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Butterflies in the gut: the interplay
between intestinal microbiota and stress
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Abstract

Psychological stress is a global issue that affects at least one-third of the population worldwide and increases the risk
of numerous psychiatric disorders. Accumulating evidence suggests that the gut and its inhabiting microbes may reg-
ulate stress and stress-associated behavioral abnormalities. Hence, the objective of this review is to explore the causal
relationships between the gut microbiota, stress, and behavior. Dysbiosis of the microbiome after stress exposure
indicated microbial adaption to stressors. Strikingly, the hyperactivated stress signaling found in microbiota-deficient
rodents can be normalized by microbiota-based treatments, suggesting that gut microbiota can actively modify

the stress response. Microbiota can regulate stress response via intestinal glucocorticoids or autonomic nervous sys-
tem. Several studies suggest that gut bacteria are involved in the direct modulation of steroid synthesis and metabo-
lism. This review provides recent discoveries on the pathways by which gut microbes affect stress signaling and brain
circuits and ultimately impact the host's complex behavior.

Keywords Gut-brain axis, Microbiota, Microbiome, Stress, Corticosterone, Intestinal steroidogenesis, Neural circuits,

Autonomic nervous system, Probiotic, Prebiotic

Introduction

The etymology for the phrase to have “butterflies in the
stomach” first appeared in the book “The House of Prayer”
written by Florence Converse in 1908. This phrase has
been widely used as an idiom for over a hundred years,
and it describes an unsettling feeling when one is facing
a stressful or thrilling event. It is particularly fascinat-
ing that people describe this feeling as something that
originates in the gut, and not elsewhere. Scientists have
been chasing these “butterflies” and their origins for over
two decades now, and they realized that this idiom may
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be associated with a feeling and sensation that is influ-
enced by the commensal microbes in the gastrointesti-
nal (GI) tract. Scientists have made amazing discoveries
about understanding the importance of commensal gut
microbes in host physiology and pathophysiology.

The flopping butterfly is not only a metaphor for the
fluttery feeling in our body, but it is also a term that
describes the initial action in a series of chain reactions
for a colossal event. Commensal microbes in the gut
exert various effects on host behavior through the “gut-
brain axis” The “gut-brain axis” is the distal connection
between the GI system and the central nervous system
[1]; it is composed of complex signal transduction path-
ways across the two body systems [2]. Gut bacteria and
their metabolites exert their “butterfly effect} which
propagates signals to the brain, ultimately altering the
host’s behavior. The hypothalamic—pituitary—adrenal
(HPA) axis, the canonical pathway for stress regulation,
is one of the most promising routes that connects the
commensal gut microbes, GI tract, brain, and behavior to
each other [2]; this also reflects the fluttery feeling in the
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gut. Moreover, stress signaling can be transmitted to the
brain via the vagus nerve and afferent/efferent neuron
connections.

Stressed, nervous, tense, worried, and anxious are
commonly felt in the presence of threats. Recent find-
ings suggest that the stress response and gut microbes
reciprocally influence numerous behavioral outcomes
in the host. To understand the role of commensal gut
microbes in stress regulation and response, the use of
gnotobiotic animals, 16S rRNA sequencing, metagen-
omic sequencing, fecal microbiota transplantation, anti-
biotic treatment, and probiotics are employed to unravel
intertwined host-microbe interactions [2]. This review
focuses on rodents as a model organism to explore the
causal relationships between the gut microbiota, stress,
and behavior. Some clinical observations have also been
incorporated to support this review.

Brain response to stress exposure

Stress sensing, integration, and coping are vital functions
of the brain when confronted with an aversive stimulus
[3, 4]. Stress-related information is integrated into the
sensory cortex, which then sends signals to the limbic
system, hypothalamus, and brainstem to activate the
HPA axis and sympathetic and parasympathetic nerves
[3, 5]. The sympathetic and parasympathetic nerves
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propagate the stress response to evoke rapid adaption in
various systems in the body [3]. The brain regions that
detect stress signals from the external environment over-
lap with the brain regions that participate in emotion,
which coherently orchestrates the stress responses in ani-
mals [3, 6].

Among the brain regions that are involved in regulat-
ing the stress response, the paraventricular nucleus of the
hypothalamus (PVN) plays a central role in integrating
signals from the environmental stimuli and further trig-
gering downstream neural transmission [3, 7]. The PVN
receives neural innervation from the limbic system and
brainstem to mediate the HPA axis and integrate the
response after exposure to stress [3, 7]. Various types of
neurons are located in the PVN. Primarily, the corticotro-
phin-releasing hormone (CRH) neurons in the PVN and
other associated brain regions respond to different forms
of stress [8, 9]. In Fig. 1, we summarize the findings about
the interplay of CRH neurons in the PVN and cells at the
bed nucleus of the stria terminalis (BNST) and amygdala
in response to stress. These brain regions are crucial for
determining the levels of circulating corticosterone and
animal behavioral outputs.

As a central hub for the stress response, PVN CRH
neurons can be triggered by stressful stimuli and sub-
sequently, evoke several intrinsic behavioral responses

Neuronal activation in
amygdala

1. 1 food intake (CeA)

2. 1 splenic plasma cell (CeA)
3. 1 locomotor activity (BLA)

CRH

Activation of

CRH neurons in PVN
1. T stress response

2. T aversion behavior
3. T defensive behavior
4. T corticosterone

5. | social behavior

Fig. 1 The orchestra of the paraventricular nucleus of the hypothalamus (PVN) with other brain regions in response to the stress exposure. CRH:
corticotropin-releasing hormone; BNST: the bed nucleus of the stria terminalis; AMG: amygdala; CeA: central nucleus of the amygdala; BLA:
basolateral amygdala; MeA: medial amygdala; BS: brainstem; LC: locus coeruleus; NTS: nucleus tractus solitarius; VLM: ventrolateral medulla
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[10-12]. This section focuses on the cause-and-effect
relationships between the PVN CRH neurons and stress
coping behaviors. Daviu et al. showed that an increase in
CRH neuron activity in the PVN can be detected during
a looming-shadow task, a method that mimics predator
threat from the sky, where the majority of mice displayed
escape behavior with little freezing response to a loom-
ing shadow. Silencing the PVN CRH neurons decreased
the escape behavior but increased the freezing response.
Moreover, PVN CRH neurons anticipate an imminent
threat and encode stress controllability [11]. Similarly,
another study showed that CRH neurons in the PVN
responded to aversive stimuli, such as forced swimming,
tail restraint, overhead objects, looming, and even intra-
peritoneal injection [13]. In one study done by Huang
et al., mice susceptible to visceral pain after maternal
separation exhibited an increased number of c-Fos-
positive CRH neurons in PVN compared to resilient
mice [14]. Electrophysiological recordings also revealed
higher spontaneous firing frequency of CRH neurons in
the PVN and increased evoked firing rates in response
to step current injections in mice susceptible to visceral
pain after maternal separation [14]. Moreover, suscepti-
ble mice displayed elevated gene expression and protein
levels of CRH in the PVN, along with higher concentra-
tions of CRH, ACTH, and corticosterone in the serum
[14]. Additionally, exposure to water avoidance stress
(WAS), an acute stress paradigm, induced an increase
in c-Fos-positive cells in the PVN [15, 16]. The stress
response to WAS was ameliorated by intracisternal injec-
tion of a CRH receptor antagonist [15, 16].

Mice displayed altered home-cage behavior, includ-
ing self-grooming, rearing, walking, digging, and chew-
ing, immediately after the footshock. Fuzesi et al
demonstrated that optogenetically activating the CRH
neurons in the PVN increased self-grooming, shifting
other home-cage behaviors similar to mice experienc-
ing foot shock. The increased self-grooming behavior by
the optogenetic stimulation of PVN CRH neurons can
be attenuated by increasing the presumptive threat level
of the context (testing environment) [12]. Furthermore,
Sterley et al. found that the transmission of stress sign-
aling from a stressed subject to a naive partner required
the activation of PVN CRH neurons in both subjects and
partners to drive stress signal transmission [17]. Similarly,
Wu et al. showed that the chemogenetic activation of
CRH neurons in the PVN during a social interaction test
abolished social behavior and increased digging behavior
in mice. Moreover, corticosterone levels increased after
social interaction when PVN CRH neurons were acti-
vated [18]. In contrast, not all stress responses are associ-
ated with the PVN CRH neurons. Zhao et al. found that
optogenetic activation of excitatory projections from the
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PVN to the ventrolateral medulla (VLM), but not CRH
neurons in the PVN, could recapitulate stress-induced
hyperglycemia in mice without stress exposure [19].
Nonetheless, these studies demonstrate that PVN CRH
neurons are essential for controlling stress responses and
behaviors when exposed to imminent threats (Fig. 1).

The BNST serves as a relay station that connects the
various brain regions involved in emotion [20]. Amyg-
dala-BNST and BNST-PVN circuits participate in stress
response regulation [21, 22]. Previous studies have shown
that the BNST is composed of several subregions and
sends various projections to the PVN [20-23]. Duan et al.
demonstrated that optogenetic activation of the baso-
lateral amygdala (BLA) in the BNST circuit prevented
anxiety-like behaviors in mice that received social defeat
stress [24]. The anterior part of the BNST lesions inhib-
its the activation of the PVN and HPA axis after stressor
exposure [25, 26]. Conversely, Choi et al. showed that
lesions in the posterior part of the BNST increased cor-
ticosterone levels and the number of c-Fos-positive cells
in the PVN after acute restraint stress [27]. Stress expo-
sure also affects neural activity in the BNST. Predator
stress, elevated plus maze, and restraint stress enhance
the neural activity of CRH neurons in the BNST [28, 29].
However, Wu et al. showed that the inhibition of CRH
neurons in the BNST could not rescue stress-induced
social deficits [18], which suggests that the BNST might
be affected by stress exposure but does not directly regu-
late the stress response.

The amygdala is a critical structure that is associated
with emotional processing and physiological responses
to stress [30, 31]. Various subregions of the amygdala
participate in distinct mechanisms to modulate differ-
ent types of stressor exposure [30]. Acute psychological
stress increases the number of c-Fos-positive cells in the
medial amygdala (MeA) [32] and enhances inhibitory
neuron activity in the central nucleus of the amygdala
(CeA) [33]. However, limited direct connections between
the amygdala and PVN can mediate the stress response
[3, 30]. The stress-induced immune dysregulation is asso-
ciated with distinct neuronal populations in the CeA.
Zhang et al. identified a circuit between the CeA/PVN
and splenic nerve in the regulation of stress-associated
immunity [34]. Artificial activation of CRH neurons in
the CeA and PVN increases splenic plasma cell forma-
tion. Placing the mouse on the elevated platform not
only increased the CRH neuronal activity, but also pro-
moted splenic plasma cell formation, suggesting that the
CeA and PVN participated in stress-induced immune
response [34]. Furthermore, Xu et al. showed that CeA
lesions prevented the release of CRH and adrenocortico-
tropic hormone (ACTH) after systemic interleukin (IL)-1
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injection [35]. Other studies have also shown that periph-
eral injection of lipopolysaccharide (LPS) increased neu-
ral activity in the CeA to decrease food intake [36] and in
the BLA to increase anxiety- and depressive-like behav-
ior [37]. CRH neurons in other brain regions have been
shown to play a role in stress response. Predator stimuli
promote rapid arousal from rapid eye movement sleep
in mice. A recent study by Tseng et al. showed that CRH
neurons in the medial subthalamic nucleus (mSTN) were
activated during rapid eye movement sleep by predator
odor exposure in response to external stimuli [38]. The
inhibition of CRH neurons in the mSTN increased the
latency of freezing and looming behavior when the mice
were exposed to predator odor and decreased the dura-
tion of the rapid eye movement-sleep response to adapt
to the predator threats [38].

Overall, stress exposure triggered the orchestra of
PVN CRH neurons with other brain regions in response
to various stimuli (Fig. 1). PVN CRH neurons appear to
be central hubs that connect other brain areas to initiate
stress responses and coping mechanisms. Understanding
the central pathway of the stress response is important in
discovering the signaling pathway that is modulated by
gut microbes.

Stress exposure alters gut microbiome

Stress-coping mechanisms and adaptation are critical for
survival. Animals cope with stress in many ways, includ-
ing changes in their physiology and behavior. Interest-
ingly, scientists have found that stress exposure affects
the gut microbiome using rodent models (Table 1).

Unpredictable chronic mild stress (UCMS) is an exper-
imental condition that induces physiological and neuro-
logical changes that are similar to chronic and unresolved
stress exposure. Mice generally display depressive-like
behavior, similar to people with depression, with no
apparent change in anxiety-like behavior [39—41]. Inter-
estingly, the altered Firmicutes [39-41] and Tenericutes
[40, 41] phyla are consistently observed in the UCMS
animals. Of note, Lactobacillaceae seemed to be the main
bacteria in Firmicutes that were decreased by UCMS [39,
41]. Coprococcus is a bacterial genus that was found to be
reduced in UCMS mice [41] and the human depression
cohort [42] (Table 1).

Chronic social defeat stress (CSDS) is a psychosocial
stress with exceptional face, construct, and predictive
validity. Behavioral outcomes after CSDS are com-
plex, including an increase in depressive-like behavior,
anxiety-like behavior, and a decrease in social behavior
[43-46]. Likewise, the microbiome profiling shifted by
CSDS was more complex than that shifted by UCMS.
Bacteroidetes [44, 46] and Helicobacteracea [43—45]
were increased after CSDS. In contrast, several bacteria
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in Firmicutes, such as Ruminococcaceae [44, 45], were
altered after CSDS, except for Lactobacillus [43-46].
Social overcrossing (SOC) is a method that mimics
increased housing density. The effect of SOC on behav-
ior was minimal. Mice only showed increased speed in
the elevated plus maze and entries to the dark cham-
ber in the light/dark box [47]. However, the change in
the microbiome after SOC was more dramatic. SOC
increased the relative abundance of Akkermansia
muciniphila and Anaerostipes genera and reduced the
relative abundance of Erysipelotrichaceae family, Lacto-
bacillus, and Bacteroides acidifaciens species [47]. The
complex outcomes produced by social-related stress-
ors could be due to the varied source of the intruders
and the subtle difference in the experimental timelines
(Table 1).

Restraint stress is a classical method of restricting
rodent movement. Rodents develop anxiety- and depres-
sion-like behaviors after restraint stress [48—52]. While
numerous bacterial taxa in the gut are altered, Firmicutes
appears to be the most vulnerable bacteria that can be
altered by chronic restraint stress, especially Lactobacil-
laceae and Lachnospiraceae family [48-51, 53, 54]. In
addition, the Proteobacteria phylum was increased after
chronic restraint stress [49, 53, 54]. Interestingly, restraint
stress affected the microbiome differently, depending on
the intestinal segment [54] (Table 1). WAS was a potent
psychological stressor that disrupts gut epithelial tight
junction integrity [55, 56]. The sole WAS did not produce
much effect on the behavior compared to other stress
models [56, 57]. However, the fecal microbiome was
affected by WAS, with decreased Bacteroidetes, increased
Firmicutes, and increased Proteobacteria. When analyz-
ing the contents of the small intestine and colon, Lacto-
bacillaceae and unclassified Bacteroidetes were lower in
WAS mice [58].

Based on the studies we surveyed, the adaptation of
the microbiome to stress could be influenced by different
types of stress, duration of stress exposure, source of ani-
mals, diet, etc. (Table 1). Several bacterial taxa have been
reported to have differences across studies after exposure
to various types of stress. Stress exposure downregulates
the relative abundance of Porphyromonadaceae [58, 59],
Lactobacillaceae [39, 47, 49, 54, 58], Ruminococcaceae
[44, 53, 58], and Coriobacteriaceae [43, 53] at the family
level and Parabacteroides [51, 59] and Lactobacillus [40,
47, 48, 54] at the genus level. In contrast, stress exposure
upregulated the relative abundance of Streptococcaceae
[54, 58] and Enterobacteriaceae [49, 54] at the family
level and Anaerofustis [40, 51] and Helicobacter [43, 49,
59] at the genus level. Among these studies, the Lactoba-
cillus species was the most consistent bacterial taxa that
was reduced in rodents following stress exposure.
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Levels of stress hormone in microbiome-depleted mice
Studies in mice have suggested that stress exposure alters
the composition of the gut microbiome and shifts the
bacterial taxa, which leads to another question: Do gut
bacteria actively play a role in stress response regulation?
To address this question, gnotobiotic and antibiotic-
treated rodents are great models for “knocking out” the
commensal microbiota constitutively or conditionally.
Strikingly, most studies have suggested that the deple-
tion of the microbiota in rodents enhances the stress
response and increases the stress hormone corticoster-
one (Tables 2 and 3). Corticosterone is a glucocorticoid
in rodents (cortisol in humans) that serves as a crucial
steroid hormone secreted in response to stress [60].

Germ-free (GF) mice, a model organism that was never
exposed to bacteria in their lifetime, displayed elevated
corticosterone levels after prolonged restraint stress
exposure [61-63]. In addition, GF rodents exhibit ele-
vated corticosterone levels under various stressful condi-
tions, including maternal separation [64], environmental
transition [65, 66], open-field test [67], social interaction
[18], bacteria endotoxin LPS injection [68], and induci-
ble-adjuvant arthritis [69].

However, not all studies have shown that GF rodents
display excessive stress responses and higher corticoster-
one levels after exposure to stressful conditions [63, 70].
Consistent findings have not yet been obtained when it
comes to measuring baseline corticosterone levels in GF
rodents [63—-65, 67, 70—74]. These studies discovered that
the HPA axis is an influential mediator for gut microbes
to alter host physiology; this raised the possibility of
microorganisms in the gut playing a critical role in stress
suppression (Table 2).

GF rodents clearly indicate that the depletion of gut
microbiota leads to aberrant stress responses, includ-
ing increased corticosterone, altered gene expression
involved in stress signaling, and abnormal behavioral
consequences. While GF models are valuable tools for
studying microbial influences on stress-coping mecha-
nisms, it is important to highlight the limitations of the
GF model. GF animals, which lack exposure to microbes
from birth, can exhibit several developmental differ-
ences compared to conventionally raised animals [75].
These distinctions include altered gut morphologies, an
immature mucosal immune system, delayed oral toler-
ance development, deceleration of epithelial turnover,
and neuroendocrine function alterations, especially dur-
ing early life [75, 76]. The caveat regarding these differ-
ences recognizes the artificial nature of the GF model in
the context of human physiology.

In parallel with GF mice, antibiotic administration was
extensively adopted to clarify the role of gut microbiota
in stress. Antibiotic administration is a powerful tool for
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controlling the timing of the elimination of commensal
microbes [18, 20, 77, 78]. However, age, treatment time
window, type, and dosage for antibiotic administra-
tion are critical factors for yielding consistent findings
with GF rodents [76]. Furthermore, it is challenging to
deplete gut microbes entirely because of the geographi-
cal preference of the GI tract for various species of gut
bacteria [79]. Only a few studies were able to reproduce
an enhanced stress response in GF mice using antibiotics
(Table 3). Two studies adopted a similar antibiotic recipe
with a broad-spectrum antibiotic cocktail (ABX), show-
ing that chronic treatment of ABX in mice resulted in an
increase in baseline corticosterone levels [80] and after
social exposure [18]. Two other studies showed that an
acute [81] or chronic [59] gavage dosing of a single anti-
biotic in mice increased corticosterone levels upon acute
stress exposure. Intriguingly, developmental treatment of
mice with antibiotics reduced corticosterone levels under
various conditions [47, 82, 83]. The treatment of rats with
antibiotics yielded a reduction in corticosterone, indi-
cating a model-dependent effect [84, 85]. Other studies
have shown that antibiotics do not affect corticosterone
levels [86—90] (Table 3). While antibiotic administration
is a potent approach for investigating the microbiome’s
impact on brain and behavior, it demands careful consid-
eration in experimental design.

Dysregulation of stress response in the brain

of microbiome-depleted mice

Dysregulation of the stress response in the brain has been
widely observed in mice without commensal microbes.
Several studies have investigated the gene expression lev-
els of the glucocorticoid receptor (GR), CRH, and down-
stream signaling pathways in mice with gut microbial
depletion. Crumeyrolle-Aria et al. showed that increased
corticosterone levels and decreased GR mRNA levels
in the CA1 hippocampus and dentate gyrus (DG) were
observed in GF rats after exposure to stress [67]. Sudo
et al. observed higher CRF expression in the hypothala-
mus of GF mice. GR gene expression was lower in the
cortex, but not in the hypothalamus and hippocampus
[62]. Luo et al. showed that hippocampal GR downstream
signaling pathways, including Sic22a45, Agpl, StatS5a,
Ampd3, Plekhfl, and Cyb561, were upregulated in GF
mice under baseline condition [91]. Gareau et al. showed
that a reduction in neural activity in the hippocampal
CA1 region was observed in GF mice when compared to
SPF mice after WAS [57].

A recent finding illustrates that gut commensal
microbes are required to restrain the host stress response
and increase social behavior. The stress hormone corti-
costerone levels were elevated in GF mice after a short
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social interaction with a stranger mouse. Concur-
rently, the neural activity in several brain regions that
are responsible for coping with stress was upregulated,
including the PVN, hippocampal DG, and adrenodorsal
BNST (adBNST) [18]. The upregulated stress hormones
and neural activity were recapitulated in mice treated
with ABX at the adult stage. Furthermore, this study
showed that the immediate early genes were upregu-
lated in the hippocampus (Arc, Fos, cJun, JunB, Egrl,
Egr2, Gadd45b, Gadd45g, Bdnf) and hypothalamus
(Arc, Fos, Egrl), but were downregulated in the brainstem
(cJun, JunB, Egrl, Gadd45b, Gadd45g, Bdnf) of GF mice
[18]. However, stress-related gene expression did not
change in mice treated with antibiotics under baseline
and stressful conditions [18]. Only Crk gene expression
was upregulated in ABX mice after social encounters,
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whereas Ucn gene expression was upregulated in ABX
mice after novel cage exposure [18].

To further investigate whether the interference of neu-
rons in brain circuits can alter mouse stress hormones
and social behavior, Wu et al. adopted a genetic abla-
tion strategy and chemogenetic approach to disrupt the
stress response neurons in ABX-treated mice. Genetic
ablation of GR in the DG and adBNST restored social
deficits and suppressed corticosterone levels in ABX
mice (Fig. 2). In contrast, genetic ablation of GR in the
hypothalamus decreases social behavior and increases
corticosterone levels after social interaction [18]. Silenc-
ing the PVN CRH neurons in ABX mice suppressed
the increase in corticosterone levels and prevented the
development of social deficits (Fig. 2). These effects were
not observed in adBNST CRH neurons from ABX mice

gland M
Social behavior |
: Brain Novel mouse
Test subject
Stress Subject Novel
Interacting
Presence of gut microbes f
Avoid
Absence of gut microbiota f f f ‘
Interacting

Enterococcus faecalis

+ @B

Fig. 2 Gut commensal microbes are required to restrain the host stress response neurons increasing social behavior. Colonization of Enterococcus
faecalis alleviated the social interaction-induced stress response and promoted the social behaviors toward the novel mouse. PVN:
the paraventricular nucleus of the hypothalamus; BNST: the bed nucleus of the stria terminalis; DG: dentate gyrus; CRH: corticotropin-releasing

hormone; GR: glucocorticoid receptor
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[18]. Furthermore, adrenalectomy and pharmacologi-
cal blockade of the GR and synthesis of corticosterone
in microbial-depleted mice sufficiently restored their
social interaction behavior [18]. Therefore, Wu et al. sug-
gested that the dysregulation of social behavior and stress
response in mice without a microbiome is more likely
due to the altered neural activity in PVN CRH neurons,
instead of alterations in stress-related gene expression
or structural changes in PVN-associated neural circuits
[18]. This study provides a defined pathway for stress
coping by commensal microbes to drive host behavior
(Fig. 2). Advances in neuroscience technologies have
allowed scientists to precisely investigate the neural cir-
cuits regulated by microbiota and further discover the
mechanisms involved in microbiome-mediated stress-
associated neural circuits.

Extra-adrenal steroidogenesis in the gut

While neurons in the brain in response to stressful con-
ditions have been extensively explored, gut-derived stress
signaling has not yet been fully elucidated. Glucocorti-
coids, a class of corticosteroids, are secreted mainly by
the adrenal gland and partially by the extra-adrenal sys-
tem [92, 93]. The amount of glucocorticoids released by
the adrenal gland is far beyond the amount released by
the extra-adrenal system. Although adrenal glucocorti-
coids play a role in the response to stress, the physiologi-
cal role of extra-adrenal glucocorticoids in the intestine is
still not understood.

The canonical steroidogenesis pathway for corticos-
terone in the adrenal gland involves a series of steps in
the mitochondria. Cholesterol is converted to pregne-
nolone by two rate-limiting enzymes, steroidogenic acute
regulatory protein (StAR) and cytochrome P450 family
11 subfamily A member 1 (CYP11A1). Pregnenolone is
then catalyzed to progesterone and 11-deoxycorticoster-
one by 33-Hydroxysteroid dehydrogenase (3p-HSD) and
CYP21A2, respectively. Then, 11-deoxycorticosterone is
catalyzed to corticosterone by CYP11B1 [94]. Corticos-
terone can also be produced by 11-dehydrocorticoster-
one with the enzyme 113-hydroxysteroid dehydrogenase
type 1 (11B-HSD1), and vice versa by 11-HSD2 [95].
Brunner group demonstrated that the synthesis of extra-
adrenal glucocorticoids is independent of the canoni-
cal adrenal glucocorticoid synthesis. First, the critical
nuclear receptor and transcription factor steroidogenic
factor-1 (SF-1) for adrenal steroidogenesis is absent in
the intestine and is functionally replaced by liver recep-
tor homolog-1 (LRH- 1) [96, 97]. Second, ACTH, the pri-
mary hormone secreted by the anterior pituitary gland;
it stimulates steroidogenesis in the adrenal gland, but is
not involved in intestinal glucocorticoid synthesis [98].
Based on the fundamental distinction in the biochemical
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process of synthesizing corticosterone, the physiological
role of extra-adrenal glucocorticoids is considered to be
independent of stress coping [92, 93, 99, 100].

Intestinal epithelial cells (IEC) are primary producers
of extra-adrenal glucocorticoid synthesis [92, 93]. Strik-
ingly, the small and large intestines and appendix express
critical enzymes involved in steroidogenesis, includ-
ing Cypllal and Cyp11b1 [99]. Intestinal glucocorticoids
are hypothesized to contribute to the intestinal micro-
environment [93]. Brunner group showed that systemic
immune challenges upregulate glucocorticoid synthe-
sis and interact with the immune cells in the gut [99].
Anti-CD3 injection or viral infection upregulated ster-
oidogenic enzymes Cypllal, Hsd3bl, Cyp21, Cypllbl,
and Hsdl1bl and immuno-stimulated corticosterone
production in the small intestinal mucosa [99]. Moreover,
they found that pro-inflammatory cytokine tumor necro-
sis factor o (TNFa) and LPS-induced immune system
activation promote steroidogenesis in the intestine [101,
102]. In contrast, Raddatz et al. showed that IL-1p was
shown to inhibit glucocorticoid signaling in IEC in vitro
models [103]. Treatment of IEC with dexamethasone, a
GR agonist, increased its transepithelial electrical resist-
ance without affecting the tight junction architecture.
Increased barrier function due to glucocorticoid agonism
could be compromised by co-treatment with cytokines
[104]. However, chronic treatment with dexamethasone
may interact with the culture time of IEC cell lines since
it affects epithelial permeability and ultimately, alters the
gene expression for the actomyosin cytoskeleton, tight
junction, integrin, and cell cycle pathway [105]. Upon
bacterial endotoxin LPS injection in mice prior to ex vivo
culture, corticosterone levels produced by extra-adrenal
tissues dramatically increased [100]. Therefore, the extra-
adrenal glucocorticoids primarily have immunoregula-
tory functions as suggested by LPS injection studies,
distinct from the participation in the canonical stress
signaling.

Furthermore, in patients with inflammatory bowel dis-
ease (IBD), there is a notable reduction in the expression
levels of 113-HSD1 in the colon, suggesting that impaired
intestinal glucocorticoid synthesis may contribute to
IBD development [106]. Intestinal glucocorticoids also
play a pivotal role in inhibiting tumor development and
growth during the inflammatory phase. However, during
the tumor phase, glucocorticoid synthesis mediated by
Cypl1b1 suppresses anti-tumor immune responses, pro-
moting immune evasion. This presents a promising ther-
apeutic target for tumor treatment [107]. These findings
highlight the significant role of intestinal glucocorticoid
synthesis in modulating gastrointestinal disorders.

Gnotobiotic rodents have provided clues as to how
the loss of microbiota alters the stress response in the
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gut. Stress-associated gene expression in the intestine is
altered in GF mice under baseline, immune challenge,
and stress exposure conditions [70, 108, 109]. The expres-
sion of steroidogenesis genes in the pituitary gland, adre-
nal gland, and intestine was compared in SPF and GF
mice under social defeat and acute restraint stress condi-
tions. Briefly, the gene expression of Cri and Ucn2 in the
colon was upregulated in SPF mice, but unchanged in GF
mice after social defeat stress, partially due to the base-
line increase in GF mice. Interestingly, the downregula-
tion of Hsd11b1 was observed in both SPF and GF mice
after social defeat stress, regardless of increased baseline
levels in GF mice [108]. Another study investigated the
intestinal segment-specificity of steroidogenesis in the
intestine of GF mice. Both acute restraint stress and the
presence of microbiota alter Nr542 (encoding LRH-1)
and Hsd3b2 expression in the ileum and colon. However,
it appears that the genes for steroidogenesis are more
robustly altered in the colon than in the ileum [70].

These studies suggest that intestinal steroidogenesis
may be a crucial pathway by which the gut bacteria regu-
late stress responses. The precise mechanism by which
bacteria in the GI tract affect the HPA axis remains
unknown. Extra-adrenal steroidogenesis is a promising
pathway for investigation.

Circadian regulation of glucocorticoids and microbial
impact

Circadian rhythms are intrinsic timekeeping systems
governing a myriad of physiological processes, includ-
ing the diurnal variations in glucocorticoid levels. These
rhythms are not only influenced by endogenous factors
but can also be significantly modulated by the gut micro-
biota. The levels of glucocorticoids fluctuate in accord-
ance with the circadian rhythm in both physiological and
pathological conditions. This pattern typically involves a
peak in the early morning, followed by declining levels
throughout the daytime. Several studies have reported
on this circadian variation [110-115]. Moreover, clinical
studies have suggested that patients with arthritis expe-
rience a state of hypercorticosterolism, as evidenced by
elevated plasma cortisol levels measured in the morning
compared to those measured at midnight [112, 115]. This
observation appears to be synchronized with the pres-
ence of early morning stiffness in individuals with arthri-
tis [112, 115]. Interestingly, Mukherji et al. characterized
ileal IEC in corticosterone overproduction in ABX mice,
revealing higher corticosterone levels at a time when
ACTH was scarcely released [80]. Remarkably, corticos-
terone levels remained comparable in adrenalectomized
ABX mice [18, 80]. This result indicated signal pathways
involved in circadian clock regulation were disrupted
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in the ileal IEC of ABX mice, leading to hypercorticos-
terolism [80].

Circadian disruption driven by the microbiota has
been observed in various disease conditions, including
IBD and prediabetic syndromes [80, 116]. Microbiota
can mediate the circadian disruption in mammals. Anti-
biotic treatment can ablate the microbiota, reprogram-
ming the intestinal circadian transcriptome and rhythmic
chromatin dynamic [117]. Another study demonstrated
that the depletion of microbiota affected the crucial
regulator of circadian rhythm, including a decrease of
the transcripts of Bmall and Cryl, and an increase the
transcripts of Perl and Per2, while the transcript of Clock
remained unaffected [80]. The disrupted signal path-
ways involved in circadian clock regulation resulted the
hypercorticosterolism in ileal IEC [80]. This study indi-
cated the deficiency of microbiota caused a prediabetic
syndrome which was induced by ileal corticosterone
overproduction and circadian disruption [80]. GF mice
were observed of the lower level of circadian clock gene,
such as Bmall, Clock, Perl, and Cryl in the hypothala-
mus [118]. Exposure to bacterial metabolites may change
circadian gene expression both in vitro and in vivo [118].
Lactobacillus reuteri alleviated the liver gene expression
of Nrldl, the core circadian gene encoding REV-ERBa, in
the circadian dysrhythmia-induced polycystic ovary syn-
drome (PCOS) [119].

A constitutively active myosin light chain kinase
(MLCK) in intestinal epithelia transgenic mice results in
a colitis-prone phenotype, with an increased number of
intraepithelial bacteria in the colonocytes of these mice
[116]. Pai et al. reported that their microarray analysis
revealed disruptions in the circadian rhythm in wildtype
mice when they were co-housed with MLCK transgenic
mice, in contrast to wildtype mice housed exclusively
with other wildtype mice [116]. These disruptions were
associated with changes in circadian gene expression in
the colonic mucosa, including reduced Nridi, Perl, and
Per3, in wildtype mice co-housed with MLCK transgenic
mice [116]. Additionally, qPCR analysis demonstrated
circadian gene expression with elevated Arntl and Nfil3,
as well as reduced Nrldl, in both colonic mucosa and
purified colonocytes of wildtype mice co-housed with
MLCK transgenic mice, compared to those exclusively
housed with only wildtype mice [116]. The glucocorti-
coid enzyme Cypllal expression was decreased in the
epithelial cell at specific time point in MLCK transgenic
mice [116]. Furthermore, when invasive bacteria, found
in increased numbers within the intraepithelial bacteria
of MLCK transgenic mice, were co-cultured with Caco-2
cells, elevated levels of Nridl and Nfil3 were observed
[116]. This suggests that exposure to microbiota caused
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circadian disruption in the bacteria-epithelial co-culture
system [116]. Taken together, this evidence suggests that
the increased intraepithelial bacteria led to circadian dis-
ruption and glucocorticoid downregulation in the gut.

Transmission of stress response from the gut to the brain
via autonomic nervous system

In addition to the gut, the autonomic nervous system
(ANS) is an essential pathway composed of sympathetic
and parasympathetic nerves innervating the gut and
brain, rapidly transmitting signals. ANS complements
the body to maintain homeostasis and responds to vari-
ous stimuli. The parasympathetic system is dominant for
the "rest or digest" condition. This system is composed
of specific cranial nerves, such as the optic nerve (III),
facial nerve (VII), glossopharyngeal nerve (IX), vagus
nerve (X), and pelvic splanchnic spinal nerve. Among
the cranial and spinal nerves, the vagus nerve is the main
component, with approximately 75% of the parasympa-
thetic fibers in this system. Approximately 80% of afferent
neurons and 20% of efferent neurons [120] in the vagus
nerves innervate the GI tract. Moreover, the vagus nerves
innervate the esophagus, lower airways, heart, aorta,
liver, GI tract via the vagal branches [121]. The vagus
nerve is the most rapid route for signal transduction
among the pathways in gut-brain communication [122].

Leveraging advanced neurotechnologies, researchers
can closely examine the fundamental roles of the ANS
in healthy and disease states [122—124]. The parasympa-
thetic vagus nerve is considered as the main interocep-
tive pathway in the GI tract [4]. The afferent vagus nerve
ending is connected with the neuropod cells, which are
responsible for enteroendocrine secretion and trans-
duced luminal nutrient signaling in a millisecond fash-
ion [122]. Besides nutrient sensing, GI stretch and gut
motility are transmitted through vagal afferent neurons
[125]. In addition to the primary function of the digestive
system, the vagus nerve participates in other brain func-
tions, including reward [123, 126], cognition [127], and
satiety [128].

The causal relationship between the vagus nerve and
the stress response has been demonstrated in several
studies. Stimulation of the vagus nerve increases the
serum corticosterone levels in rats [129, 130]. Geneti-
cally selective rat lines with altered glucocorticoid
responsiveness display differential vagal tone following
stress exposure [131]. In a human study, the injection
of metyrapone, a drug that effectively blocks the critical
enzyme to synthesize glucocorticoids in healthy subjects,
dramatically reduced vagal-mediated heart rate variabil-
ity [132]. The vagotomy procedure moderately altered
nicotine-induced ACTH and corticosterone levels in a
rat model [133]. The association between the vagus nerve
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and the stress response has been extensively investigated
in immune challenge models. Subdiaphragmatic vagot-
omy effectively abolishes IL-1B-induced corticosterone
elevation [134-136]. However, one report showed that
vagotomy did not affect circulating cytokines and corti-
costerone when injected with LPS, suggesting a vagus-
independent pathway [137]. Consistently, our study
showed that subdiaphragmatic vagotomy cannot reverse
ABX-induced social impairment or corticosterone levels
[18]. Interestingly, a probiotic study found that inges-
tion of Lactobacillus (L.) casei strain Shirota was able to
downregulate stress-induced glucocorticoids and relieve
stress-associated symptoms in humans and rats. Moreo-
ver, treatment of L. casei strain Shirota in rats increased
the vagal afferent nerve pulse in a dose-dependent man-
ner and suppressed stress-induced CRF expression at
PVN [138]. The differences between these findings can
largely be attributed to different animal models, vagus
nerve manipulations, and stimuli.

Strikingly, transcriptomic analysis by single-cell RNA
sequencing revealed that the nodose and jugular ganglia
expressed low levels of GR genes (Nr3cl) under baseline
condition by single-cell RNA sequencing [139]. Inter-
estingly, cell clusters with relatively high GR expression
were functionally predicted to serve as GI tension sen-
sors or mucosal chemo/mechano sensors [139]. How-
ever, GR expressing gastric vagal afferents, including the
nodose ganglion and muscular/mucosal gastric vagal
neurons, were found not to be affected by corticosterone
in response to mechanical stimulation [140]. These data
indicate that vagal afferent neurons express GR, but the
functional role of glucocorticoid agonism in the GI tract
remains unclear.

Sympathetic contributions to gut and gut microorgan-
isms are not yet well-understood. One report showed
that the depletion of the gut microbiota activated neural
activity in the celiac-superior mesenteric ganglia (CG-
SMG@G), the extrinsic sympathetic neurons responsible
for GI tract innervation, thus altering gut motility [124].
Colonizing a specific community of bacteria, altered
Schaedler flora, or Clostridium spp., or administering gut
fermentation metabolites short-chain fatty acids can sup-
press the activation of neurons in CG-SMG. Anatomi-
cally, vagal innervated brain regions are interconnected
with brainstem nuclei critical for CG-SMG activation.
Modulating vagal afferent signaling could alter gut sym-
pathetic neural activity, revealing a complex neural inner-
vation from the brain to the gut involving ANS [124].

In brief, the ascending and descending neural inputs of
the parasympathetic and sympathetic nerves sense and
respond to subtle changes in the lumen of the GI tract,
including the commensal microbiota, in the modula-
tion of higher brain functions beyond digestion. Taken
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together, these studies suggest that the stress-induced
response of various compounds in the gut could poten-
tially activate ANS and transmit signals to the brain.

Neural pathways and neurotransmitters in gut-brain
signaling via the vagus nerve
The neural pathways from the vagus nerve to the PVN
CRH neurons are intricate [141]. The NTS serves as
the primary relay for vagal afferent signals connecting
to the forebrain [142]. Buller et al. showed that lesions
within the NTS significantly decreased c-Fos expres-
sions in PVN CRH neurons when exposed to systemic
IL-1p [142]. Adrenergic and noradrenergic neurons
were shown to bridge the connection between NTS and
PVN. Chen et al. indicated that activation of noradren-
ergic neurons and adrenergic/neuropeptide Y neurons
in NTS has been shown to modulate feeding behavior
[143]. Moreover, a recent study showed that activation of
NTS noradrenergic neurons resulted in reduced intake
of both regular and high-fat diets, while also increasing
PVN CRH c-Fos expression and elevating plasma corti-
costerone levels. This activation of the neural pathway
from NTS NE neurons to PVN neurons also led to a
decrease in chow food intake [144]. On the other hand,
several studies have shown that preproglucagon neurons
in NTS bridge the connection between NTS and CRH.
Preproglucagon neurons are the primary source of gluca-
gon-like peptide-1 (GLP-1) in the brain, a well-known
gut hormone in the periphery [145]. Tracing studies con-
firm that preproglucagon neurons in NTS project to the
PVN [146-149]. Reciprocally, the PVN contains a high
density of GLP-1 receptors (GLP-1R), with colocalization
observed in PVN CRH neurons [148]. To prove the func-
tionality of this circuit, activation of NTS PPG neurons
through chemogenetics or optogenetics directly stimu-
lates PVN CRH neurons and suppresses food intake
[150]. Furthermore, leptin-deficient mice exhibited
increased NTS PPG neuron input to the PVN, result-
ing in higher c-Fos expression in PVN neurons [151]. In
addition, intraperitoneal injection of the other gut hor-
mone cholecystokinin (CCK) increased c-Fos expression
in both NTS noradrenergic and PVN CRH neurons [152,
153]. The activity of PVN CRH neurons was increased
during fasting conditions but was suppressed when the
individual was in a fed state [13], suggesting that gut pep-
tides may stimulate vagal terminals and alter forebrain
neural activity. These findings collectively highlight the
direct projections from N'TS to the PVN CRH neurons.
Within the intricate framework of the gut-brain axis,
a crucial aspect is the involvement of neural active mol-
ecules and their receptors in the gut that transmit signals
to the brain. These molecules can be categorized into
three main groups: neurotransmitters, gut peptides, and
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immune molecules. For neurotransmitters, serotonin
(5-HT) within the gut primarily released by enterochro-
maffin cells [154]. It is tightly regulated by commensal
microbiota [155] and has the capacity to directly acti-
vate the vagus nerve through the 5-HT3R receptor [156,
157]. Moreover, oral administration of selective serotonin
reuptake inhibitors (SSRI) has been shown to increase the
firing rate of vagal afferent neurons [158]. Notably, gastric
distension has been observed to enhance c-Fos expres-
sion in the NTS and PVN. This effect can be mitigated
through the intravenous injection of a 5-HT;R antagonist
[159]. Additionally, intragastric administration of gluta-
mate can activate gastric vagal afferent neurons, with the
activation being notably hindered by pharmacological
blocking of the 5-HT3R [160].

Gut peptides, including leptin, ghrelin, CCK, GLP-
1, and peptide YY (PYY) are other well-known factors
capable of activating the vagus nerve. Receptors for these
gut peptides, such as the leptin receptor (LepR), GLP-1
receptor (GLP-1R), CCK receptor (CCKR), ghrelin
receptor (GHSR), and Y2 receptor (Y2R), are expressed
in nodose ganglion cells and the NTS region [125, 141,
161-166]. Ghrelin has been shown to decrease vagal
afferent activity [161], while leptin, CCK, and GLP-1 were
found to increase vagal afferent activity [77, 167-169].
Furthermore, vagal afferent neurons have the ability to
function as chemosensors and mechanosensors to moni-
tor changes within the gut lumen through gut peptide
signaling [125, 141, 170]. Nutrients are also capable of
activating vagal afferent neurons. For instance, nutrients
like sucrose have been demonstrated to transmit signals
through the sodium-dependent glucose cotransporter 1
(SGLT1) on CCK-labeled neuropod cells, subsequently
activating the vagus nerve through glutamatergic neu-
rotransmission [171, 172]. The mechanical stretching of
the digestive tract, including the stomach and intestine,
induces in vivo calcium activity in vagal ganglia neurons
[125]. This study further identified that GLP-1R neurons
primarily detect mechanical signalling, while GPR65
neurons primarily detect perfused nutrients and seroto-
nin, which are then transferred to the NTS region [125].

For the immune molecules, the activation of vagal ter-
minals in the gut has been notably associated with pro-
inflammatory cytokines and bacterial endotoxin. For
instance, intravenous injection of IL-1p resulted in a sig-
nificant increase in c-Fos expression within the nodose
ganglion, while concurrently elevating the discharge
activity of gastric vagal afferent neurons, all mediated by
a prostaglandin-dependent mechanism [173]. Similarly,
intraportal administration of IL-1p was found to augment
the discharge rate of the hepatic branch of vagal affer-
ent nerves [174]. The specificity of vagal sensory neuron
responses to IL-1B was further demonstrated by using
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IL-1R knockout mice, highlighting the pivotal role of the
IL-1R receptor [175, 176]. Moreover, the action potential
recording within the cervical vagus nerve was notably
absent in TNF receptor knockout mice when exposed to
TNF [175]. Toll-like receptor 4 (TLR4), known for medi-
ating the signalling of bacterial endotoxin LPS [177, 178],
is expressed in vagal afferent neurons [179, 180]. The
administration of LPS promptly induced calcium influx in
cultured vagal neurons [181], and notably, it heightened
the release of calcitonin gene-related peptide (CGRP) in
vagal afferent neurons through the TLR4 pathway [182].

In summary, the intricate neural pathways and neuro-
transmitters in the gut-brain connection via the vagus
nerve have diverse roles. Neurotransmitters, gut pep-
tides, nutrients, mechanosensation, and cytokines
influence vagal activity through specialized receptors.
This complex interplay shapes various physiological
responses, impacting stress, appetite, and sensation.
These mechanisms provide insights into the gut-brain
axis, with implications for health and diseases.

Probiotic- and bacteria-based effects for stress response
Microbiota-based supplements such as probiotics have
been shown to alleviate stress responses by downregulat-
ing stress hormones. Interestingly, Lactobacillus bacteria
are widely used as probiotics to alleviate stress responses,
which are coincidentally observed to be downregulated
when animals are exposed to stress (Table 1). Therefore,
we summarized the current findings on using probiotics
to alleviate stress responses and regulate the stress hor-
mone corticosterone (Table 4).

L. rhamnosus has been used as a probiotic for several
decades. L. rhammnosus GG alleviated acute restraint
stress-induced corticosterone in maternal separation
rats [183] and high-fat diet mice [184]. L. rhamnosus
JB-1 reduced acute restraint stress-induced corticoster-
one levels through the subdiaphragmatic vagus nerve
[185] in a strain-dependent manner [186]. The rat pups
showed high corticosterone levels immediately after
maternal separation. The increase in corticosterone lev-
els can be prevented by oral administration of L. rham-
nosus strain RO011 (95%) and L. helveticus strain RO052
(5%) (Lacidofil®) [187].

In addition to the rhamnosus species, paracasei, plan-
tarum, casei, and other species have been shown to
modulate stress in various models. Administration of L.
paracasei Lpc-37 [188] chronically decreased corticos-
terone levels induced by chronic daily restraint stress. L.
paracasei HT6 effectively prevented early life stressful
social experience-induced changes in brain GR expres-
sion [189]. L. paracasei PS23 [190] and L. plantarum
PS128 [191] reduced corticosterone levels induced
by early life stress. L. casei strain Shirota reduced
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WAS-induced corticosterone levels in rats and aca-
demic stress-induced cortisol levels in humans [138].
L. casei DKGF7 suppresses chronic restraint stress-
induced corticosterone [192]. L. plantarum CCFM8610
and L. casei M2-01-R02-S01 (M2S01) suppressed
corticosterone levels in irritable bowel syndrome
(IBS) models induced by WAS and Citrobacter roden-
tium [193]. L. plantarum LRCC5310, L. plantarum
LRCC5314, and L. gasseri BNR17 suppressed the eleva-
tion of corticosterone induced by chronic cold stress
and high-fat diet [194]. L. reuteri exopolysaccharide
suppresses ampicillin-induced corticosterone [81].
L. reuteri ATCC-PTA-6475 downregulated corticos-
terone levels during wound healing [195]. L. reuteri
NK33, L. johnsonii isolates, L. johnsonii BS15, and L.
mucosae NK41 suppressed corticosterone elevation
induced by immobilization stress [49, 196-198]. L. fer-
mentum CECT 5716 alleviated the corticosterone lev-
els induced by WAS and maternal separation [199].
Treatment with heat-killed L. fermentum and L. del-
brueckii (ADR-159) decreased the baseline levels of
corticosterone and increased sociability [200]. L. hel-
veticus NS8 reduces chronic restraint stress-induced
corticosterone [201]. Treatment with L. farciminis ML-
7 successfully suppressed the activation of the HPA
axis induced by partial restraint stress [84]. However,
not every Lactobacillus species produces a down-
regulating effect on the stress response, including L.
paracasei N1115 [83], L. plantarum LP12407 [188], L.
plantarum LP12418 [188], L. salivarius UCCI18
[202], L. casei CRL431 [203], L. salivarius HA113 [204].
Moreover, the renowned probiotic L. rhamnosus JB-1
was not able to change cortisol and release stress com-
pared with the placebo group in humans [205].

In addition to Lactobacillus species, Bifidobacterium
(B.) is another genus of bacteria that has been exten-
sively investigated for stress regulation. Monocoloniza-
tion of B. subtilis in GF mice attenuated the increase in
restraint stress-induced ACTH and corticosterone levels
[62]. Bifidobacterium adolescentis NK98, B. adolescen-
tis IM38, and B. longum NK46 suppress corticosterone
elevation induced by immobilization stress [196, 198,
206]. B. pseudocatenulatum CECT 7765 [207] and B.
bifidum G9-1 (BBG9-1) [208] alleviated maternal separa-
tion-induced elevation in corticosterone levels. B. breve
strains M2CF22M?7 [209] and CCFM1025 [210] reduced
the UCMS-induced corticosterone production. In a clini-
cal study, the administration of B. longum 1714 decreased
stress hormone levels after stress-induced events [211].
Similarly, not all Bifidobacterium species are involved in
stress regulation, including B. infantis 35624 [202, 212,
213], B. breve UCC2003 [202], B. longum 1714 [214,
215], B. breve 1205 [214, 215].
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Probiotic mixtures that combine Lactobacillus and Bifi-
dobacterium species also exert stress modulation effects.
L. helveticus RO052 and B. longum R0175 (Probio’Stick®)
reduced the elevation of corticosterone induced by WAS
[204]. Treatment with probiotics combining L. helveti-
cus, L. rhamnosus, L. casei, B. longum suppressed ACTH
and corticosterone levels in UCMS rats [216]. However,
the mechanisms by which different bacteria interact with
one another can be complicated. In contrast, maternal B.
animalis subsp. actis BB-12®° with Propionibacterium
jensenii 702 increased neonatal corticosterone [217].

Other bacteria, not commonly used as probiotics, have
also been shown to modulate stress-induced hormones
to a lesser extent. Monocolonization by E. coli, but
not Bacteroides fragilis in GF mice reduced the basal lev-
els of corticosterone [71]. Administration of Klebsiella
oxytoca [81] and E. coli [49] increased baseline corticos-
terone levels. Wu et al. treated mice with a combination
of antibiotics (ampicillin, vancomycin, and metronida-
zole; AVM) and found that the social behavior was pre-
served, and the stress response was restrained compared
to mice treated with the full spectrum of ABX. The pre-
served social behavior and reduced stress response were
transferred when transplanting the AVM gut microbiota
to GF recipient mice, indicating that the gut bacteria in
the AVM microbiome played an active role. Enterococ-
cus (E.) faecalis was identified as the key bacterium that
promotes social behavior and suppresses increased cor-
ticosterone levels during social encounters. Coloniza-
tion of E. faecalis in ABX and GF mice can promote their
social behavior, but only suppresses corticosterone levels
in ABX, and not GF mice [18].

E. faecalis is a lactic acid bacterium that is resistant
to antibiotics and many other stressors. The functional
roles of E. faecalis in the host are multifaceted and strain-
specific. E. faecalis is a well-known pathogen commonly
found in urinary tract infections [218]. In contrast, E.
faecalis has been widely used as a probiotic or food
additive [219]. Interestingly, several studies have shown
that E. faecalis can modulate the nervous system and
host behavior. E. faecalis EC-12 strain reduces the anxi-
ety response and alters the receptors for norepinephrine
and vasopressin in the prefrontal cortex [220]. E. faeca-
lis SF3B strain [221] and EF-2001 [222] strains have been
shown to alleviate colitis-induced enteric neurotransmis-
sion and pathologies. In addition, E. faecalis can synthe-
size tyramine and-phenylethylamine, two neuroactive
molecules known as trace amines and are considered to
be able to modulate the host nervous system [223-226].
Substance P stimulates the production of tyramine
and lactic acid in E. faecalis V583 strain and enhances
cytotoxicity and bacterial translocation in an intesti-
nal in vitro model [227]. E. faecalis AG5 can increase
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both long- and short-chain fatty acids in the host, which
might indirectly affect the nervous system through an
indirect fashion [228]. One report found that infection
of mice with pathogenic E. faecalis strains, K9 and CP-1,
increased corticosterone in an acute manner, suggesting
that E. faecalis can alter glucocorticoid signaling in the
host [229]. Clinically, E. faecalis was present in 89.3% of
healthy controls, whereas only in 58.3% of neurodevelop-
mental disorders, 58.3% of mixed specific developmental
disorders, and 55.6% of expressive and receptive language
disorder [230]. In addition, the administration of E. fae-
calis did not produce any effect on repetitive behavior
and anxiety-like behavior in the offspring of maternal
immune activation [231].

Altogether, the molecular and cellular mechanisms by
which gut bacteria exert their effects on host emotion
and stress responses will be investigated in the future.
Despite the remarkable effects of microbiota on the HPA
axis in animal studies, more clinical studies are required
to support the concept of using probiotics to alleviate
stress levels in humans.

Prebiotic- and synbiotic-based effects for stress response
Prebiotics are non-digestible ingredients derived from
food that have been used to promote the growth of
microbes, mostly in the GI tract. Synbiotic treatment
combines prebiotic and probiotic treatments to syner-
gistically affect the host. Previous studies have shown
that both prebiotic and synbiotic treatments can alter
the corticosterone levels in rodent models. Few studies
have investigated the interactions between prebiotics and
stress exposure and their implications in the control of
corticosterone levels.

Burokas et al. demonstrated that treatment with fructo-
oligosaccharides (FOS) and galacto-oligosaccharides
(GOS) produces anxiolytic and antidepressant effects in
adult mice. Moreover, acute stress-induced corticoster-
one by forced swim test was effectively downregulated
by GOS and the combination of FOS+ GOS [232]. Inter-
estingly, the relative abundances of Akkermansia, Bacte-
roides, and Parabacteroides were increased in the FOS
and GOS treatments, while the relative abundances of
Desulfovibrio, Ruminococcus, Allobaculum, Turicibacter,
Lactobacillus, and Bifidobacterium were decreased by
FOS+GOS [232]. However, two other studies using dif-
ferent compounds of prebiotics did not yield an inhibi-
tory effect on corticosterone induced by inescapable
stress (GOS, polydextrose, and the glycoprotein lacto-
ferrin) [233] or by social disruption stress (human milk
oligosaccharides 3’ sialyllactose or 6 sialyllactose) [234].
We speculate that various compounds, treatment dura-
tion, and onset of treatment can influence the effects of
prebiotics.
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In addition to stress exposure, Liu et al. showed that
chronic treatment with mannan oligosaccharide (MOS)
decreased the baseline levels of corticosterone and CRH
in the serum of a 5xFAD transgenic Alzheimer’s disease
mouse model but not in wild-type mice. Furthermore,
they found that butyrate levels in the serum and feces
were increased by MOS and negatively correlated with
serum corticosterone [235]. However, another study by
Rodrigues et al. showed that MOS treatment decreased
plasma corticosterone levels in wild-type Whistar rats
during adulthood [236]. Interestingly, a drug-induced
constipation rat model showed higher ACTH and lower
corticosterone levels, which can be normalized by inulin
and isomalto-oligosaccharide [237].

Synbiotic treatments with both prebiotics and probi-
otics are complex and have various combinations. To
date, no study has used the same recipe with bacterial
strains and prebiotic compounds for stress regulation.
In a chronic stress model, Seong et al. found that com-
bining maltodextrin L. paracasei DKGF1 with Opun-
tia humifusa extract suppressed corticosterone levels
induced by restraint stress in a time-dependent manner
in rats exposed to chronic daily restraint stress [238].
Joung et al. found that the probiotic L. gasseri 505 sup-
pressed UCMS-induced corticosterone. Adding leaf
extract Cudrania tricuspidata did not produce an addi-
tional effect on corticosterone [239]. In acute stress,
Barrera-Bugueno et al. showed that co-treatment with
L. casei 54-2-33 and inulin in rats decreased the elevated
plus maze-induced corticosterone [240]. Few studies
have adopted synbiotic strategies to alleviate the stress
response and corticosterone, possibly due to the lack of
a foundation regarding the mechanistic points of view on
both probiotics and prebiotics.

Direct modulation of biosynthesis and metabolism

of steroids by microbiota

Steroidogenesis is a biosynthetic process that converts
cholesterol to steroids in the host. In glucocorticoids,
cholesterol is converted to corticosterone via sev-
eral steps by several critical enzymes, including preg-
nenolone, progesterone, and deoxy-corticosterone.
Corticosterone is then metabolized to aldosterone.
Interestingly, several studies support the hypothesis that
indigenous microbes directly modulate steroid synthesis
in the host [241, 242]. This section discusses the potential
bacterial candidates by which de novo bacteria convert
cholesterol into steroids, which could interfere with the
synthesis of glucocorticoid steroids.

The biosynthesis of steroids in bacteria is one way to
directly influence steroid hormone levels. Pernigoni et al.
found treatment with pregnenolone in the culture of
Ruminococcus (R.) gnavus, Bacteroides (B.) acidifaciens,
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and Clostridium (C.) scindens under anaerobic condi-
tions for 48 h can synthesize androgenic steroids; they
measured the levels of steroid pathway intermediates
using liquid chromatography-tandem mass spectrom-
etry [242]. They detected hydroxypregnenolone, pro-
gesterone, dehydroepiandrosterone, and testosterone in
bacterial conditioned media. Similarly, the same bacte-
rial strain can metabolize hydroxypregnenolone to pro-
gesterone, dehydroepiandrosterone, and testosterone
in vitro. However, R. gnavus and B. acidifaciens did not
show any metabolic capability for cholesterol, cortisol,
or aldosterone. Moreover, treatment with pregnenolone
and hydroxypregnenolone in other commensal bacte-
rial strains, including E. faecalis, Enterobacter cloacae,
Klebsiella pneumoniae 27, Proteus mirabilis, Serratia
marcescens, Staphylococcus haemoliticus, E. coli, yielded
negative results, indicating the specificity of bacteria in
the metabolism of steroid intermediates [242].

On the other hand, metabolizing steroid hormone
can be the other pathway for bacteria to impact the lev-
els of hormones in the host. Schaaf and Dettner isolated
two Bacillus strains (HA-V6-3 and HA-V6-11) from the
gut of a water beetle and showed that they were capa-
ble of metabolizing pregnenolone [243]. The other evi-
dence demonstrated by Mosa et al. showing that indole
and skatole, the two gut bacteria-derived metabolites
of tryptophan fermentation, can inhibit CYP11Al,
the rate-limiting enzyme for the steroidogenesis, to
decrease pregnenolone [244]. Moreover, testosterone
deficiency has been associated with depressive symp-
toms. Li et al. recently found that Mycobacterium neoau-
rum isolated from patients with depression can degrade
testosterone into androstenedione [241]. A gene encod-
ing 3P-hydroxysteroid dehydrogenase was identified in
Mycobacterium neoaurum that degrades testosterone.
3B-hydroxysteroid dehydrogenase was introduced into
E. coli to generate 3B-hydroxysteroid dehydrogenase-
producing bacteria. Colonization of 3p-hydroxysteroid
dehydrogenase-producing E. coli in ABX mice induced
depressive-like behaviors [241]. A recent study done
by Hsiao et al. investigated the effects of administering
Thauera sp. strain GDN1, a betaproteobacterium with
the ability to catabolize testosterone, to C57BL/6 mice.
The results showed that the administration of strain
GDNI1 led to a significant reduction in serum androgen
levels, as well as the detection of androgenic ring-cleaved
metabolites in fecal extracts, suggesting that gut bacteria
capable of androgen catabolism may regulate host circu-
lating androgen levels and could potentially be utilized as
probiotics in the alternative therapy of hyperandrogen-
ism [245].

Although no study has shown that the specific bacteria’s
capability could directly influence corticosterone levels,
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the Hylemon laboratory at Virginia Commonwealth Uni-
versity discovered that C. scindens, a bacterium isolated
from human feces, can convert glucocorticoids cortisol
into androgens by a mechanism called side-chain cleav-
age [246]. A cortisol-inducible operon desABCD was
identified in C. scindens ATCC 35704 using RNA-seq. C.
scindens transports cortisol into bacteria via a sodium-
dependent cortisol transporter encoded by desD. Cortisol
can then be metabolized to 11B-hydro-xyandrost-4-ene-
3,17-dione (11beta-OHA) by steroid-17,20-demolase, a
putative transketolase encoded by desAB. 11beta-OHA
can then be pumped out of the cell by ABC transporter
[247]. It is not known whether there are bacteria that
share a similar mechanism for converting corticosterone
into other steroids. Another study from the Hylemon lab-
oratory identified an enzyme corticosteroid 21-hydroxy-
lase in the cell extracts of Eggerthella lenta (previously
known as Eubacterium lentum). Interestingly, enzyme
21-hydroxylase uses deoxycorticosterone, deoxycortisol,
dehydrocorticosterone, and corticosterone as substrates.
This could be another mechanism by which microbes
convert steroids to corticosterone in mammals. How-
ever, both C. scindens and Eggerthella lenta were neither
reported in rodents after stress exposure (Table 1), nor
were they found to colonize the guts of microbiome-defi-
cient rodents.

From the perspective of biosynthesis and metabolism
of corticosterone, some bacteria can promote corticos-
terone precursors, whereas others can have the opposite
effect. Therefore, it remains challenging to identify a sin-
gle pathway to clarify the hypercorticosterone found in
GF and ABX-treated mice. The field faces a highly com-
plicated situation in the gut that modulates stress hor-
mones and stress-induced behavioral abnormalities.

Clinical implication

Stress-related disorders, exemplified by irritable bowel
syndrome (IBS), often involve microbial dysbiosis. IBS, a
GI complication characterized by symptoms like abdomi-
nal discomfort, altered stool patterns, and accompanying
anxiety, affects 5-10% of the population [248]. Despite
extensive investigation, the precise etiology of IBS
remains elusive, with recognized risk factors encompass-
ing genetics, diet, psychological stress, and gut microbi-
ome composition [249].

Studies reveal reduced a-diversity and notable differ-
ences in 21 bacterial species relative abundance in IBS
patients compared to healthy controls [250]. IBS subtypes
exhibited distinct alterations in gut microbiota-derived
metabolites; constipation-predominant IBS (IBS-C) fea-
tures reduced fecal bile acid concentration [251], whereas
diarrhea-predominant IBS (IBS-D) showed elevated
primary bile acids [252], which could be attributed to
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changes in the composition of the gut microbiota. Zhai
et al. has shown that specific bacteria in IBS-D, like Rumi-
nococcus gnavus, can stimulate serotonin biosynthesis by
producing phenethylamine and tryptamine, accelerat-
ing gut motility [253]. Bercik group showed that Kleb-
siella aerogenes, found in some IBS patients, enhances
histamine production, leading to visceral hyperalgesia
through histamine 4 receptor signaling [254]. Notably,
successful animal models for IBS can be established via
fecal microbiota transplantation (FMT) from human IBS
patient donors to GF recipients. This approach effectively
replicates GI and anxiety symptoms observed in human
IBS patients [254, 255].

Stress exposure is a known risk factor for the occur-
rence of IBS, commonly affecting gut motility and HPA
axis [256]. IBS patients differ from healthy individuals in
stress response hormone levels. Posserud et al. demon-
strated acute mental stress leads to significant increases
in plasma CRH and ACTH in IBS patients [257]. Further,
Dinan group showed that ACTH and cortisol release
augment in IBS patients following CRH infusion [258].
Colorectal distention (CRD), a method to detect vis-
ceral sensitivity [254], in animal model for IBS results
in elevated c-Fos expression in PVN CRH neurons and
increased plasma CRH, ACTH, and corticosterone levels
[259]. Collectively, these findings indicate that individu-
als with IBS exhibit heightened stress hormone secretion
and microbial dysbiosis compared to healthy subjects.

Conclusion

Stress coping is an essential strategy for animals to
face life-threatening events that may be harmful to
their bodies. Stress dysregulation is strongly associ-
ated with affective diseases [3]. The COVID-19 pan-
demic has drastically escalated the global prevalence
of stress-associated disorders and this impacts society
profoundly [260]. Recent studies have suggested that
the gut microbiota do not only arise in the background
of stress exposure, but they also act as an “active modi-
fier, regulating the nervous and endocrine systems.
We suggest that the fluttery feeling perceived as hav-
ing “butterflies in the stomach” originates from the gut
microbes. Gut microbes directly and locally modulate
steroidogenesis, potentially altering stress hormone
levels. Stress hormone signaling can then be propa-
gated to the brain through defined pathways, extra-
adrenal steroidogenesis, the autonomic system, and
various bacterial components. Ultimately, the brain
receives a message from the microbes and responds
adequately to the PVN and other brain regions. Fur-
thermore, the coping and adapting mechanisms deter-
mined by the brain can alter outputs based on behavior
and endocrine function. Microbes can then be further
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adapted to the host physiology under stress. This con-
trolling loop pathway, starting from the gut microbiota,
is based on the current understanding of the interplay
between intestinal microbes and stress. The molecu-
lar and cellular mechanisms, pathways, and circuits by
which gut microbes regulate behavior remain largely
unexplored. Identifying the key bacteria and bacteria-
associated factors that contribute to and affect the
stress response will benefit the innovation of alternative
medicine using microbiome-based therapeutics.
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