modifier genes can be 
members of the same gene family or genes with redun-
dant functions [28–30], acting in the same functional 
pathway [31], or involved in protein complex formation 
[32].

However, there is phenotypic heterogeneity even in iso-
genic strains of model organisms and in individuals who 

Fig. 1 Genotype–phenotype correlations.Penetrance 
is the percentage of individuals carrying a particular genotype (e.g., 
a mutation) that exhibits certain detectable phenotypic traits (clinical 
manifestation). A complete penetrance means that 100% genotype–
phenotype correlation. Expressivity is the degree of phenotypic 
severity in an individual that exhibits detectable mutant phenotype. 
Pleiotropy means a gene, when mutated, is linked to multiple 
phenotypic defect, often in multiple tissues or organs



Page 3 of 13Sun et al. Journal of Biomedical Science           (2023) 30:58  

are genetically “identical”, e.g., in monozygotic twins or 
cloned cats [33, 34]. There is phenotypic heterogeneity 
even in a genetically clonal population of single cells (E. 
coli, yeast) grown in the same culture [35, 36]. In KIF11-
associated retinopathy, the left eye and right eye of the 
same individual may have different phenotypic severi-
ties [37]. These examples suggest that stochasticity can 
contribute to phenotypic heterogeneity. Stochasticity 
originates from fluctuations due to intrinsic non-deter-
ministic phenomena in gene expression or molecular 
interactions, especially when very small number of mol-
ecules are involved. For example, stochasticity can occur 
in gene expression or in unequal partitioning of mole-
cules during cell divisions [38–41].

Different alleles of a gene may have different pen-
etrance, suggesting that different alleles have distinct 
probability in exhibiting the phenotype. How is the prob-
ability determined in molecular terms? We invoke the 
threshold concept to explain probability in the next sec-
tions. Threshold plus stochasticity are the core compo-
nents of our model.

Many gene functions require a threshold level
For most genes, heterozygosity for null mutations does 
not cause an obvious phenotype, defining them as reces-
sive mutations. However, further reductions in the level/
activity may result in a phenotype. Phenotypic severity 
and gene level/activity are often not linearly proportional 
and many biological decisions require a threshold level of 
a key component [42].

For example, spinal muscular atrophy (SMA), a motor 
neuron degeneration disorder is caused by loss of the 
SMN1 gene and the phenotypic severity is dependent on 
the level of SMN2, suggesting a threshold requirement 
for SMN protein (reviewed by [43]). The genetic compen-
satory response, where genetic compensation is induced 
by null mutations (total loss) but not gene knockdowns 
(partial loss) [44], also suggests a threshold effect in 
inducing the compensatory response. These examples 
demonstrate that many gene functions require a thresh-
old level.

Thresholds can vary in different tissues. For example, 
different tissues have different sensitivities to the deficits 
in mitochondrial oxidative phosphorylation (OXPHOS) 
complexes [45]. The m.3243A > G variant in the mito-
chondrial encoded  tRNALeu[UUR] gene is associated with 
incredibly diverse disease conditions and has very heter-
ogeneous clinical phenotypes that are dependent on the 
mtDNA heteroplasmy level, the ratio of mutant versus 
wildtype mtDNA within a cell [46, 47]. Modest changes 
in the level of a variant can lead to abrupt changes of 
transcriptional profiles and cellular physiology [48–50]. 
If different tissues/organs have different  tRNALeu[UUR] 

expression levels and a different reserve levels of wild 
type molecules, then their thresholds would be different.

Threshold effect as a unifying principle for heterogeneity
The concept of threshold to explain variable penetrance 
and expressivity was originally proposed by Richard 
Goldschmidt in 1927 (see [51] and in recent reviews 
[6, 49, 52–54]). Indeed, the examples described above 
ultimately cause a quantitative reduction of a certain 
critical molecular component. Hence, a phenotype may 
develop if the level or activity of a critical factor falls 
below a threshold. As all individuals with the critical 
factor below the threshold level develop the pheno-
type, the threshold determines the penetrance (Fig. 2). 
Shifting the threshold will thus change the penetrance, 
i.e., the fraction of individuals to exhibit the pheno-
type. Moreover, different tissues can be differentially 
affected by a broadly expressed factor, causing pleiot-
ropy. For example, the expression level of a critical fac-
tor may vary in different tissues and some tissues may 
be below the threshold and hence exhibit a phenotype. 
Furthermore, the threshold may vary in different tis-
sues (e.g., variation in the level of a cofactor), causing 
further tissue-specific variation in phenotypes. In sum-
mary, a threshold effect may turn a continuous quan-
titative difference of a critical factor into qualitatively 

Fig. 2 Threshold determines penetrance. We use a hypothetical 
case to illustrate the conceptual relationship between threshold 
and penetrance. Consider a hypomorphic allele m of a gene X. 
The X‑axis is the level or activity of X. The Y‑axis is the number 
of individuals with a particular [X]. Due to many factors, the [X] 
displays a distribution curve. A hypothetical threshold for [X] is drawn. 
If [X] falls below the threshold, the individual will exhibit the clinical 
phenotype. If [X] is above the threshold, the individuals will be 
phenotypically normal. In this hypothetical example, the m variant 
is recessive, because all m/ + individuals will be above threshold. 
The m variant is incompletely penetrant, because only a fraction 
of m/m individuals will be below threshold and exhibit phenotypes. If 
the threshold shifts to the right, the penetrance will become higher, 
i.e., more individuals are below threshold. If the threshold shifts 
to the left, then less individuals are below threshold, hence a lower 
penetrance
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different phenotypic outputs, and may explain the 
context dependence of tissue-specificity and temporal-
dependence. The threshold effect describes an input–
output relationship that exhibits a sharp non-linear, 

non-deterministic transition when a certain level of 
input is reached.

Ultrasensitivity as a molecular mechanism 
for the threshold effect
What constitutes a threshold at the molecular level? The 
sigmoidal curve is a good representation of a threshold 
effect (Fig.  3). The output (phenotypic manifestation) 
rises sharply over a narrow range of concentration or 
activity of a key component ([X]). In such a system, per-
turbations of [X] within the range at the two ends of the 
curve do not cause any change in phenotype. The system 
exhibits a wild-type phenotype at one end, and mutant 
phenotype with complete penetrance at the other end. 
When [X] is reduced to near the inflection point of the 
sigmoidal curve, a small perturbation of input ([X]) can 
cause a significant change in output. Within this window 
of [X], the system is ultrasensitive to perturbations on 
[X]. A fixed [X] would produce a fixed output in pheno-
typic severity. However, if the input [X] is stochastically 
variable in different individuals, the system will then 
exhibit heterogeneity in phenotypic output (Fig. 4). This 
changes the input–output relationship from determinis-
tic to a stochastic, probabilistic relationship.

The slope of the sigmoidal curve captures the degree of 
ultrasensitivity, which may also be expressed in terms of 
a Hill coefficient [55]. The slope affects the range of phe-
notypic variation. A steep curve means a broad range 
of variation, i.e., more phenotypic heterogeneity, over a 
small change in input. The range of phenotypic hetero-
geneity is highest when the system is near the inflection 
point.

Fig. 3 A sigmoidal curve illustrates the threshold effect. The 
phenotypic severity (Y‑axis) is plotted with the level or activity 
of factor X (denoted [X]) in the X‑axis. In a sigmoidal curve of such 
“dose–response” curve, when [X] is at its normal dosage (high), 
the system is at its normal (wildtype) state. When [X] is reduced 
due to a low level, e.g., due to a null mutation in X, the system 
exhibits the mutant phenotype with complete penetrance. At 
these two states, small perturbations in [X] do not cause any 
changes in the phenotypic output. However, at near the inflection 
point of the curve, small changes in [X] will cause large changes 
in the phenotypic outcome. Therefore, the system is ultrasensitive 
to changes in [X]

Fig. 4 Stochastic variation in input causes heterogeneous output. (Left) A fixed [X] would generate a fixed output in phenotypic severity. (Right) 
Stochastic fluctuation in [X] generates different [X] in different individuals or cells, thereby generating a range of phenotypic output in different 
individuals



Page 5 of 13Sun et al. Journal of Biomedical Science           (2023) 30:58  

The threshold effect can be context dependent. The 
sigmoidal curve can shift to right or left due to changes 
in environmental conditions (e.g., pH, temperature), 
or tissue-specific gene expression, thereby changing 
the threshold (Fig.  5). Therefore, these ultrasensitive 
responses can be non-linearly sensitive to changes in 
environmental conditions or cellular context, providing 
an explanation for pleiotropy. The threshold effect can 
also be time dependent. There can be a critical time win-
dow for a threshold decision [56]. This may be due to the 
transient expression of a factor to form a particular gene 
regulatory network (GRN) topology within a narrow 
time window.

Note that the sigmoidal curve refers only to the change 
in the concentration/activity of X. There could be other 
factors (Y, Z, etc.) in the regulatory network. The rela-
tionship of phenotypic output versus changes in these 
other factors can be described by different response 
curves, which may or may not exhibit the ultrasensitiv-
ity response. Changes in factor Y alone may not cause a 
phenotype, but in combination with a variant in X may 
enhance or suppress the X phenotype. This is the basis of 
genetic epistasis and the key to understanding complex 
diseases.

Classical examples of sigmoidal curves derive from 
allosteric positive cooperativity, e.g., multiple binding 
sites that have direct or indirect interactions affecting 

enzymatic activity. For example, enzymes that have mul-
tiple binding sites where the binding of the first ligand 
increased the binding of the second ligand [57, 58]. In 
addition, many ultrasensitive response motifs (URMs) 
have been found in regulatory networks [55, 59–61], 
either at the transcriptional or protein interaction level, 
and can exhibit a similar property, i.e., sharp transition 
over a narrow range of concentrations. These include 
positive cooperative binding, negative cooperative bind-
ing, homo-multimerization, multistep signaling, molec-
ular titration (by stoichiometric inhibitor), covalent 
modification cycle (e.g., phosphorylation and dephos-
phorylation cycle), positive feedback, and reciprocal 
regulation [57, 59, 62–73]. There are thus multiple ways 
to generate ultrasensitivity. Therefore, ultrasensitivity 
provides a molecular mechanism for the threshold effect. 
Importantly, many of these URMs are frequently found in 
genetic regulatory networks.

Three conditions for ultrasensitivity‑mediated phenotypic 
heterogeneity
We propose that phenotypic heterogeneity in genetic 
diseases requires three conditions (Fig.  6). First, the 
regulatory network needs to have an embedded URM. 
Although it has the potential for ultrasensitivity, the sys-
tem is robust to small fluctuations and normally in a sta-
ble (homeostatic) state, i.e., the wild-type state. Second, 
a primary (driver) variant reduced the concentration/
activity of factor [X] to a point near the inflection point 
so the system shifts from the stable state to an ultra-
sensitive state that responds to the changes in [X]. The 
driver mutation could be in X itself, e.g., a partial loss 

Fig. 5 Threshold can shift. The hemoglobin‑oxygen binding 
is a classic example of positive cooperativity and exhibits 
a sigmoidal curve (red curve). The curve can be shifted rightward 
(blue curve), representing reduced affinity for oxygen, by elevated 
temperature,  CO2, and 2,3‑diphosphoglycerate (DPG), and reduced 
pH, resulting in increased threshold. Sickle cell hemoglobin (HbSS) 
and sulfhemoglobin (Sulf‑Hb) have reduced affinity to oxygen, 
so exhibits right‑shifted curve. The curve can be shifted leftward 
(green curve), representing increased affinity for oxygen, by reduced 
temperature,  CO2, and DPG, and elevated pH. Methemoglobinemia 
(metHb), fetal hemoglobin and CO‑bound Hb (CO‑Hb) have higher 
affinity to oxygen, so exhibit leftward curve. These examples 
demonstrate that the threshold can be shifted by environmental 
or physiological factors, as well as by changes in the protein structure. 
Adapted from [128]

Fig. 6 The three conditions for threshold effect. First, 
an ultrasensitivity module need to be embedded in the gene 
regulatory network. The system is normally in a stable 
(homeostatic) state, i.e., the wildtype state, and is robust to small 
fluctuations. Second, the occurrence of a primary (driver) mutation 
shifts the system to a state that is ultrasensitive to changes 
in the concentration/activity of factor X ([X]). If [X] does not fluctuate, 
then the system would have a fixed [X] and a fixed outcome. 
Third, fluctuations in [X] would cause the system to produce 
heterogeneous phenotypic outputs
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that reduces [X] to the ultrasensitive window. The driver 
mutation could also be in a different gene but affect [X]. 
The system is now poised for ultrasensitive response. 
However, if [X] does not fluctuate, then the system would 
have a fixed [X] and a fixed outcome. Third, fluctuation 
in [X] might cause the ultrasensitive system to respond 
with heterogeneous phenotypic outputs. Changes in [X] 
can be caused by stochastic variation in [X], second site 
mutation (in modifier genes) causing variation in [X], 
or non-genetic (stochastic or environmental) variation 
in modifier genes causing variation in [X]. In principle, 
modifier genes may act by changing [X] itself, the mag-
nitude of variation in [X], or the threshold to achieve the 
same effect of phenotypic heterogeneity.

One example is intestinal development of C. elegans, 
regulated by SKN-1 which activates MED-1/2 and END-
3. The three in turn activate ELT-2 [56, 74] (Fig. 7). First, 
ELT-2 is regulated by a positive feedback loop, which 
is a potential URM. Second, the skn-1 mutation consti-
tutes the primary mutation that shifts the system to the 
ultrasensitive window. In a skn-1 null mutant, MED-1/2 
and END-3 expression is lost and END-1 expression is 
reduced and now only dependent on POP-1. The reduced 
END-1 may cause the ELT-2 positive feedback loop to 
be ultrasensitive to the level/activity of ELT-2. Third, 
stochastic fluctuations in END-1 levels cause variation 
in the ELT-2 level. In some cells, the reduced END-1 
induces a low level of ELT-2, below the threshold to acti-
vate positive feedback, leading to a failure in intestinal 
development. In some cells, the END-1 level induces 
ELT-2 above the threshold for positive feedback and 
hence normal intestinal development. This is a plausible 

explanation for the incomplete penetrance of the skn-1 
mutant phenotype.

Note that all three conditions need to be met for phe-
notypic heterogeneity to occur. Normal individuals are 
robust to extrinsic and intrinsic perturbations. Simply 
having an embedded URM or having quantitative varia-
tions is not sufficient to cause phenotypic heterogeneity. 
Only when the system is within the ultrasensitive win-
dow, due to a primary mutation, will small fluctuation 
become a key component that can cause strong variabil-
ity in the phenotypic output.

Threshold effects at the organ level
The above analysis is based on regulatory networks at the 
cellular level. Do similar principles apply for interactions 
among cells at the tissue/organ level? If we substitute 
[X] from the concentration/activity of a molecule X with 
the activity of a cell type [X] and plot against the percent 
dysfunction of the organ, are there conditions that can 
generate a sigmoidal curve (ultrasensitive response)? Is 
organ failure a linear or gradual functional decline due 
to progressive loss of functional units, or due to a sharp 
transition due to a threshold response?

There are suggestions of thresholds for organ failure. 
One indicator of kidney function is the excretion rate of 
sodium. If the sodium excretion rate is plotted against 
the concentration of a diuretic, the dose–response curve 
is sigmoidal [75]. This curve in chronic kidney disease 
(CKD) patients is shifted so that the inflection point is 
at a higher plasma level of diuretic, meaning that CKD 
patients respond to diuretic drugs at a higher thresh-
old concentration. For the lung, the static volume-pres-
sure curve is sigmoidal [76]. For heart failure, there is a 
threshold for left ventricular ejection fraction that may 
be useful for clinical classification [77]. These examples 
of sigmoidal curves in input–output responses measured 
at the organ level suggest that there are threshold effects 
at the organ level. Whether these organ level phenomena 
can be understood at the level of cell–cell interactions 
similar to ultrasensitivity regulatory motifs remains to be 
studied. Inter-cellular and inter-organ communications 
in heart failure are being studied [78, 79] and hopefully 
will provide more quantitative insights.

Neurodegenerative diseases may represent examples 
of threshold effects at the brain level. In the Drosophila 
drop-dead mutant, the brain shows extensive degenera-
tion long before the sudden death of the flies [80], sug-
gesting that there is a threshold in neuronal dysfunction. 
In Parkinson’s disease (PD), the decline in the number 
of dopaminergic neurons over years is a sigmoidal curve 
and a 70% loss of dopaminergic neurons is typically 
observed when PD motor symptoms occur, suggest-
ing a threshold effect [81]. In contrast, the brainstem, 

Fig. 7 ELT‑2 regulation as an example of the three requirements 
for phenotypic heterogeneity due to ultrasensitivity mediated 
threshold response. In Skn-1 mutants, the ELT‑2 positive feedback 
is weakened due to absence of END‑3 and reduced END‑1. The ELT‑2 
level may fall below its functional threshold in some individuals, 
causing a failure in in C. elegans intestinal development. Modified 
from [56]
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and peripheral, autonomic and enteric nervous systems 
show symptoms when only 20–30% of dopaminergic syn-
apses are lost in PD patients. The difference in threshold 
between the two systems has been suggested to be due 
to differential sensitivity to α-synuclein aggregation. The 
less connected brainstem, peripheral, autonomic and 
enteric nervous system may have less “functional reserve” 
and therefore would be more sensitive to α-synuclein 
aggregation, while the highly connected midbrain is more 
resilient, and hence exhibits a higher threshold for dopa-
minergic neuron loss [81]. This example not only suggests 
a threshold effect, but also suggests that the threshold 
can have context-dependent differences.

Quorum sensing is an example of cell–cell signaling 
that exhibits ultrasensitive responses in a population of 
cells [82, 83]. Cells secrete a molecule, whose concentra-
tion is used as an index for cell density. A change in cell 
behavior in the population is triggered only when the 
quorum sensing molecule reaches a threshold concentra-
tion. Bacterial quorum sensing commonly uses positive 
feedback as its ultrasensitivity motif [84]. The threshold 
effect creates phenotypic heterogeneity in the bacterial 
population [85]. Although quorum sensing is often stud-
ied in microbial populations, it has been demonstrated 
in hair follicle regeneration, which is induced only when 
a threshold density of injury occurs [86]. Potentially, a 
similar mechanism also applies to cell interactions at the 
organ level.

Cell–cell interactions have been predicted by mul-
tiple approaches based on transcriptomics and pro-
tein–protein interactions [87]. Jung et  al. [88] used 
tissue-specific single cell transcriptomics to establish 
cell–cell interactome. Among the cell–cell interactions, 
they identified positive feedback loops between cell 
types. Positive feedback loops specific to pathological 
conditions can be identified, and perturbation of these 
disease-specific ligand-receptor pairs can be simulated 
to identify those with strong effects. Whether these 

potential ultrasensitivity motifs actually exhibit ultrasen-
sitivity in the context-of-interest needs to be experimen-
tally tested.

Pleiotropy and edgetic mutations
For simplicity, the above analysis considers only loss-
of-function mutations (loss or reduction of gene/pro-
tein level). These can be total or partial loss-of-function 
mutations. However, other types of mutations are poten-
tially important as well. Consider a network of protein 
interactions (Fig. 8). Each protein is a node that is con-
nected to interacting proteins. The interactions are 
described as edges. Proteins can have multiple structural 
domains that interact with different proteins. These bind-
ing proteins may bind to independent sites, compete for 
the same site, or bind to distinct sites but they can inter-
act with a protein bound to another site or affect other 
protein interactions. Some mutations may affect only one 
such binding interface, thereby affecting interaction with 
specific proteins, while leaving other interactions intact 
or only slightly affected. Such mutations are called edg-
etic, because they affect the edge, not the node, in the 
protein interaction network [89, 90]. Edgetic mutations 
can also be gain-of-function mutations by creating new 
interactions.

Since an edgetic mutation may affect only one edge, it 
may cause only a subset of phenotypes associated with 
loss of function of the node protein. This provides one 
possible explanation for heterogeneity in pleiotropy. If 
the edges have unequal strength in their interactions, 
then one mutation that reduces the node level by 50% 
can affect edges differentially, i.e., some edge/interaction 
is affected more strongly. This can also contribute to the 
differential phenotypic heterogeneity in different tissues. 
Because a mutation may affect different contexts differ-
ently, it can be deleterious in some contexts, but provide 
positive fitness effect in other contexts and therefore be 
maintained in evolutionary selection. The TP53 oncogene 

Fig. 8 Protein interactions affected by different types of mutations. The dots represent proteins and lines (edges) connecting dots represent their 
interactions. Different types of mutation may affect the node or the edges. Modified from [89]



Page 8 of 13Sun et al. Journal of Biomedical Science           (2023) 30:58 

is one example of such antagonistic pleiotropy [91, 92]. 
Another example is the antagonistic pleiotropy proposed 
to explain aging, stating that a pleiotropic mutation may 
be positively selected for early-life function, but leads to 
negative fitness in late-life [93]. Antagonistic pleiotropy 
is common [93] and is often buffered by compensatory 
mutations in evolution [94]. The effect of the compensa-
tory mutations may be context-dependent.

High resolution (structurally resolved) protein interac-
tion networks can predict the interacting sites between 
interacting proteins [95]. Protein 3D structures can now 
be predicted efficiently by AI [96–98]. High resolution 
protein interaction databases are being established that 
permit the mapping of mis-sense variants to the pro-
tein of a known disease gene and may help to establish 
if a specific protein interaction is affected [99]. Establish-
ment of tissue-specific functional interaction networks 
would help to identify tissue-specific interactions [100] 
accounting for pleiotropy. Studying patients who display 
pleiotropy may help identify edgetic mutations and iden-
tify the tissue-specific interaction protein partner.

Research strategy based on the threshold model
Phenotypic heterogeneity is often regarded as nuisance 
and noise in research. However, we argue that it is valu-
able in pointing out potential molecular mechanisms of 
diseases. Each of the three conditions proposed for phe-
notypic heterogeneity would provide new insights into 
disease mechanisms. We will attempt to give some sug-
gestions for research strategies based on these three con-
ditions. First, we need to identify the primary mutation 
and modifier factors (enhancer and suppressor muta-
tions, environmental factors), which need to be func-
tionally validated for their causal relationship. Second, 
we need to identify the URM in the regulatory network 
that may account for heterogeneity. Third, we need to 
find ways to nudge the system from an ultrasensitive state 
back to a stable healthy state. These points are separately 
discussed below.

Identification and functional validation of the primary 
and modifier mutations for a disease
The threshold model leads to some suggestions on how to 
choose patients to study a particular disease. It is best to 
focus on familial cases, as these indicate sufficiently high 
penetrance in order for them to be recognized as familial 
cases by clinicians. Although the small sample size may 
give low statistical power, the possibility of comparing 
genomic information among family members can help to 
reduce the number of candidate genetic variants. Familial 
cases with phenotypic heterogeneity in carriers are sug-
gestive that the system is within an ultrasensitive win-
dow. One should look for extreme cases (e.g., very early 

or very late onset, very strong or very weak phenotype) 
within such families, because these individuals may har-
bor strong modifier mutations. Carriers that show a very 
weak phenotype or very late onset may harbor protective 
alleles. Pleiotropic phenotypes may be useful to identify 
edgetic mutations that affect tissue-specific interactions 
with interacting proteins [89, 90].

Animal models of disease are often used to screen or 
analyze modifier mutations that can enhance or suppress 
the original mutant phenotype. From these, the mecha-
nistic chain can then be established. This is where model 
organisms are most advantageous in providing mechanis-
tic insight for human diseases, since many disease genes 
are evolutionarily conserved [101]. It is important to keep 
in mind that phenotypes can be highly dependent on the 
genetic background of an animal [25], suggesting con-
text dependence of ultrasensitivity. The modifier muta-
tion screen should be performed in a sensitized genetic 
background (i.e., within the ultrasensitivity window) and 
in tissues with regulatory network topology similar to 
that of human disease tissue. This may be experimentally 
identified by observing which tissue mimics the human 
disease phenotype. Because the regulatory network may 
vary in different genetic backgrounds, it may be useful 
to screen/test in multiple genetic backgrounds and tis-
sues. Different genetic backgrounds may identify differ-
ent modifiers. For economic reasons, this is more feasible 
in model organisms such as yeast, C. elegans and Dros-
ophila [102].

The identified candidate mutations need to be func-
tionally tested to assess whether they are causal to the 
disease phenotypes. Often this is done by creating or 
expressing a genetic variant in an animal model or in cell 
lines [102]. Model organisms are usually designed to be 
homogeneous in genetic background. Therefore, each 
animal model or cell line may represent only a fraction of 
the human heterogeneous genetic background. Addition-
ally, the culture conditions for cell lines or animal models 
is usually selected to minimize environmental variations, 
which is different from the variable environmental con-
ditions that humans encounter. This may be the reason 
why so many drugs developed using cells or animal mod-
els failed when tested on humans. The context-depend-
ence of phenotypic heterogeneity suggests that different 
tissues or organs are different in their regulatory net-
work topology. These regulatory networks may not be 
conserved in all tissues between humans and the model 
animals. Therefore, an animal disease model may reca-
pitulate only part of the phenotypes of a human disease. 
This does not diminish the value of animal disease mod-
els, but cautions on the context dependency. One can try 
to focus on the phenotype that most closely mimics the 
human phenotype, suggesting that such tissue has similar 
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network topology and is within the ultrasensitive win-
dow. If the conditions for ultrasensitivity are clear, they 
may be used in patient stratification, which would greatly 
facilitate drug testing.

Identifying URMs for a disease
There are many ways to infer regulatory networks, e.g., 
based on coexpression, sequence motifs, chromatin 
immunoprecipitation, orthology, literature and pro-
tein–protein interactions for transcriptional regulatory 
relationships [103]. Recent advances in single cell tran-
scriptomics have helped to construct cell-type-specific 
regulatory networks and compare them between healthy 
and disease states (e.g., [104, 105]. Regulatory network 
motifs with potential ultrasensitive behavior can be iden-
tified by simulation and searching through the entire 
space of potential motifs and through parameter space 
[106].

Even without using these sophisticated analyses, many 
ultrasensitive motifs can be easily identified. For exam-
ple, a positive feedback effect can be identified by simple 
transcriptomic analyses of a mutant tissue to determine 
whether the gene in question affects its own expression. 
Molecular titration by stoichiometric inhibitors is often 
used to set a threshold, and is exemplified by corepres-
sors to receptors and transcription factors [107, 108] and 
antagonists to signaling ligands, e.g., Chordin and its fly 
homolog Sog as antagonist to BMP; [109, 110]. Sex deter-
mination in Drosophila is very sensitive to a threshold set 
by the X:autosome ratio which is determined by bind-
ing between the autosomal bHLH repressors Deadpan 
and the X-chromosomal SisA and SisB bHLH proteins 
to titrate out SisA and SisB for binding with the mater-
nal Daughterless, a bHLH transcriptional activator of the 
Sxl gene [111]. Positive cooperative binding is often seen 
with the binding of transcription factors (TFs) to target 
genes with clustered binding sites in the promoter region, 
e.g., Bicoid activates target gene hunchback expression 
in a sharp domain through positive cooperative bind-
ing to its binding sites in the hunchback promoter [112]. 
Therefore, clustering of TF binding sites is suggestive of 
cooperative binding. Homo-multimerization is often 
seen in transcription factors and receptors, e.g., ligand-
dependent dimerization of receptor tyrosine kinases 
that critically affects their activity (e.g., [113]). For cova-
lent modification cycle with zero-order ultrasensitivity, 
i.e., operating near substrate saturation, there are many 
examples of protein phosphorylation, acetylation and 
methylation (e.g., [114]) as candidates for ultrasensitivity.

However, just knowing regulatory topol-
ogy does not guarantee ultrasensitivity. Nota-
bly, these motifs exhibit ultrasensitivity only within 
certain parameter ranges. For example, for a single-site 

phosphorylation-dephosphorylation cycle, ultrasen-
sitivity occurs when the catalyzing enzymes is operat-
ing near saturation, i.e., substrate concentration is high 
(zero-order, i.e., reaction kinetics is independent of sub-
strate concentration), and with no product inhibition or 
sequestration, i.e., the enzyme is quickly released from 
its substrate after its reaction [67, 115, 116]. Multisite 
phosphorylation exhibits ultrasensitivity when there is 
positive cooperativity, i.e., phosphorylation of the first 
residue accelerates the subsequent phosphorylation steps 
[117]. However, ultrasensitivity can also occur even in 
the absence of positive cooperativity in a multisite system 
[118]. Therefore, in addition to identifying the potential 
URMs, one should also examine whether these param-
eter requirements are also met in the pathological condi-
tion. Experimental validation in model organisms or cells 
are needed.

Manipulating thresholds for disease prevention or therapy
Robustness, i.e., insensitivity to variations, is a property 
opposite of heterogeneity. To achieve robustness, the sys-
tem is normally buffered against perturbations [119]. The 
buffering can be due to network properties, e.g., negative 
feedback, for homeostasis. Buffering can also be due to 
protein chaperones, e.g., Hsp90 [120–123]. The system is 
normally at a stable healthy state, i.e., above the thresh-
old, and not ultrasensitive to perturbation. The disease 
state is caused by reducing the weak spot (Achilles heel, 
or tipping point) to shift the system to an ultrasensi-
tive window. Conversely, by knowing the ultrasensitive 
motif, we can try to manipulate the weak spot and shift 
the system from an ultrasensitive state to a stable state. 
Identifying the critical factor and its position in the regu-
latory network is important to find ways to manipulate 
the threshold. Another approach is screening for second 
site dominant suppressor mutations, as these would be 
dosage-sensitive and may act to shift the system back to a 
stable phenotypically normal state.

In the above example of the skn mutant phenotype in 
C. elegans intestinal differentiation, ELT-2 is the criti-
cal factor involved in a positive feedback loop (Fig.  7). 
Potentially finding ways to increase ELT-2 expression, 
activity, or stability may shift the system to a stable state 
with normal intestinal development even in a skn mutant 
background. The molecular titration URM can be modu-
lated. If an active factor A is bound by a protein B, which 
renders the AB dimer inactive, this protein sequestra-
tion system can exhibit ultrasensitivity behavior [124]. 
The threshold and degree of ultrasensitivity depend on 
the concentration of the inhibitor B [124]. Therefore, 
the level of B can be manipulated to adjust the ultra-
sensitivity and potentially push the system into a stable 
state. Posttranslational modification can also be used to 
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modulate system output [125]. These examples show that 
if we understand the molecular mechanism for ultrasen-
sitivity, we may be able to manipulate the system to push 
it back to a stable healthy state.

Drug development usually tries to identify a drug-
gable target acting within a regulatory chain, and then 
try to modulate its level or activity. However, how to 
choose which of the multiple potential targets along the 
regulatory chain is difficult. In contrast to traditional 
approaches in identifying druggable targets, our model 
suggests that it is important to know the regulatory net-
work topology and identify the ultrasensitive response 
motif, which would be the tipping point that is most sen-
sitive to perturbation. The tipping point would be the 
drug target. A gentle nudge on the tipping point may be 
sufficient to shift the system. Because a smaller drug dos-
age may be effective, side effects can be reduced. This is 
of course a tall order that is more easily said than done. 
Much experimental effort in testing the predictions and 
showing validation is needed.

In summary, based on the threshold model, we make 
the following suggestions on research strategies dealing 
with phenotypic heterogeneity in human diseases.

1. Identify the primary mutation and modifier factors 
for a disease

• Focus on familial cases, extreme cases (enhancers 
and suppressors) in carriers within family

• Pleiotropy may help to identify edgetic mutations

2. Functional validations of causal relationship
• Remember context dependence

3. Look for ultrasensitive response motifs in the regula-
tory network

• Need for experimental validation
4. Find ways to nudge the system from hypersensitive 

state to stable state

• Screening for dominant suppressor mutations
• Identify the tipping point as the target for manipu-

lation.

Conclusions
We have proposed that the ultrasensitivity response is 
the molecular basis for the threshold effect which can be 
an underlying principle for the phenotypic heterogeneity 
in human genetic diseases. It is noted that “the major-
ity of the research in model organisms aims to minimize 
background effects rather than understanding it” [126]. 
We argue that the phenotypic heterogeneity should not 
be treated as noise in the system but that it can reveal 

the potential molecular mechanisms underlying these 
phenotypes. We should take advantage of pleiotropy and 
background differences in human and animal models to 
identify context-specific regulatory networks associated 
with disease. Conceptually, if we can understand the net-
work topology and the parameters of a system, we can 
predict the behavior of the system, especially whether 
it can exhibit ultrasensitivity under certain parameters, 
and in so doing may find ways to gently nudge the sys-
tem to stability. The understanding of network behavior 
is important. Context is also important. In reality, this 
is quite difficult and needs to be experimentally tested, 
which may be a daunting effort. The combinations of 
‘omics data, with better spatial and temporal resolution 
from patients and animals models, experimental testing 
of quantitative variables in animal models, and math-
ematical simulations are needed. However, the potential 
payoff is great. It would be possible to develop gentler 
and more effective forms of prevention and therapy, and 
avoid side effects.

We have discussed heterogeneity with respect to dis-
eases. The assumption is that the body is normally in a 
homeostatic state, and only upon certain disease condi-
tions (e.g., the driver mutation) is it shifted to a state that 
is sensitive to perturbations into a disease state. However, 
in some situations, the organism seems to be deliberately 
poised at an ultrasensitive state that responds to small 
intrinsic or extrinsic fluctuations with large differences in 
phenotypic output, so that individuals respond in dichot-
omous ways to a common set of circumstances. For exam-
ple, not all cherry trees blossom at the same time, and not 
all flowers on the same tree blossom at the same time. 
This “bet-hedging” strategy may have evolutionary value 
to a species [85, 127]. The threshold model may also be 
useful in this broader realm of phenotypic heterogeneity.

Abbreviation
URM  Ultrasensitive response motif
SMA  Spinal muscular atrophy
OXPHOS  Oxidative phosphorylation
GRN  Gene regulatory network
CKD  Chronic kidney disease
PD  Parkinson’s disease

Glossary
Penetrance    The percentage of individuals carrying a 

particular genotype (e.g., a mutation) that 
exhibits certain detectable phenotypes 
(clinical manifestation). Complete pen‑
etrance means 100% genotype–pheno‑
type correlation.

Expressivity    The degree of phenotypic severity in 
an individual who exhibits detectable 
mutant phenotype.

Pleiotropy    A gene, when mutated, is linked to mul‑
tiple phenotypic traits, often in multiple 
tissues or organs.
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Stochasticity    Non‑deterministic variations that lack pre‑
dictability or order.

Threshold    A hypothetical value of functional require‑
ment for the concentration or activity of 
a molecule X (denoted as [X]). If [X] falls 
below such value, phenotypic defects will 
manifest.

Ultrasensitivity   In an input–output relationship, a small 
change in the input causes a large, non‑
linear, change in the output, resulting in a 
switch‑like or bistable behavior.

Ultrasensitive response motif (URM)  A regulatory motif that can give an ultra‑
sensitive response under appropriate 
parameters.

Edgetic mutation   Mutation affecting a protein not in the 
production of level of the protein itself 
(node), but specifically affects one (or a 
few) of the protein interactions (edges) in 
the protein interaction network.
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