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Abstract

Three-dimensional (3D) cell cultures have emerged as valuable tools in cancer research, offering significant
advantages over traditional two-dimensional (2D) cell culture systems. In 3D cell cultures, cancer cells are grown

in an environment that more closely mimics the 3D architecture and complexity of in vivo tumors. This approach
has revolutionized cancer research by providing a more accurate representation of the tumor microenvironment
(TME) and enabling the study of tumor behavior and response to therapies in a more physiologically relevant con-
text. One of the key benefits of 3D cell culture in cancer research is the ability to recapitulate the complex interac-
tions between cancer cells and their surrounding stroma. Tumors consist not only of cancer cells but also various
other cell types, including stromal cells, immune cells, and blood vessels. These models bridge traditional 2D cell
cultures and animal models, offering a cost-effective, scalable, and ethical alternative for preclinical research. As
the field advances, 3D cell cultures are poised to play a pivotal role in understanding cancer biology and accelerat-
ing the development of effective anticancer therapies. This review article highlights the key advantages of 3D cell
cultures, progress in the most common scaffold-based culturing techniques, pertinent literature on their applications
in cancer research, and the ongoing challenges.
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Introduction

Cancer is a group of diseases characterized by the uncon-
trolled growth and spread of abnormal cells in the body.
It is one of the leading causes of death worldwide, with
millions of new cases and deaths each year [1]. Despite
significant advances in cancer research and treatment
over the years, the disease remains a major public health
challenge and a substantial burden on patients, families,
and society. Cancer research is crucial to develop new
and effective treatments, improve patient outcomes,
and find cures for this disease. As understanding of
cancer biology and genetics continues to evolve, so do
the approaches used to diagnose, treat, and prevent the
disease. However, there is still much to learn about the
complex mechanisms underlying cancer development
and progression and the unique challenges posed by dif-
ferent types of cancers [2]. In addition, there is a need to
develop more personalized and targeted therapies that
can improve patient outcomes and minimize side effects.
As such, cancer research must continue to innovate and
advance to keep pace with the evolving understanding
of the disease. This includes exploring new treatment

modalities, developing more sophisticated diagnos-
tic tools, and understanding the genetic and molecular
mechanisms involved in its development and progression
[3].

Two-dimensional (2D) cell culture is a commonly
used technique to grow and maintain cells in the labo-
ratory. Cancer research extensively uses it to study cells
under controlled conditions, where they are grown on a
flat surface supplied with a nutrient-rich liquid medium
that provides the necessary nutrients for cell growth and
survival. The growth medium used in cell culture var-
ies depending on the type of cancer being studied and
the desired goals of the study. One of the most critical
aspects of cell culture for cancer research is maintain-
ing cell viability and function, as cancer cells are highly
susceptible to environmental changes [4]. Another chal-
lenge facing cell culture for cancer research is the ability
to accurately model the complexity of human tumors.
These are typically highly heterogeneous, comprising dif-
ferent cell types, including cancer, stromal, and immune
cells. Understandably, 2D cell culture does not accurately
mimic tumors’ three-dimensional (3D) environment [5].
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The architecture and organization of cells in a 3D envi-
ronment differ from those in a 2D environment, which
can affect cell behavior and drug response. Recreating
this complexity in a laboratory setting is difficult, as it
requires the development of culture conditions that pro-
mote the growth and interaction of multiple cell types in
a multifaceted environment [6]. Therefore, 3D cell cul-
ture models were developed as they offer sophisticated
platforms that mirror the structural and functional com-
plexities of in vivo tissues, providing valuable insights for
cancer research and drug development. This review arti-
cle highlights the key advantages of 3D cell cultures, the
most common scaffold-based 3D culturing techniques,
pertinent literature about applications in cancer research,
and the challenges associated with these culturing tech-
niques. Due to the topic’s vastness, this paper focuses on
examining scaffold-based models of 3D cell cultures.

Physiological relevance of 3D cell cultures

to the ECM

Tumors are complex structures composed of cancer
cells, non-cancerous cells (i.e., immune cells, fibroblasts,
endothelial cells, etc.), and various extracellular matrix
(ECM) components. The ECM plays a crucial role and
contributes to the hallmarks of cancer in tumor progres-
sion, metastasis, and response to therapy [7, 8]. The ECM
can (1) secrete growth factors and cytokines that pro-
mote cell proliferation and survival [9], (2) modulate the
expression of genes involved in cell cycle regulation and
apoptosis [10], (3) control the expression of telomerase,
an enzyme that extends the telomeres of chromosomes,
(4) secrete angiogenic factors that promote the formation
of new blood vessels, thereby providing the tumor with
the nutrients and oxygen it needs to grow [11], (5) pro-
mote the epithelial-to-mesenchymal transition (EMT),
a process by which epithelial cells acquire the ability to
migrate and invade other tissues [12], and (6) temper
the immune response by influencing the recruitment
and function of immune cells in the TME [13]. Romero-
Lépez and colleagues [14] tested how the ECM derived
from normal and tumor tissues impacted blood vessels
and tumor growth using reconstituted ECM. Tumor tis-
sue obtained from liver metastases of colon tumors was
subjected to hematoxylin and eosin (H&E) staining to
confirm the successful decellularization of both colon
and tumor tissues. Subsequently, significantly distinct
protein composition and stiffness were observed among
the reconstituted matrices, leading to notable variations
in vascular network formation and tumor growth in
both in vitro and in vivo. Fluorescence Lifetime Imag-
ing Microscopy was employed to evaluate the free/bound
ratios of the nicotinamide adenine dinucleotide (NADH)
cofactor in tumor and endothelial cells to indicate
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cellular metabolic state. Notably, cells seeded in tumor
ECM exhibited elevated levels of free NADH, indicating
an increased glycolytic rate compared to those seeded
in normal ECM. These findings underscore the sub-
stantial influence of ECM on cancer cell growth and the
accompanying vasculature (e.g., increased vessel length,
increased vascular heterogeneity). Alterations in the
composition of tumor ECM, such as augmented deposi-
tion and crosslinking of collagen fibers, can be attributed
to communication between tumor cells and tumor-asso-
ciated stromal cells.

Every tissue type has a distinct ECM composition,
topology, and organization [15]. These factors play a sig-
nificant role in controlling cell function, behavior, and
interactions with the microenvironment, as they generate
spatial gradients of biochemicals and metabolites that, in
turn, may elicit distinctive cell-mediated responses (e.g.,
differentiation, migration) [16]. Langhans [17] analyzed
the chemical components of ECM and reported that
it contains water, carbohydrates, and proteins, such as
fibrous matrix proteins, glycoproteins, proteoglycans,
glycosaminoglycans, growth factors, protease inhibi-
tors, and proteolytic enzymes. Thus, ECM organization
can influence cell genotypes and phenotypes, where
such effects can be explored through 3D cell cultures
[16, 18]. For example, variations in the gene and protein
expression and activity of the epidermal growth fac-
tor receptors (EFGR), phosphorylated protein kinase B
(phospho-AKT), and p42/44 mitogen-activated protein
kinases (phospho-MAPK) in colorectal cancer cell lines
(e.g., HT-29, CACO-2, DLD-1) affected the genotype
and phenotype of cells in 3D cultures, as compared to 2D
monolayers [19, 20]. Moreover, the ECM can influence
cell morphology and expression of chemokine recep-
tors. Kiss et al. [21] showed that 3D cultured prostate
cancer cells (e.g., LNCaP, PC3) exhibited a high level of
interaction between the cells and ECM, which resulted in
the upregulation and overexpression of the CXCR7 and
CXCR4 chemokine receptors. While 2D cell culture has
been the mainstay of laboratory cancer research, it has
become increasingly clear that this approach is inade-
quate in replicating the in vivo conditions that cells expe-
rience in the human body. As a result, researchers have
been turning to 3D cell culture as a more physiologically
relevant model for studying cellular processes and dis-
ease. A key advantage of 3D models for cancer research
is that they can better mimic the complex microenvi-
ronment of tumors, including tumor morphology and
topography, upregulation of pro-angiogenic proteins, dis-
persion of biological and chemical factors, cell-cell and
cell-matrix interactions, gradients of oxygen and nutri-
ents, and a more realistic ECM composition [6, 22, 23].
Necrotic, hypoxic, quiescent, apoptotic, and proliferative
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Table 1 Summary of different 3D cell culture models used to study different types of cancer

Cancer type 3D culture model (cell type)

Lung cancer

- Multicellular tumor spheroids (Human lung cancer cell line SPC-A1 with the subpopulation of cancer stem-like cells) [27].

- Spheroids formed by the hanging drop method ( Colo699 and A549 cells) [28].
- A microfluidic system with soft hydrogel (A549 and HPAEpiCs cells) [29].

Glioblastoma

- Multicellular tumor spheroids (Glioblastoma tumor-initiating cells) [30].

- Suspension bioreactor (Glioblastoma cancer stem cells) [31].

Breast cancer

- Multicellular tumor spheroids (luminal stem cells) [32].

- Suspension bioreactor (breast cancer stem cells) [33].
- Hybrid system of biomimetic nano-cilia and microfluidics (MCF-7 cells) [34].

Pancreatic cancer

- Spheroids grown in a collagen matrix in a microfluidic device (BxPC-3, PANC-1, MIAPaCa-2 cells).

- Spheroids formed using the hanging drop method (AsPC-1, BxPC-3, Capan-1, PANC-1, MIAPaCa-2, PSCs cells) [35].
- Polyacrylamide hydrogel (AsPC-1, BxPC-3, Suit2-007 cells) [36].

Ovarian cancer

- Multicellular spheroids grown in a microfluidic device (SKOV3 cells) [37].

- Multicellular spheroids ( OVCAR3 and SKOV3 cells) [38].
- Multicellular Tumor Spheroids (A1847, A2780, OVCAR3, OVCAR4, OVCARS5, OVCARS, OVCAR10, PEO1, SKOV3 cells) [39].

Colon cancer

- Rotating Wall Vessel (HT-29 and HT-29KM cells) [40].

- Macroporous hydrogel scaffolds (HCT116 cells) [41].
- Spheroids grown in Matrigel (HCT116 cells) [42].

cells are often found in spheroid cell clusters at different
phases of development [24]. Since the outer layer of the
spheroid has greater exposure to the nutrient-supported
medium, it contains a higher number of proliferating
cells. Cells in the spheroid core are hypoxic and often
quiescent as they receive less oxygen, growth agents, and
nutrients from the media. This results in more physi-
ologically relevant gradients in tissue composition that
can better inform drug discovery and development [24].
Furthermore, 3D cell culture accurately depicts the cellu-
lar response to drugs and other therapeutic agents. Such
a model’s spatial and physical characteristics influence
the transmission of signals between cells, which alters
gene expression and cell behavior [25]. Loessner et al.
[26] demonstrated a flexible 3D culture method where
a synthetic hydrogel matrix with crucial biomimetic
properties provided a system for studying cell-matrix
dynamics related to tumorigenesis. The 3D cultured cells
overexpressed mRNA for receptors on their surface (e.g.,
protease, a3, a5, 1 integrins) compared to 2D cultured
cells. Moreover, spheroid progression and proliferation
depended on the cells’ ability to proteolytically transform
their ECM and cell-integrin interactions. Consequently,
the 3D spheroids showed higher survival rates in contrast
to 2D monolayers after exposure to the chemotherapeu-
tic agent paclitaxel, which indicates that it better stimu-
lates in vivo chemosensitivity and pathophysiological
events. Table 1 below summarizes studies using different
3D models to investigate different types of cancers.
Figure 1 summarizes the main characteristics of 2D and
3D cell cultures. The shift to 3D cell culture is a signifi-
cant advancement in laboratory research, as it provides a
more physiologically relevant model for studying cellular

processes and disease. While some challenges remain
to be addressed, the advantages of 3D culture outweigh
the limitations of 2D culture. As technology continues to
evolve, 3D culture is likely to become an increasingly cru-
cial tool in cancer research and other fields of biomedical
science.

Table 2 below provides a comprehensive overview of
2D, 3D, and other model systems employed in cancer
research. Besides 2D and 3D cell cultures, tissues and
organs present structural and functional intricacies, cap-
turing organ-specific responses but posing challenges
in maintenance and accessibility. Furthermore, model
animals mimic in vivo systemic responses, yet ethical
concerns, high costs, and species differences limit their
utility. While clinically relevant, patient-derived samples
present challenges in experimental control and sample
heterogeneity [43]. It is noteworthy to highlight the dif-
ference between spheroids and organoids as both are
commonly used terms within the scope of 3D cell cul-
tures [44]. Organoids and spheroids are different 3D
cell culture models that can be cultured with different
techniques. Organoids, characterized by intricate struc-
tures replicating real organs or tissues, are composed of
multiple cell types that self-organize to mirror tissue-like
architecture, deriving from stem cells or tissue-specific
progenitors. Due to their high biological relevance, they
find applications in disease modeling, drug testing, and
understanding organ development. Beyond organoids,
tumoroids (i.e., tumor-like organoids), derived from
patient cancer tissues containing tumor and stroma cells
of the TME, are becoming advanced 3D culture plat-
forms for personalized drug evaluation and develop-
ment. In contrast, spheroids are simpler spherical cellular
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3D cell culture

* Variable access to oxygen, nutrients,
metabolites, and signaling molecules.

» Sterically hindered dispersion and
migration of cells.

» Similar expression of genes, topology,
and biochemistry to in vivo models.

 Similar drug resistance behavior to in vivo
models.

* Cells have diverse phenotypes and polarity.

* More time-consuming and expensive.

* Cells exist at different cell cycle stages
(e.g., necrotic, proliferative, quiescent
zones).

2D cell culture

» Equal access to oxygen, nutrients,
metabolites, and signaling molecules.

* Does not mimic the structural complexity
of in vivo tumor tissues.

* Limited cell-to-cell and cell-to-ECM
interactions.

* Cells have a conforming phenotypic

diversity.

Cheaper, commercially available tests

and media.

* High dispersion and migration of cells.

* All cells exist at the same cell cycle stage.

Fig. 1 Characteristics of 2D and 3D cell cultures

aggregates lacking the distinct organ-like structures of
organoids. Comprising one or multiple cell types, sphe-
roids are used to study fundamental cellular behaviors
and drug responses in a 3D environment. While both
contribute to 3D cell culture studies, organoids closely
resemble real organs compared to the simpler cellular
aggregates represented by spheroids [44]. Patient models
are valuable tools that aim to replicate the complexities
of human tumors, providing insights into disease mecha-
nisms, therapeutic responses, and personalized treat-
ment strategies. They can be utilized in Patient-Derived
Xenografts (PDX), organoids and 3D cultures, patient-
derived cell lines, liquid biopsies, and clinical trials [45].

Cell sources and 3D culture heterogeneity

In 3D cell culture, achieving an optimal balance between
homogeneity and heterogeneity is intricately linked
to the cellular source, considering stem cells, induced
Pluripotent Stem Cells (iPSCs), or mixed primary cells
derived from tissues [46]. Stem cells in in vitro cell cul-
ture encompass embryonic stem cells (ESCs), induced
pluripotent stem cells (iPSCs), and adult or somatic stem
cells. Embryonic stem cells exhibit high pluripotency,
capable of differentiating into any cell type, but their use
raises ethical concerns due to their origin from embryos.
iPSCs are generated from somatic cells (e.g., skin or
blood cells) through reprogramming, reverting them to
an embryonic-like pluripotent state, but face reprogram-
ming efficiency and potential tumorigenicity challenges.
This transformation creates an extensive and diverse

reservoir of human cells, capable of developing into any
cell type required for therapeutic applications. Human-
induced pluripotent Stem Cells (HiPSCs) are particu-
larly relevant in cancer research (Table 3) [47]. Thus, the
reprogramming process pioneered by Shinya Yamanaka
has opened new avenues for advancing cancer biology,
drug discovery, and regenerative medicine in cancer
treatment. Lastly, adult or somatic stem cells are tissue-
specific, mirroring the characteristics of their origin, and
present fewer ethical concerns as they are derived from
adult tissues. However, they have limited differentiation
potential and a finite lifespan in culture. The selection of
the cell source significantly influences the composition
and behavior of the 3D culture. Stem cells and iPSCs,
known for their pluripotency, introduce an inherent het-
erogeneity due to their ability to differentiate into various
cell types [45, 46].

Furthermore, primary cells, derived directly from liv-
ing organisms, possess unique characteristics that make
them invaluable for in vitro studies. Maintaining bio-
logical relevance, these cells closely mimic the tissue or
organ from which they are isolated, reflecting the intri-
cacies of in vivo conditions. With donor-specific vari-
ability, primary cells allow researchers to explore genetic
diversity’s impact on cell behavior, disease susceptibil-
ity, and drug responses. Retaining tissue-specific func-
tions, differentiated primary cells are crucial for studying
specific physiological processes and diseases associated
with particular tissues [46]. However, these cells have
challenges, including a limited lifespan and sensitivity
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Table 2 Commonly used models in cancer research and their advantages and disadvantages [45]

Model type

Features

Advantages

Disadvantages

2D cell culture

3D cell culture

Tissues and organs

Animals

Patients

Involve cells grown in a flat, 2D layer, typi-
cally on culture dishes.

Represent a 3D arrangement of cells
that mimics the spatial complexity

of in vivo environments. These systems
can be scaffold-free or scaffold-based,
where cells are cultivated in scaffolds

or matrices, allowing interactions

that better replicate physiological condi-
tions.

Involve the cultivation of cells in con-
figurations that mimic the structure
and function of specific organs

or anatomical parts. These systems
provide a more complex and holistic
environment than individual cells,
allowing for a closer representation

of in vivo conditions. By organizing cells
into structures resembling organs or tis-
sues, researchers can study interactions
between different cell types and gain
insights into the organ-specific responses
to cancer and its treatments.

Animal models, such as mice or rats, are
living organisms used to study cancer.

Patient model systems in cancer research
involve using samples derived directly
from patients. This can include patient-
derived xenografts (PDX), organoids,

or other personalized models. These
systems aim to capture the unique char-
acteristics of individual patients'tumors,
allowing for more tailored and patient-
specific studies.

Well-established protocols.

Rapid cell growth and division.

Simple and cost-effective.

Easy to manipulate and analyze.
Suitable for high-throughput screening.

Enhanced drug response prediction.
Allows for studying the TME

facilitates investigation of tumor hetero-
geneity.

Preserve physiological cell functions.
Enables interaction studies between cell
types.

Support long-term culture and function-
ality.

facilitates drug metabolism studies.
offer insights into organ-level responses.
potential for personalized medicine
approaches.

Support evaluation of complex biological
processes.

Facilitate tumor growth, metastasis,

and regression studies.

Allow forin vivo evaluation of drug
responses.

Provide an intact immune system

for immunotherapy studies.

Allow for studying systemic effects

of treatments.

Addresses interpatient heterogeneity.
Facilitates preclinical testing of patient-
specific therapies.

Enables personalized medicine
approaches.

Oversimplified representation of in vivo
conditions.

Lacks cell-cell and cell-matrix interactions.
Flat morphology, which may alter cellular
responses.

Variability in protocols and methodologies.
Limited scalability for high-throughput
assays.

Challenges in standardization and repro-
ducibility.

Ethical consideration for human tissue use.
Limited experimental control.

Highly complex and challenging to rep-
licate.

Limited availability of organ models.
Technical difficulties in maintaining
viability.

Ethical concerns and regulatory challenges.
Species-specific differences in drug
metabolism.

Costly, time-consuming and resource-
intensive.

Challenges in obtaining patient samples.
Limited availability of diverse patient
cohorts.

Difficulties in recapitulating the entire TME.

to culture conditions. The finite replicative capacity and
sensitivity contribute to the heterogeneity observed in
3D cell cultures, emphasizing the importance of carefully
considering culture conditions and donor-specific vari-
ations to accurately represent in vivo scenarios. Despite
these challenges, primary cells are vital in advancing our
understanding of cell biology, disease mechanisms, and
therapeutic development. Similarly, using mixed primary
cells derived from tissues can contribute to a more het-
erogeneous cellular composition, resembling the com-
plexity found in native tissues. Striking the right balance
is crucial, as an excessive degree of heterogeneity may

obscure specific responses, while too much homogene-
ity might oversimplify the representation of the tissue
microenvironment. Therefore, a nuanced understanding
of the cellular source is essential for tailoring 3D cell cul-
ture models to accurately reflect the intricacies of actual
tissues and organs.

Scaffold-based techniques for 3D cell culture

As explained above, developing 3D cell culture tech-
niques that more accurately model the TME is a major
area of focus in cancer research [6, 59]. Different
approaches for 3D cell cultures exist and can be generally
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Cells used in in vitro cell culture Merits

Demerits

Relevant studies

Stem cells Maintain tissue-specific character-
istics.

Can be manipulated to exhibit
disease-specific characteristics,
offering a valuable tool for studying
cancer in a controlled environment.
Have the capacity for self-renewal,
allowing for the production

of daughter cells with similar
properties.

Induced Pluripotent Stem Cells
(iPSCs)

The pluripotent nature of HiPSCs
allows the creation of in vitro models
that closely mirror the characteristics
of cancer cells, providing valuable
insights into cancer development
and progression.

Primary cells Biologically relevant, maintaining
native cell characteristics.

Reflect donor-specific variations.
Useful for studying cell behavior,

aging, and disease.

Adult or somatic stem cells have

a more restricted differentiation
potential than pluripotent stem
cells, limiting their versatility in mod-
eling diverse tissues.

Inherent heterogeneity of the cul-
ture may affect the reproducibility
and reliability of experimental
results.

Fully maturing iPSCs into specific
cell types with desired function-
alities can be challenging. In some
cases, cells derived from iPSCs may

not fully recapitulate the characteris-

tics of their in vivo counterparts.
iPSCs may exhibit genomic instabil-
ity, impacting their differentiation
potential and introducing variability
in experimental outcomes.

Using iPSCs, which involves
reprogramming somatic cells, raises
ethical considerations.

Limited lifespan in culture (senes-
cence).
Donor-dependent variability.

Myeloma stem cells [48].
Melanoma stem cells [49].
Breast cancer stem cells [50].

HiPSC-derived hepatocytes [51, 52].
HiPSC-derived cardiac myocytes
[53, 54].

HiPSC-Derived gastric cells [55].

Primary breast cancer cells [56].
primary prostate cancer cells [57].
primary glioblastoma cells [58].

divided into scaffold-based and scaffold-free methods.
Scaffold-free 3D cell culture refers to a cell culture tech-
nique in which cells are cultured and assembled into 3D
structures without external scaffold material. Instead of
being embedded within a supportive matrix, the cells
self-assemble and interact with neighboring cells to form
3D tissue-like structures. Such cultures allow for more
accurate cell—cell interactions, spatial organization, and
physiological responses, making them valuable tools for
various applications, including drug testing. They also
usually have higher cell densities than scaffold-based
models, which can influence cellular behavior, gene
expression, and cellular functions. Lastly, non-scaffold
models offer versatility and customizability in terms of
cell types, culture conditions, and experimental designs.
However, it is essential to consider that scaffold-free
approaches might have limitations in providing mechani-
cal support, shape control, and reproducibility compared
to scaffold-based 3D cell culture methods [60]. As such,
researchers often select the appropriate 3D cell culture
method based on their specific research goals and the tis-
sue or organ system they aim to model or engineer. Due
to the topic’s vastness, the paper’s purviews’ are limited

to the examination of scaffold-based models of 3D cell
cultures. Scaffolds are essential components in 3D cell
culture systems, as they provide a 3D environment for
cells to grow and interact with each other and their sur-
roundings [61, 62]. Biomaterials employed in such mod-
els can be categorized into the following primary groups:
polymer scaffolds, hydrogels, decellularized tissue scaf-
folds, and hybrid scaffolds (e.g., incorporating microflu-
idic devices). Tables 4 and 5 summarize the advantages
and limitations of commonly used scaffold-free and scaf-
fold-based 3D cell culture techniques, respectively.

Polymer-based scaffolds

Polymer scaffolds revolutionize 3D cell culture by provid-
ing a biomimetic environment imitating the natural ECM,
fostering cell proliferation and differentiation, often with
remarkable efficiency and precision. These scaffolds offer
a versatile platform for studying complex cell behaviors
and hold immense promise in cancer research appli-
cations. They can be generally classified as natural or
synthetic-derived (see Fig. 2). Natural polymer scaffolds
are made from naturally occurring polymers. They can
be processed into various forms, including fibers, films,
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or porous structures. They can be further classified into
two main categories: protein-based and polysaccharide-
based scaffolds. Protein-based scaffolds are derived from
large molecules composed of amino acids (e.g., collagen,
silk, gelatin, fibronectin [93, 94]). Due to their bioactive
properties, these scaffolds provide cell adhesion sites and
can regulate cell behavior and tissue development. A 3D
cell culture platform using collagen scaffolds was devel-
oped to investigate the tumorigenicity of cancer stem
cells (CSCs) in breast cancer [95]. The study revealed
that the 3D cell culture system demonstrated increased
expression of pro-angiogenic growth factors, indicat-
ing a potential role in promoting blood vessel forma-
tion. Moreover, the overexpression of CSC markers such
as OCT4A and SOX2, as well as breast cancer stem cell
markers including SOX4 and JAG1, was observed in the
3D scaffolds, suggesting that the 3D model successfully
replicated the molecular characteristics associated with
CSCs. In terms of behavior, the 3D model more closely
mimicked the characteristics of CSCs compared to an
in vivo model, indicating its effectiveness in capturing the
tumorigenic properties of CSCs. Therefore, the collagen
scaffold-based 3D cell culture platform provided a valu-
able tool for studying CSC tumorigenicity in breast can-
cer, demonstrating the upregulation of pro-angiogenic
growth factors, the overexpression of CSC and breast
cancer stem cell markers, and a close resemblance to CSC
behavior when compared to an in vivo model. Another
study by McGrath et al. [96] used a 3D collagen matrix
(GELFOAM™) to create an endosteal bone niche (EN)
model, referred to as 3D-EN, for studying breast cancer
cells’ quiescence and dormancy behaviors. The 3D-EN
model effectively facilitated the identification of several
genes associated with dormancy-reactivation processes,
where among the tested cell lines, only MDA-MB-231
cells exhibited dormancy behavior, suggesting that they
have a propensity for entering a dormant state in the sim-
ulated physiological conditions.

On the other hand, polysaccharide-based scaffolds
are composed of long chains of sugar molecules (e.g.,
chitosan and hyaluronic acid). They are biocompatible,
biodegradable, and can often be modified to adjust their
physical and biological properties. Arya et al. [97] devel-
oped a 3D cell culture model using a chitosan scaffold, a
natural polymer derived from chitin, to study breast can-
cer behavior. The scaffold was cross-linked with genipin,
a natural cross-linker, to enhance its stability. The study
found that the chitosan—gelatin (GC) scaffold provided
a suitable environment for the growth of MCEF-7 breast
cancer cells, with the cells showing good adhesion and
proliferation. The scaffold also supported the formation
of cell clusters, which are more representative of in vivo
tumor conditions compared to 2D cultures. The study
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concluded that the chitosan/gelatin scaffold could be use-
ful for studying breast cancer in vitro, providing a more
physiologically relevant model than traditional 2D cul-
tures. GC scaffolds have been shown to support the for-
mation of tumoroids that mimic tumors grown in vivo,
making them an improved in vitro tumor model. These
scaffolds have been successfully used to study lung can-
cer, as well as other types of cancer, such as breast, cer-
vix, and bone [98]. These scaffolds have demonstrated
gene-expression profiles similar to tumors grown in vivo,
indicating their potential for studying cancer progression
and drug screening for solid tumors [99]. The GC scaf-
folds have also been shown to improve the predictivity of
preclinical studies and enhance the clinical translation of
therapies [100]. Overall, the GC scaffolds provide a valu-
able tool for studying tumor development and evaluating
the efficacy of anti-cancer drugs in an in vitro setting.
Synthetic polymer scaffolds (e.g., polylactic acid (PLA),
polyglycolic acid (PGA), and polycaprolactone (PCL) can
be tailored to have specific mechanical and biochemical
properties. However, they can be less biocompatible than
natural polymers and may require surface modifications
to promote cell attachment and growth [60]. Palomeras
et al. [101] tested the efficiency of 3D-printed PCL scaf-
folds for the culture of MCF7 breast cancer cells. The
researchers found that the scaffold’s design, specifically
the deposition angle, significantly influenced cell attach-
ment and growth. Scaffolds with a deposition angle of
60° showed the highest cell counting after treatment with
trypsin. Furthermore, the study found that the 3D cul-
ture in PCL scaffolds enriched the cancer stem cell (CSC)
population compared to 2D culture control, increasing
their Mammosphere Forming Index (MFI). The study
concluded that 3D PCL scaffold culture could spur
MCF?7 cells to generate a cell population with CSC prop-
erties. This suggests its potential for studying CSC prop-
erties and screening new therapeutic agents targeting
CSC populations. These efforts highlight the potential
of natural polymer scaffolds in creating more physiologi-
cally relevant 3D cell culture models for cancer research.
Using these scaffolds can enhance the understanding of
cancer cell behavior and potentially lead to the discovery
of more effective therapeutic strategies. Similarly, Rijal
et al. [88] utilized modified gas foaming-based synthetic
polymer scaffolds from poly(lactic-co-glycolic) acid
(PLGA) and PCL for conducting 3D tissue cultures and
animal models in breast cancer research. The research
group investigated the response of MDA-MB-231 cells to
anticancer drugs, their viability, morphology, prolifera-
tion, receptor expression, and ability to develop in vivo
tumors using the 3D scaffolds. MDA-MB-231 cells were
cultured on PLGA-coated 2D microscopic glass slides
and in 3D-porous PLGA scaffolds to examine cancer
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Fig. 2 Classification of polymers used for fabricating polymer-based 3D cell culture scaffolds

cells’ survival on the polymeric substrata. The number of
dead cells detected on the PLGA-coated glass slides and
PLGA 3D scaffolds was negligible on Day 1. However,
a significant increase in the number of dead cells was
observed on the PLGA-coated glass slides compared to
the 3D scaffolds on day 14. Additionally, the expression
of ECM proteins and cell surface receptors on the syn-
thetic polymers was investigated, where strong staining
signals of type I collagen and integrin a2 were detected
in both cell types using immunofluorescence (IF) micros-
copy. It is worth noting that integrin a2$1, which acts as
a primary receptor for type I collagen, displayed a basal
expression level in the 3D model. This expression pat-
tern may promote breast cancer cell migration and tumor
growth, as high levels of the integrin receptor tend to
inhibit cancer cell migration. Notably, integrin a2 recep-
tors showed a prominent colocalization with type I col-
lagen, particularly around the cell edges, suggesting local
deposition of type I collagen and subsequent binding of
integrin a2 receptors, facilitating cell attachment and
migration. Lastly, to evaluate the tumor formation capa-
bilities of the polymeric porous scaffolds in mice, MDA-
MB-231 cells were coated onto porous PLGA scaffolds
and implanted into the mammary fat pads of NOD/SCID
mice. Blank scaffolds without cells served as the nega-
tive control. As anticipated, the proliferating cell nuclear
antigen biomarker Ki-67 was not detected in the blank

scaffold implants. At the same time, its expression was
significantly high within the tumors derived from the
MDA-MB-231 cell-laden PLGA scaffolds. This finding
suggested that the cancer cell population within the scaf-
folds exhibited rapid proliferation when embedded in the
native breast tissues.

Hydrogel scaffolds

Hydrogels are 3D networks of hydrophilic polymers (can
be natural, synthetic, or hybrid), that can absorb large
amounts of water or biological fluids while maintaining
their structural integrity [102]. Figure 3 shows common
techniques for culturing with hydrogel scaffolds. In the
dome technique (see Fig. 3A), cells are mixed with tem-
perature-sensitive hydrogels and then seeded as droplets
within a cell culture vessel. This technique relies on care-
ful temperature control to allow the hydrogel to polym-
erize and form a dome structure. Once the hydrogel has
polymerized and the cell-hydrogel droplet is stabilized, it
is delicately covered with cell culture media. This allows
for a localized 3D cell culture in a larger vessel and can
create multiple individual cell clusters or spheroids in a
single plate. However, the maintenance of dome integrity
can be challenging over time and might be affected by
changes in temperature or physical disturbance. Also, it
may not be suitable for long-term culture or cells requir-
ing complex structural support due to the relatively
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simple and isolated 3D structure. Figure 3B illustrates the
insert wells technique, which consists of porous inserts to
hold the cell-hydrogel mixture while cell culture media is
added to the well surrounding the insert. This separation
creates a differential environment, allowing for nutrient
exchange while maintaining a distinct 3D culture within
the insert. Heterogeneous spheroids will eventually form
on the insert bottom due to gravitational pull and cell-
cell interactions. Such a model can be used to study cell
invasion or migration by placing the cell-hydrogel mix-
ture on one side of a permeable membrane and chemo-
attractants on the other. The gel-bottom support method
(see Fig. 3C) involves creating a thick layer of hydrogel
at the bottom of a culture well, on top of which the cell
suspension is placed. For instance, this method can be
used for embedding cells within macroporous hydrogel
scaffolds, such as AlgiMatrix® (Thermo Fisher Scientific/
Life Technologies, Carlsbad, USA)—an ionically gelled
and dried scaffold that is conveniently provided in sterile
pre-loaded disc format in standard cell culture well plates
[103, 104]. To initiate the cell culture, a concentrated
cell suspension in culture media is seeded on top of the
hydrogel, where it is subsequently absorbed, resulting in
the entrapment of the cells within the porous structure
of the hydrogel. Lastly, in the embedding technique (see
Fig. 3D), the cells are mixed with a hydrogel and directly
placed at the bottom of a culture vessel, followed by a
layer of culture media, allowing the cells to grow within
the matrix of the hydrogel, thereby more accurately mim-
icking the in vivo 3D environment. This technique is ben-
eficial for studying cell—cell and cell-matrix interactions,
invasion, migration, and drug responses. However, it can
be more technically challenging to embed cells evenly
throughout the hydrogel; retrieving cells from the matrix
for downstream analysis can be challenging. The perme-
ability of the hydrogel to nutrients, gases, and wastes may
need careful optimization to avoid creating a hypoxic
environment or nutrient deprivation for cells located in
the interior of the gel. Each of these methods must be
selected based on the needs of the specific experiment
and the type of cells being cultured. Additionally, the
hydrogel composition and mechanical properties should
be tuned according to the native ECM properties of the
cell type of interest.

Due to their adjustable properties, synthetic hydrogels
offer notable benefits in 3D cell culture. The RADA16-I
peptide is a self-assembling peptide derived from a seg-
ment of Zuotin, a left-handed Z-DNA-binding protein
originally discovered in yeast. This peptide has emerged
as a novel nano-biomaterial due to its ability to form
nanofiber scaffolds. Consequently, these scaffolds pro-
vide a supportive framework that promotes cell growth
and fosters a conducive 3D milieu for cell culture. The
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peptide sequence can be modified to incorporate spe-
cific functional groups, thus fine-tuning the mechani-
cal, chemical, and biological attributes of the resultant
scaffold. This remarkable flexibility enables customiza-
tion to align precisely with the unique demands of the
cultured cells or the intended experimental objectives.
These scaffolds, which are about 10 nm in diameter, are
driven by positively and negatively charged residues
through complementary ionic interactions. When dis-
solved in water, the RADA16-1 peptide forms a stable
hydrogel (nanofiber networks with pore sizes of about
5-200 nm) with extremely high water content at con-
centrations of 1-5 mg/mL, which closely mimics the
porosity and gross structure of ECMs, making it suit-
able for the fabrication of artificial cell niches for appli-
cations in tumor biology. Yang and Zhao [105] prepared
a RADA16-1 peptide hydrogel that provided an elabo-
rate 3D microenvironment for ovarian cancer cells in
response to the surrounding topography. The 3D cell cul-
tures exhibited a two to five-fold increase in drug resist-
ance (paclitaxel, curcumin, and fluorouracil) compared
to the 2D monolayers, which showed a good representa-
tion of the primary tumor and were likely to simulate the
in vivo biological characteristics of ovarian cancer cells.
Similarly, Song et al. [106] also proved that RADA16-I
hydrogels can provide prominent and dynamic nanofiber
frameworks to sustain robust cell growth and vital-
ity. HO-8910PM cells, metastatic human ovarian can-
cer cells, were cultured in three hydrogel biomaterials,
namely RADA16-1 hydrogel, Matrigel, and collagen I
The specially designed RADA16-1 peptide exhibited a
well-defined nanofiber network structure within the
hydrogel, providing a nanofiber-based cellular microen-
vironment similar to Matrigel and collagen 1. Notably, the
HO-8910PM cells exhibited distinctive growth patterns
within the three matrices, including cell aggregates, colo-
nies, clusters, strips, and multicellular tumor spheroids
(MCTS). Moreover, the molecular expression of integrin
B1, E-cadherin, and N-cadherin in 3D-cultured MCTS of
HO-8910PM cells was elevated, and their chemosensitiv-
ity was reduced to cisplatin and paclitaxel in comparison
to the 2D cell culture, evidenced by IC;, values and inhi-
bition rates.

Furthermore, polyvalent hyaluronic acid (HA) hydro-
gels are considered synthetic, as they are typically cre-
ated through chemical modification of HA molecules,
introducing crosslinking agents or functional groups that
enable the formation of a gel-like structure. This modifi-
cation allows for control over the physical and mechani-
cal properties of the hydrogel, such as its stiffness,
degradation rate, and bioactivity. Suo et al. [107] engi-
neered an ECM-mimicking hydrogel scaffold to replicate
the native breast cancer microenvironment to provide an
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Fig. 3 Common methods of hydrogel 3D cultures: A the dome technique: cells are mixed with temperature-sensitive hydrogels then seeded
as droplets in the cell culture vessel, then carefully covered with media, B insert wells: media is added in the well whereas cell suspension (cell

in hydrogel mix) is placed in the insert, then covered with another layer of media. Heterogeneous spheroids will form on the insert bottom,

C gel-bottom support: the bottom of the well is covered with a thick layer of hydrogel, on top of which the cell suspension is placed, and D
embedding technique: cells mixed with hydrogel are placed on the bottom and then covered with a layer of media to support spheroid growth

in the matrix

effective in vitro model for studying breast cancer pro-
gression. HA hydrogels from polyvalent HA derivatives
were prepared through an innovative dual crosslink-
ing process involving hydrazone and photo-crosslinking
reactions. Hydrazone crosslinking is a versatile, revers-
ible process that allows for rapid gelation, while photo-
crosslinking stabilizes the formed hydrogel. Using this
approach, they could efficiently produce HA hydrogels in
under 120 s. It was found that the developed HA hydro-
gels closely resembled the topography and mechanical
properties of breast tumors, and their characteristics
(i.e., rigidity and porosity) could be fine-tuned by adjust-
ing the amount of aldehyde-HA in the hydrogel formula-
tion. This ability to modulate the mechanical properties
of the hydrogels opens up possibilities for modeling dif-
ferent stages of tumor progression or different types of
tumors. Moreover, a critical feature of the developed HA
hydrogels was their dual-responsive degradation behav-
ior, which was found to be responsive to glutathione and

hyaluronidase. The glutathione responsiveness allows for
degradation in response to the redox environment, which
is often disturbed in cancer cells. Meanwhile, responsive-
ness of hyaluronidase makes the hydrogels sensitive to an
enzyme that is typically upregulated in invasive cancer
cells. Significantly, the HA hydrogel-cultured MCE-7 cells
displayed upregulated expression of vascular endothe-
lial growth factor (VEGF), interleukin-8 (IL-8), and basic
fibroblast growth factor (bFGF) compared to their 2D
cultured counterparts. These molecules are key media-
tors of angiogenesis and inflammation in cancer, suggest-
ing that the HA hydrogel environment better replicates
the conditions that promote these processes in tumors.
Besides, the hydrogel-cultured cells exhibited enhanced
migration and invasion abilities, which are key hallmarks
of aggressive cancer cells. In vivo studies supported these
results and confirmed the superior tumorigenic capacity
of the MCF-7 cells cultured in HA hydrogels compared
to those cultured in 2D. The outcomes of this research
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are anticipated to have far-reaching implications for both
the in vitro study of breast cancer and the development
of effective therapeutic strategies.

Another investigation by Wang et al. [108] supported
that the level of methacrylation significantly influenced
the hydrogel’s microstructure, mechanical characteris-
tics, and capacity for liquid absorption and degradation.
The refined hydrogel, synthesized through the photo-
crosslinking of methacrylated HA, displayed a highly
porous structure, a high equilibrium swelling ratio,
appropriate mechanical properties, and a degradation
process responsive to hyaluronidase. It was found that
the HA hydrogel promoted the growth and prolifera-
tion of MCEF-7 cells, which formed aggregates within the
hydrogel. In addition, 3D-cultured MCEF-7 cells showed
an increased expression of VEGF, bFGF, and interleu-
kin-8, and enhanced invasion and tumorigenesis capa-
bilities compared to their 2D-cultured counterparts.
As such, the HA hydrogel has proven to be a depend-
able alternative for constructing tumor models. Gela-
tin methacryloyl (GelMA) is another commonly used
natural biomaterial for 3D hydrogel scaffolds in cancer
research. GelMA is derived from gelatin, a natural pro-
tein obtained from collagen-rich sources. It is modified
by adding methacryloyl groups that enable it to undergo
photocrosslinking when exposed to ultraviolet (UV)
light. This property allows GelMA to form stable hydro-
gel networks, making it suitable for creating 3D scaf-
folds that mimic the tumor microenvironment (TME).
The tunable mechanical and biochemical properties of
GelMA hydrogels, biocompatibility, and ability to sup-
port cell growth make them valuable tools for studying
cancer cell behavior, tumor invasion, drug screening, and
other aspects of cancer research. Kim et al. [109] devel-
oped a 3D cell culture model for the bladder by employ-
ing a novel acellular matrix and bioreactor. GelMA was
utilized as a 3D scaffold for the bladder cancer cell cul-
ture, with an optimal scaffold height of 0.08 mm and a
crosslinking time of 120 s [110]. Subsequently, 5637 and
T24 cells were cultured in 2D and 3D environments and
subjected to rapamycin and Bacillus Calmette-Guérin
(BCQG) drug treatments. It was found that the 3D bladder
cancer cell culture model exhibited a faster establishment
process and greater stability when compared to the 2D
model. Moreover, the 3D-cultured cancer cells demon-
strated heightened drug resistance and reduced sensitiv-
ity compared to the 2D-cultured cells. Additionally, the
researchers observed cell-to-cell interaction and basal
activity in the 3D model, closely resembling the in vivo
environment.

Along the same lines, Arya et al. [111] investigated the
suitability of GelMA hydrogels as in vitro 3D culture
systems for modeling key characteristics of metastatic
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progression in breast cancer, specifically invasiveness and
chemo-responsiveness. The mechanical and morpho-
logical properties of the hydrogels were tuned by vary-
ing the percentage of GelMA used. Compression testing
revealed that the stiffness of 10% GelMA hydrogels was
within the range reported for breast tissue, making them
suitable matrices for mimicking the breast viscoelastic-
ity in vitro, as cells cultured on 10% GelMA hydrogels
exhibited a higher proliferation rate compared to 15%
GelMA in both cell lines tested, making them robust
systems for long-term cell culture. Furthermore, prolif-
eration studies showed that the GeIMA hydrogels could
sustain breast cancer cells longer than 2D cultures. Over-
expression of genes associated with invasiveness was also
observed in 3D cultured breast cancer cells, suggesting
potential changes important for metastatic progression.
The response to chemotherapeutic drugs was evaluated,
and it was observed that 3D spheroids of breast cancer
cells cultured on GelMA hydrogels exhibited decreased
sensitivity to taxane drugs like paclitaxel. The study high-
lighted the importance of an adequate matrix pore size
for cell penetration, migration, proliferation, exchang-
ing oxygen, nutrients, and waste materials in and out
of the 3D culture scaffolds. Significantly, these studies
emphasized the importance of the 3D cancer cell culture
model in establishing a patient-like model. Utilizing such
models can achieve a more precise evaluation of drug
responses, potentially leading to advancements in cancer
treatment and other diseases.

Cells are known to respond to their mechanical envi-
ronment in a process known as mechano-transduction,
where they transmute mechanical stimuli into biochemi-
cal signals, subsequently prompting alterations in cellu-
lar behavior and functional operations. Curtis et al. [112]
investigated the influence of mechanical stimuli on the
cell proliferation, growth, and protein expression of
4T1 breast cancer cells, serving as a model for cells that
metastasize to bone. The researchers used 4T1 breast
cancer cells and implanted them in gelatin-mTGase
hydrogels that mimicked the mechanical properties of
bone marrow. The hydrogels had different moduli of
either 1 or 2.7 kPa. The cells were cultured under different
conditions, including static culture, perfusion of media
through the hydrogel, and combined perfusion with
cyclic mechanical compression for 1 h per day for 4 days.
Control samples were cultured under free-swelling con-
ditions. Immunostaining techniques were used to analyze
the protein expression within the cell spheroids formed
during the culture. The study found that mechanical
stimuli significantly influenced the behavior of the 4T1
breast cancer cells. The cells formed spheroids during the
culture period, with larger spheroids observed in stati-
cally cultured constructs than those exposed to perfusion
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or compression. In the stiffer gelatin, compressed con-
structs resulted in smaller spheroids compared to perfu-
sion alone, while compression had no significant effect
in the softer gelatin. The immunostaining revealed the
expression of proteins associated with bone metastasis
within the spheroids, including osteopontin, parathyroid
hormone-related protein, and fibronectin. The prolifera-
tive marker Ki67 was present in all spheroids on day 4.
The intensity of Ki67 staining varied depending on the
culture conditions and gelatin stiffness. It highlighted
the mechanical sensitivity of 4T1 breast cancer cells and
demonstrated how mechanical stimuli can impact their
proliferation and protein expression within soft materials
that mimic the mechanical properties of bone marrow.
The findings emphasized the role of the mechanical envi-
ronment in the bone for both in vivo and in vitro models
of cancer metastasis.

Understanding the influence of mechanical factors
on cancer cell behavior is crucial for developing effec-
tive strategies to prevent and treat metastasis to bone,
potentially leading to improved clinical outcomes for
patients with advanced cancer. Similarly, Cavo et al. [113]
investigated the impact of substrate elasticity on breast
adenocarcinoma cell activity using mechanically tuned
alginate hydrogels. The study evaluated the viability, pro-
liferation rates, and cluster organization of MCF-7 breast
cancer cells in 3D alginate hydrogels compared to stand-
ard 2D environments. The elastic moduli of the differ-
ent alginate hydrogels were measured using atomic force
microscopy (AFM). The results demonstrated that sub-
strate stiffness directly influenced cell fate in 2D and 3D
environments. In the 3D hydrogels with an elastic mod-
ulus of 150-200 kPa, the MCF-7 cells exhibited unin-
hibited proliferation, forming cell clusters with 100 pm
and 300 pm diameters after 1 and 2 weeks, respec-
tively. This unimpeded cell growth observed in softer
hydrogels mimicked the initial stages of solid tumor
pre-vascularization and growth. Furthermore, the mul-
ticellular, cluster-like conformation observed in the 3D
hydrogels closely resembled the in vivo organization of
solid tumors, demonstrating the advantage of 3D cancer
models for replicating cell-cell and cell-matrix interac-
tions. The study also highlighted the influence of micro-
environment dimensionality on cellular morphology, as
cells displayed a flat shape in 2D cultures while adopting
a round shape in the 3D environment. Cell proliferation
in the 3D setting depended highly on substrate stiff-
ness, which impacted nutrient diffusion and intracellular
signaling through a mechano-transduction mechanism.
The findings underscore the importance of consider-
ing substrate stiffness in the design of 3D cancer mod-
els, as it directly affects cell viability, proliferation, and
organization. By understanding the relationship between
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substrate stiffness and cellular behavior, researchers can
develop more realistic in vitro models that better mimic
the microenvironment of solid tumors. These models can
advance our understanding of cancer development and
aid in the development of targeted therapies by allowing
for the investigation of cell-cell and cell-matrix interac-
tions in a more accurate setting.

Decellularized tissue scaffolds
Decellularized tissues have had their cellular components
removed, leaving behind the ECM. Decellularized tissues
can be used as scaffolds for 3D cell culture, providing a
natural environment for cells to grow and interact [114].
The use of decellularized tissues as 3D cell culture scaf-
folds offers several advantages. Firstly, they retain the
intricate ECM composition, including structural pro-
teins, growth factors, and signaling molecules, which play
critical roles in cell behavior and tissue organization. This
enables cancer cells to interact with the ECM more akin
to in vivo conditions, influencing their adhesion, migra-
tion, invasion, and differentiation. Moreover, decellular-
ized tissues offer spatial organization and architectural
cues that guide cellular behavior. Preserving tissue-spe-
cific topography, such as vasculature, allows for studying
angiogenesis and vascularization processes in cancer pro-
gression. These scaffolds also provide mechanical support
and stiffness that influence cellular mechanotransduc-
tion, impacting cell morphology, proliferation, and gene
expression patterns. They can be derived from various
sources, including solid organs, such as the liver or lung,
or specific tissue compartments, such as the ECM-rich
decellularized basement membrane (see Fig. 4).
Landberg et al. [115] hypothesized that using a pre-
clinical platform based on decellularized patient-derived
scaffolds as growth substrates to account for hidden clini-
cally relevant information and aid in modeling the indi-
vidualized properties of microenvironments could be
optimized for personalized treatment planning. Different
decellularization techniques, such as chemical, physi-
cal, or enzymatic methods, remove cellular components
while preserving the ECM integrity (see Table 6) [116].
The choice of decellularization method depends on the
tissue type, desired scaffold characteristics, and the spe-
cific requirements of the study. Combinations of differ-
ent techniques may also be employed to achieve optimal
decellularization outcomes. However, challenges remain
in the field. The immunogenicity and biocompatibility
of decellularized tissues must be carefully considered
to prevent adverse reactions when introducing foreign
matrices into cell culture systems. Standardization and
reproducibility of decellularization protocols are also
crucial to ensure consistency across studies and facili-
tate comparison of results. Integration with advanced
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technologies, such as microfluidics or organ-on-a-chip
systems, can further enhance the functionality and rel-
evance of decellularized tissue models.

D’Angelo et al. [117] developed a more representa-
tive 3D model of colorectal cancer liver metastasis using
patient-derived scaffolds. These scaffolds, created by
decellularizing tissue-specific ECM, retain the metastatic
microenvironment’s biological properties and structural
characteristics. The HT-29 CRC cell line was cultured
within these scaffolds, obtained explicitly from cancer
patients. The study observed increased cell proliferation
and migration in the cancer-derived scaffolds, highlight-
ing their ability to provide a more conducive environ-
ment for tumor cell growth and spreading. Furthermore,
the 3D culture system demonstrated a reduced response
to chemotherapy. HT-29 cells cultured in the cancer-spe-
cific 3D microenvironments showed decreased sensitiv-
ity to treatment with 5-fluorouracil and a combination
of 5-fluorouracil with Irinotecan, when used at standard
IC50 concentrations. The use of patient-derived scaffolds
allows for the study of colorectal cancer metastasis pro-
gression and the assessment of their response to chem-
otherapy agents, to develop new therapeutic strategies
and personalized treatments. Additionally, it provides an
opportunity to identify potential prognostic biomarkers
and therapeutic targets specific to peritoneal metastasis.
Varinelli et al. [118] conducted a study that employed a
tissue-engineered model for investigating peritoneal
metastases (PM) in vitro, yielding similar conclusions.
The model involved seeding PM-derived organoids onto
decellularized extracellular matrices (dECMs) sourced
from the peritoneum, enabling the exploration of intri-
cate interactions between neoplastic cells and the ECM
in the PM system. Both neoplastic peritoneum and cor-
responding normal peritoneum tissues were utilized
to generate 3D-dECMs. Utilizing confocal reflection
and polarized light microscopy techniques, the study
observed disparities in tissue texture and the distribu-
tion and integrity of individual collagen fibers between
normal and neoplastic-derived tissues obtained from
three distinct PM patients. The results demonstrated
that 3D-dECMs derived from neoplastic peritoneum
exhibited a notably higher proportion of Ki-67-positive
cells after 5 and 12 days. Furthermore, expression levels
of specific genes critical for tissue architecture, stiffness,
ECM remodeling, fibril generation, epithelial cell differ-
entiation, resistance to compression, and regulation of
angiogenesis were found to be elevated in 3D-dECMs
generated from neoplastic tissue compared to those
from normal tissue or Matrigel-based models. In sum-
mary, by utilizing patient-derived scaffolds and cutting-
edge techniques, the researchers successfully developed
more physiologically relevant models that significantly
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contribute to our comprehension of colorectal cancer
and PM biology. These models, alongside others [119—
122], offer valuable insights into the intricate interplay
between tumor cells and the ECM, paving the way for
the potential discovery of novel therapeutic targets and
the development of personalized treatment strategies for
peritoneal metastases.

Furthermore, decellularized tissue scaffolds provide
an efficient platform to study the interactions between
different components abundantly found in the ECM,
like macrophages and endothelial cells. Macrophages
and endothelial cells are known for their involvement
in cancer progression in the context of the ECM within
solid tumors, as they are often found in large numbers
[123]. Macrophages within the tumor (often referred
to as tumor-associated macrophages or TAMs) can be
“hijacked” by cancer cells and reprogrammed to support
tumor growth and progression. For example, they can
promote cancer cell proliferation, enhance blood ves-
sel formation (angiogenesis), assist in tissue remodeling,
and suppress the immune response against the tumor.
Pinto et al. [123] investigated how human colorectal
tumor matrices influence macrophage polarization and
their subsequent role in cancer cell invasion. To facilitate
this, a novel 3D-organotypic model was utilized using
decellularized tissues from surgical resections of colo-
rectal cancer patients. This model preserved native tis-
sue characteristics, including major ECM components,
architecture, and mechanical properties, while removing
DNA and other cellular components. The study found
that macrophages within tumor matrices displayed an
M2-like anti-inflammatory phenotype, characterized
by higher expression of IL-10, TGF-B, and CCL18, and
lower expression of CCR7 and TNF. Furthermore, it was
observed that tumor ECM-educated macrophages effec-
tively promoted cancer cell invasion through a mecha-
nism involving CCL18, as demonstrated by Matrigel
invasion assays. The high expression of CCL18 at the
invasive front of human colorectal tumors correlates
with advanced tumor staging, underscoring its clinical
significance. The findings highlight the potential of using
tumor-decellularized matrices as exceptional scaffolds for
recreating complex microenvironments, thereby enabling
a more comprehensive understanding of cancer progres-
sion mechanisms and therapeutic resistance.

Besides TAMs, endothelial cells express various adhe-
sion molecules and chemokines, such as selectins, inte-
grins, and members of the immunoglobulin superfamily,
which can interact with ligands on cancer cells, facilitat-
ing their adhesion to the endothelial cell layer. This adhe-
sion is a critical step in the extravasation process, where
cancer cells exit the bloodstream and invade surrounding
tissues to form metastases. Moreover, endothelial cells
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Fig. 4 Preparation methods, characterization techniques, and sources of decellularized tissues used as scaffolds for 3D cell culture. SEM: scanning
electron microscopy; AFM: atomic force microscopy; FTIR: Fourier-transform infrared spectroscopy

can signal and recruit macrophages and other immune
cells to the tumor site. Once there, macrophages can be
“educated” by the tumor to adopt a pro-tumor pheno-
type, suppressing the immune response and promoting
tumor growth. Therefore, decellularized matrices are
suitable for studying such interactions as they closely
resemble the natural tumor environment, including
native adhesion sites, signaling molecules, and mechani-
cal cues. Helal-Neto et al. [124] examined the influence
of dECM produced by a highly metastatic human mela-
noma cell line (MV3) on the activation of endothelial
cells and their intracellular cell differentiation signaling

pathways. The researchers studied the differences in the
ultrastructural organization and composition of mel-
anocyte-derived ECM (NGM-ECM) and melanoma-
derived (MV3-ECM). Higher levels of tenascin-C and
laminin and lower fibronectin expression were detected
in MV3-ECM. Moreover, endothelial cells cultured in the
MV3-ECM underwent morphological transformations
and exhibited increased adhesion, mobility, growth, and
tubulogenesis. The interaction between the endothelial
cells and decellularized matrix induced integrin signaling
activation, resulting in focal adhesion kinase (FAK) phos-
phorylation and its association with Src (a non-receptor
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tyrosine kinase protein). Src activation, in turn, stimu-
lated the activation of vascular endothelial growth factor
receptor 2 (VEGFR2), enhancing the receptor’s response
to VEGE. The activation of VEGF and the association
between FAK and Src was inhibited by blocking the avf33
integrin, which reduced tubulogenesis. In conclusion,
the findings suggested that the interaction of endothelial
cells with melanoma-ECM triggered integrin-dependent
signaling, which led to the activation of the Src pathway
that sequentially potentiated VEGFR2 activation and
enhanced angiogenesis. Thus, progress in cancer biology
relies on understanding the specific cellular responses
influenced by the matrix signals within the ECM, as its
nature inherently imposes spatial variations on cellular
signaling, composition, topography, and biochemical fac-
tors. Table 7 summarizes some studies using hydrogel
and decellularized tissue scaffolds for 3D cell cultures.

Hybrid scaffolds

Integrating multiple scaffold types offers the potential
to create 3D cell culture systems that closely mimic the
physiological conditions of living tissues. This approach
enables researchers to develop more accurate and bio-
logically relevant models for studying cellular behavior,
disease progression, and therapeutic responses. By com-
bining different scaffold materials, such as natural and
synthetic polymers or hydrogels, researchers can repli-
cate the complexity and heterogeneity of the native tissue
microenvironment. These hybrid scaffolds can provide
a range of physical, chemical, and mechanical cues that
influence cell behavior, including cell adhesion, migra-
tion, proliferation, and differentiation. Additionally, the
combination of scaffolds can enhance the functionality of
the 3D cell culture systems by incorporating specific fea-
tures, such as the controlled release of growth factors or
the inclusion of microvascular networks. Utilizing diverse
scaffold types in 3D cell culture offers an innovative and
promising approach for advancing our understanding
of tissue biology, disease mechanisms, and developing
more effective therapies. Bassi et al. [98] addressed the
limitations of conventional therapies for osteosarcoma,
a type of bone cancer, by introducing two innovative
approaches in tumor engineering that aim to improve
therapy outcomes. The study utilized hydroxyapatite-
based scaffolds that mimic the in vivo TME, specifi-
cally emphasizing the CSC niche. Two types of scaffolds
were employed: a biomimetic hybrid composite scaf-
fold obtained through biomineralization, involving the
direct nucleation of magnesium-doped hydroxyapatite
(MgHA) on self-assembling collagen fibers (MgHA/Coll),
and porous hydroxyapatite scaffolds (HA) produced by a
direct foaming process. These scaffolds provided a frame-
work for the subsequent investigation of the biological
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performance of human osteosarcoma cell lines (MG63
and SAOS-2) and enriched CSCs within these complex
3D cell culture models. Immunofluorescence and other
characterization techniques were employed to evaluate
the response of the osteosarcoma cell lines and CSCs to
the biomimetic scaffolds. The results demonstrated the
successful formation of sarcospheres, which are stable
spheroids enriched with CSCs, with a minimum diam-
eter of 50 pm. Comparing the advanced 3D cell culture
models with conventional 2D culture systems, the study
revealed the former’s superiority in mimicking the oste-
osarcoma stem cell niche and enhancing the predictiv-
ity of preclinical studies. The findings underscore the
significance of the TME and emphasize the potential of
combining CSCs with biomimetic scaffolds as a prom-
ising approach to developing novel therapeutic strate-
gies for osteosarcoma. Further efforts can be focused on
developing more sophisticated 3D models that accurately
replicate the heterogeneity of the osteosarcoma micro-
environment, incorporating patient-derived cells and
elements such as immune cells and vasculature. Addi-
tionally, the advanced 3D cell culture models can serve
as valuable tools for drug screening and personalized
medicine approaches, further contributing to advancing
osteosarcoma research and treatment strategies.

A unique cell culture technique known as “sequential
culture” was used to establish a biomimetic bone micro-
environment that facilitated the EMT of metastasized
prostate cancer cells [141]. The approach involved incor-
porating bioactive factors from the osteogenic induc-
tion of human mesenchymal stem cells (MSCs) within
porous 3D scaffolds, specifically polymer—clay composite
(PCN) scaffolds, by incorporating hydroxyapatite (HAP)
clay into PCL. The researchers also modified sodium clay
Montmorillonite (Na-MMT) clay using 5-amino valeric
acid to create HAPclay through in situ hydroxyapa-
tite biomineralization into the intercalated nano clay.
They performed RNA extraction and quantitative real-
time polymerase chain reaction (qRT-PCR) analysis to
investigate gene expression changes. Additionally, they
conducted a comparative analysis of bone metasta-
sis between the low and high metastatic cell lines, pro-
viding insights into their differential responses to the
bone microenvironment. It was shown that both, the
highly metastatic prostate cancer cell line PC-3 and the
non-metastatic cell line MDAPCa2b, underwent MET
transition when exposed to the biomimetic bone micro-
environment in the 3D scaffold model. However, nota-
ble differences were observed in their morphological
characteristics and cell-cell adhesion, suggesting dis-
tinct responses to the microenvironment. Additionally,
quantitative variations in gene expression were observed
between tumors generated using the two cell lines in the
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bone microenvironment. These findings are essential for
developing targeted therapeutic strategies against pros-
tate cancer bone metastasis. Bai et al. [142] conducted a
study in which they incorporated graphene oxide (GO)
onto a copolymer of polyacrylic acid-g-polylactic acid
(PAA-g-PLLA) to create a stimuli-responsive scaffold.
This scaffold, combined with PCL and gambogic acid
(GA), exhibited a selective response towards tumors
and demonstrated a significant accumulation of GO/GA
in vitro breast tumor cells (MCF-7 cells) under acidic
conditions (pH 6.8), while showing minimal impact on
normal cells (MCF-10A cells) at physiological pH (pH
7.4). The study further revealed that the synergistic use
of pH-responsive photo-thermal conversion was more
effective in inhibiting tumor growth than independ-
ent treatments. In vivo experiments showed remark-
able tumor suppression (99% reduction within 21 days)
through tumor tissue disintegration, degeneration, and
overall tumor suppression when treated with GO-GA
scaffolds combined with photo-thermal therapy, in com-
parison to control groups or those treated with either
GO-GA scaffolds or near-infrared (NIR) irradiation
alone.

Microfluidics provide a versatile platform for 3D cell
culture, offering both scaffold-based and scaffold-free
approaches. Researchers can tailor the platform to suit
the specific requirements of their experiments, whether
involving cell-laden scaffolds or the aggregation of cells
to form spheroids or organoids. The microfluidic setup
allows for precise control over the microenvironment,
including the flow of nutrients and oxygen, as well as the
ability to introduce gradients of specific molecules. Lee
et al. [143] utilized soft lithography to fabricate a 7-chan-
nel microchannel plate using poly-dimethylsiloxane
(PDMS). Within separate channels, PANC-1 pancreatic
cancer cells and pancreatic stellate cells (PSCs) were cul-
tured within a collagen I matrix. The study observed the
formation of 3D tumor spheroids by PANC-1 cells within
five days. Intriguingly, the presence of co-cultured PSCs
resulted in an increased number of spheroids, suggest-
ing a potential influence of PSCs on tumor growth. In the
co-culture setup, PSCs exhibited heightened expression
of a-smooth muscle actin («-SMA), a marker associated
with fibroblast activation, as well as various EMT-related
markers, including vimentin, transforming growth fac-
tor-beta (TGF-f), TIMP1, and IL-8. These findings indi-
cated that PSCs may induce an EMT-like phenotype in
PANC-1 cells, potentially promoting tumor invasive-
ness, chemoresistance, and metastasis. Upon treating
the co-culture with gemcitabine, the survival of the sphe-
roids did not exhibit significant changes. However, when
combined with paclitaxel, the tumor spheroids demon-
strated a notable inhibitory effect on growth. The model

Page 21 of 39

revealed a complex interplay between PANC-1 cells and
PSCs within the TME. Nonetheless, the combination of
gemcitabine and paclitaxel showed promise to overcome
resistance and inhibit tumor growth. The implications of
these findings are significant for understanding the com-
plex interplay between tumor cells and the surrounding
stromal cells within the TME. Tumor-stroma interactions
play a critical role in cancer progression and therapy
response. Using microfluidic-based 3D co-culture mod-
els allows researchers to better recapitulate the in vivo
conditions, providing a more accurate representation of
tumor behavior and therapeutic responses.

Likewise, Chen et al. [144] developed a microchan-
nel plate-based co-culture model to recreate the in vivo
TME by combining Hepal-6 tumor spheroids with JS-1
stellate cells (liver cancer)—the novel model aimed
to mimic key aspects of EMT and chemoresistance
observed in tumors. The integration of these cell types
in 3D concave microwells allowed for the formation of
3D tumor spheroids in 3 days. The experimental setup
was optimized to ensure optimal culture prolifera-
tion conditions and appropriate interactions between
Hepal-6 and JS-1 cells. Co-cultured JS-1 cells displayed
noticeable changes in cellular morphology, including
an increase in the expression of a-SMA. In contrast,
the co-cultured Hepal-6 spheroids exhibited higher
expression levels of TGF-B1 than those cultured alone.
These findings suggested that JS-1 stellate cells induced
an EMT-like phenotype in the Hepal-6 cells, poten-
tially contributing to increased invasiveness and resist-
ance to chemotherapy. Jeong et al. [145] conducted a
similar study involving the formation of 3D spheroids
composed of human colorectal carcinoma cells (HT-
29) using a microfluidic chip. They reported a notable
enhancement in HT-29 growth when co-cultured with
fibroblasts (see Fig. 5). This enhancement was demon-
strated by a 1.5-fold increase in the percentage change
in spheroid diameter over 5 days. Furthermore, after
6 days of culture, the co-cultured spheroids exhibited
reduced expression of Ki-67, a marker associated with
proliferation, while showing increased fibronectin
expression. These findings indicated altered cellular
behavior compared to the spheroid monocultures. The
presence of fibroblasts in the co-culture environment
also led to their activation, as evidenced by an upreg-
ulation in the expression of a-smooth muscle actin
(a-SMA) and an increase in migratory activity. This
reciprocal interaction between the spheroids and fibro-
blasts within a microfluidic chip established a dynamic
relationship. Additionally, when exposed to paclitaxel,
the co-culture displayed a survival advantage over 2D
monoculture, suggesting the potential role of fibro-
blasts in conferring drug resistance. Integrating the
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Fig. 5 illustration of the microfluidic chip used in 3D co-culture of human colorectal cancer cells (HT-29) and normal colorectal fibroblasts
(CCD-18Co) in a collagen matrix. The chip comprised 4 units, each featuring 7 channels for cell loading or media fill. Cancer and fibroblast cells were
loaded into channels 4 and 2 in the co-culture, while channels 1 and 3 were designated for media fill. A cell loading channel’s detailed structure

and dimensions are illustrated at the bottom left. Figure adapted from [145]

3D tumor spheres and CAFs within a collagen matrix-
incorporated microfluidic chip provided a valuable tool
for studying the TME and evaluating drug screening
and efficacy. This approach allowed for the replication
of essential interactions between tumor cells and stro-
mal components, which are known to influence cancer
progression and therapeutic response. By utilizing the
proposed microfluidic chip-based model, researchers
can delve into the intricate dynamics of the TME and
explore novel therapeutic approaches. The ability to
control and better mimic the in vivo conditions within
the chip provides a valuable platform for investigat-
ing drug responses and evaluating the effectiveness of
anticancer treatments. Further exploration and refine-
ment of this model could lead to significant advance-
ments in our understanding of tumor biology and the
development of targeted therapies for improved patient
outcomes. Table 8 summarizes some studies using
microfluidic-based systems to develop 3D cell cultures.

Challenges and future prospectives

While 3D cell culture offers many advantages over tra-
ditional 2D culture, it also presents some unique chal-
lenges that must be addressed to realize its potential for
advancing research fully. One significant challenge is
maintaining a stable and reproducible culture system. 3D
cell culture systems often require specialized equipment,
such as bioreactors and microfluidic devices, which can
be expensive and difficult to use. These systems can be
more challenging to reproduce compared to 2D systems
due to the increased complexity and high heterogeneity
of the culture environment, as cells are often embedded
in matrices or scaffolds, making it difficult to control fac-
tors such as temperature, pH, and the presence of growth
factors and/or other signaling molecules [149]. In addi-
tion, there is often a high degree of variability between
different batches of cells and between experiments, mak-
ing it difficult to draw statistically supported conclu-
sions. Considering 3D cell cultures, adhering to Good
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Manufacturing Practices (GMP) principles is essential
for translating these advanced models from research to
clinical and commercial applications. However, several
challenges and considerations arise when implement-
ing GMP standards, including standardization of culture
conditions, scalability, quality control, raw materials and
biologics sourcing, regulatory compliance, data integ-
rity, and documentation. GMP-compliant manufacturing
processes require high reproducibility and control over
critical parameters such as cell sourcing, culture media,
culture supplements, and environmental conditions [150,
151]. As mentioned above, achieving this consistency
can be challenging, given the inherent biological variabil-
ity of primary cells and the sensitivity of 3D cultures to
slight changes in culture conditions. Furthermore, meet-
ing regulatory requirements is a paramount challenge in
translating 3D spheroid cultures to clinical applications.
Regulatory bodies, such as the Food and Drug Admin-
istration (FDA) in the United States and the European
Medicines Agency (EMA) in Europe, have specific guide-
lines for the use of cell-based therapies and products
[152]. GMP compliance is necessary to navigate these
regulatory pathways and obtain approval for clinical trials
and commercialization.

Moreover, oxygen accessibility is a critical considera-
tion in 3D cell culture methods, and its heterogeneity
within these environments poses a significant challenge
in replicating physiological conditions and obtaining
accurate experimental results. Cells located in the inte-
rior of 3D structures, such as spheroids, often encounter
limited oxygen availability due to microenvironmental
factors (i.e., tumor spheroids naturally develop hypoxic
regions due to irregular vascularization in tumors) and
diffusion barriers (e.g., densely packed cells, ECM, scaf-
folding matrices) [153]. As cells proliferate and form 3D
structures, the demand for oxygen increases due to the
larger volume that oxygen must traverse. Oxygen diffu-
sion from the surrounding culture medium becomes
progressively hindered as the distance from the culture
surface to the interior of the 3D structure increases.
This results in an oxygen gradient, where cells near the
periphery have sufficient oxygen, but those in the core
encounter oxygen deficiency, leading to hypoxia. Hypoxic
core cells often exhibit altered gene expression, reduced
proliferation, and changes in metabolic pathways as they
enter a dormant state and cease cycling when deprived of
oxygen and nutrients. This reduced activity renders them
relatively resistant to cytostatic drugs that predominantly
target actively dividing cells, leading to increased drug
resistance, as is often observed in solid tumors [154, 155].
Confocal microscopy can be used to visualize dormant
cells by labeling them with a nucleoside analog, allow-
ing for their quantification and distinction from actively
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proliferating cells. This analog gets diluted in actively
dividing cells. Still, it remains retained in quiescent,
non-dividing cancer cells, thus providing a valuable tool
for distinguishing them from the surrounding actively
proliferating cells [156]. Leveraging this characteristic
of 3D spheroids, they offer potential avenues for devel-
oping novel therapeutics targeting cancer cells resistant
to cytostatic anticancer drugs. Wenzel et al. [157] culti-
vated T47D breast cancer cells in 3D cultures and used
confocal imaging to differentiate cells within the inner
core from those in the surrounding outer core. Cells in
the inner core, experiencing limited access to oxygen and
nutrients, exhibited reduced metabolic activity compared
to their counterparts in the outer core. Through screen-
ing small molecule libraries against these 3D cultures, the
authors identified nine compounds that selectively tar-
geted and killed the inner core cancer cells while sparing
the more actively proliferating outer cells. The identified
drugs primarily affected the respiratory chain pathway,
aligning with the altered metabolic activity of oxygen-
deprived cells transitioning from aerobic to anaerobic
metabolism. Hence, compounds selectively targeting
dormant cancer cells significantly improved the effec-
tiveness of commonly employed cytostatic anticancer
drugs. Alternatively, the use of microfluidic devices that
enable the creation of controlled oxygen gradients within
cultures, the incorporation of oxygen-permeable materi-
als, and the addition of oxygen-releasing compounds to
provide a more uniform distribution of oxygen in vitro.
However, it is important to acknowledge that these strat-
egies may not fully replicate the complexity of oxygen
gradients in real tissues [158]. Boyce et al. [159] presented
the design and characterization of a modular device that
capitalized on the gas-permeable properties of silicone to
create oxygen gradients within cell-containing regions.
The microfabricated device was constructed by stacking
laser-cut acrylic and silicone rubber sheets, where the sil-
icone not only facilitated oxygen gradient formation but
also served as a barrier, separating the flowing gases from
the cell culture medium to prevent evaporation or bub-
ble formation during extended incubation periods. The
acrylic components provided structural stability, ensur-
ing a sterile culture environment. Using oxygen-sensing
films, gradients with varying ranges and steepness in
the microdevice can be achieved by adjusting the com-
position of gases flowing through the silicone elements.
Furthermore, a cell-based reporter assay illustrated that
cellular responses to hypoxia were directly proportional
to the oxygen tension established within the system,
proving efficacy.

Another practical challenge in 3D cultures arises
from the intricacy of extracting cells from biomaterial-
based 3D constructs. Typically, the construction of
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degradable hydrogel scaffolds involves integrating break-
able crosslinks and/or cleavable components into the
polymer structure or incorporating naturally biodegrad-
able ECM constituents such as hyaluronic acid, laminin,
fibronectin, and collagen [160]. Yet, traditional dissocia-
tion techniques prove to be notably inefficient and are
influenced by the inherent structural complexities of the
culture system. Enzymatic degradation, for example by
collagenase, is a widely employed method for retrieving
cells from 3D cell culture collagen-based scaffolds. The
enzyme is selected to match the specific collagen type in
the scaffold. During incubation, collagenase enzymati-
cally cleaves the collagen fibers, releasing cells that were
embedded or adhered to these fibers. Once the collagen
has been broken down, the cells are collected as a suspen-
sion in the culture medium [161]. Cell viability and func-
tionality assessments are typically performed to maintain
the cells’ health and functionality. While using enzy-
matic degradation for 3D cell culture scaffolds is com-
mon, it remains an intricate approach associated with
several limitations. It is important not to underestimate
the impact of collagenase or other enzymes on cell viabil-
ity and functionality. Careful optimization of digestion
time and enzyme concentration is essential to balance
efficient scaffold degradation and preserving cell quality
[162]. Additionally, potential changes in cell phenotype
during digestion are a significant concern, necessitating
diligent monitoring of digestion parameters. In complex
3D scaffolds, particularly those with intricate structures,
enzymatic digestion may be less effective, prompting
researchers to explore alternative retrieval methods or
adapt the digestion process. Ethical considerations also
come into play, especially when working with human
or animal-derived cells, raising concerns about using
enzymes like collagenase. Adherence to ethical guidelines
and institutional regulations is crucial for maintaining
responsible and ethical research practices.

Hence, extensive research efforts have been directed
toward developing improved techniques for cell retrieval
from scaffold-based 3D cell cultures without compro-
mising the cells’ integrity. For instance, Kyykallio et al.
[163] developed an innovative pipeline for extracting
extracellular vesicles (EVs) from 3D cancer spheroids
using nanofibrillar cellulose (NFC) scaffolds as a cell
culture matrix. This pipeline encompassed two distinct
approaches: a batch method optimized for maximal EV
yield at the conclusion of the culture period, and a har-
vesting method designed to facilitate time-dependent
EV collection, allowing integration of EV profiling with
spheroid development. Both approaches provided con-
venient setup, quick execution, and reliably produced a
significant number of electric vehicles (EVs). Compared
to scaffold-free 3D spheroid cultures on ultra-low affinity
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plates, the NFC-based approach demonstrated similar
EV production per cell, offering scalability, preserved cell
phenotype and integrity, and greater operational sim-
plicity, ultimately leading to higher EV yields. Another
approach is based on cell-mediated degradation of hydro-
gel scaffolds, where living cells actively break down the
hydrogel structure [164]. This degradation mechanism
is particularly relevant in tissue engineering and regen-
erative medicine. When cells are encapsulated within a
hydrogel scaffold, they can secrete enzymes and other
molecules that interact with its components, leading to
its gradual breakdown. As cells proliferate and remodel
their microenvironment, they may alter the scaffold’s
properties and eventually facilitate its degradation. This
dynamic process allows for the controlled release of cells,
growth factors, and other bioactive substances within the
hydrogel, making it a valuable technique for drug delivery
applications.

While synthetic degradable polymer scaffolds are sig-
nificant for developing 3D cell culture models, a concern
regarding their in vitro and in vivo biocompatibility per-
tains to the presence of potentially toxic elements and
chemicals utilized during the polymerization of synthetic
hydrogels or the crosslinking of natural polymer hydro-
gel precursors, especially when the reaction conversion is
less than 100%. These substances release unreacted mon-
omers, stabilizers, initiators, organic solvents, and emul-
sifiers. These are integral to the hydrogel preparation
process but may pose harm if they seep into the seeded
cells or tissues [165, 166]. For instance, widely employed
free radical photo-initiators (e.g., Irgacure) have been
observed to diminish cell viability, even at minimal con-
centrations [167, 168]. Consequently, hydrogel scaffolds
intended for embedding cells in 3D cultures typically
require purification (e.g., by dialysis or solvent washing)
to eliminate any residual hazardous chemicals before
seeding. However, in certain scenarios, the purification of
hydrogel scaffolds is more challenging or unfeasible, par-
ticularly when dealing with hydrogels generated through
in situ gelation. In such cases, cells are introduced to the
reactants necessary for hydrogel synthesis while still in a
pre-polymer solution. As a result, when employing in situ
gelation techniques, utmost caution must be exercised to
ensure that all components are non-toxic and safe.

Furthermore, another challenge associated with 3D
cell culture is the difficulty characterizing the cellular
response to drugs and other therapeutic agents. In 2D cell
culture, cells are typically analyzed using a range of stand-
ard assays that are well-established and easy to interpret.
However, in 3D cell culture, there is often a lack of such
standardized assays and protocols. Fang and Eglen [169]
highlighted that the cultures’ complex morphology, func-
tionality, and architecture hampered the application of
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some well-developed biochemical assays to 3D systems.
Cells tend to aggregate into dense and/or large clusters
over time, even in macroporous scaffolds, causing dif-
fusional limitations when carrying out in situ charac-
terization assays. Limitations arise due to the impeded
diffusion and confinement of gases, nutrients, waste,
and reagents within the system, compounded by chal-
lenges when quantifying and normalizing data between
different biomimetic cultures [170-172]. For instance,
Totti et al. [173] demonstrated that assessing a culture
of pancreatic cancer cells in macroporous polyurethane
foam-type scaffolds with the 3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium (MTS) assay showed minimal differences
between various scaffold conditions (e.g., ECM coatings
on the scaffolds). However, sectioning, immunostaining,
and imaging revealed clearer cell proliferation, morphol-
ogy, and growth distinctions between the conditions.
Likewise, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
2H-tetrazolium bromide (MTT) assay failed in captur-
ing the differences in pancreatic cells’ viability cultured in
polyurethane scaffolds after drug and irradiation screen-
ing, which were realized using advanced microscopy and
imaging [174]. Hence, it is crucial for researchers to care-
fully consider the appropriate analytical approach that
aligns with their study objectives before commencing
the analysis of any 3D cultures. Also, they must be aware
that some of the classical gold-standard approaches used
in 2D cultures may not be directly applicable in 3D set-
tings, as Hamdi et al. [175] showed that it is unfeasible to
extract cells from spheroids for colony formation assays,
which are used for developing post-treatment survival
curves. Consequently, the researchers suggested in situ
characterization readouts, which are novel and/or differ-
ent from the existing 2D culture protocols.

Using stem cells and differentiated markers is crucial
for characterizing and monitoring the cellular composi-
tion and differentiation status within 3D spheroids. These
markers can help researchers achieve specific goals and
outcomes, such as assessing the differentiation poten-
tial of stem cells, tracking the progression of differen-
tiation, and studying the dynamics of cell populations in
the spheroids [176, 177]. However, using such markers
in 3D spheroid cultures presents certain challenges that
need to be addressed for accurate and meaningful results.
One primary challenge is the heterogeneity of stem cells
within spheroids. Spheroids often comprise a mixture of
stem cells and differentiated cells, so the stem cell mark-
ers may not exclusively identify and isolate the stem cell
population, leading to difficulty in studying the specific
behavior of stem cells within the spheroid. Another
challenge is the variability in the expression of stem
cell markers. These markers’ expression can fluctuate
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spatially and temporally within the spheroid, making it
complex to track and interpret changes in marker expres-
sion over time. Additionally, in larger spheroids, stem
cell markers may not effectively penetrate the core of
the spheroid, limiting the ability to assess the stem cell
population in the inner regions [176, 177]. Researchers
can employ several strategies to overcome these chal-
lenges and effectively use stem cell markers in 3D sphe-
roid cultures [178, 179]. An alternative method involves
combining stem cells and other cellular markers to better
understand the cellular composition within the spheroid.
This multi-marker approach can help mitigate the issues
related to marker heterogeneity. Moreover, live imaging
techniques, such as confocal microscopy, can provide
real-time insights into the dynamics of marker expres-
sion within spheroids. Controlling the size of spheroids
is another strategy to enhance marker penetration and
access to the innermost cells. Utilizing microfluidic tech-
niques allows for the accurate regulation of spheroid size,
ensuring effective penetration of markers throughout all
regions of the spheroid [178, 179]. Additionally, single-
cell analysis methods, such as single-cell RNA sequenc-
ing and proteomic analysis, enable the characterization of
individual cells within spheroids. This approach can iden-
tify unique gene or protein expression patterns and shed
light on the behavior of stem cell populations. Another
valuable strategy is creating spheroids with genetically
encoded stem cell reporters, which produce fluorescent
or luminescent signals in stem cells, making them more
visible and trackable. Lastly, mimicking the stem cell
niche or microenvironment within 3D culture conditions
can help maintain stemness and marker expression in
spheroids [179].

Although imaging provides valuable information about
cell distribution and binding, quantitative measurements
using image analysis in 3D cultures are often lacking
because they require cell count consistency across sam-
ples [180]. The challenge lies in the inability to visualize
the whole-cell population, leading to difficulties obtaining
accurate and reliable data from the entire culture. This is
due to the hampered diffusion of fluorescent markers,
primarily due to their large size, governed by the inher-
ent heterogeneity of 3D cultures. One potential solution
is to measure cell number from imageable cross-sections;
however, Sirenko et al. [181] noted that light interfer-
ences and dye diffusion limitations resulted in unreliable
results, as the number of cells counted substantially dif-
fered from the number of cells seeded. In addition, tech-
nical limitations such as prohibitive costs and limited
scalability must also be considered [149]. Implementing
3D culture systems may incur higher costs compared to
2D culture systems, attributed to the requirement for
specialized equipment, materials, and expertise [182,
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183]. Similarly, scaling up 3D culture systems for indus-
trial or clinical applications can be challenging due to the
increased complexity of the culture environment and the
need for specialized equipment [184]. This can limit the
potential for the widespread adoption of 3D culture tech-
niques in these settings.

Significant strides have been made in creating dynamic
scaffolds that can respond to or guide resident cells [185].
For example, thermoresponsive hydrogels like poly-N-
isopropylacrylamide (pNIPAm) have been proven effec-
tive for cell population harvesting [186, 187]. Moreover,
the fusion of microscale technologies for cell culture with
adaptable hydrogel designs has facilitated various investi-
gations. These include investigating cell migration within
microfluidic hydrogels and establishing high-throughput
screening platforms to explore interactions between cells
and materials [188]. Notably, the mechanobiology field
is intrigued by various mechanically dynamic hydro-
gels that can either stiffen, soften, or reversibly transi-
tion between these states to examine cellular responses.
These dynamic substrates offer a means to scrutinize how
mechanical cues influence cell behavior, similar to the
study of soluble factors over decades [189]. Techniques
for introducing heterogeneity and multiple cell types
within 3D constructs are also advancing. This includes
innovative methods where hydrogels serve as bio-inks to
print cells, either layer-by-layer from a 2D base or directly
within a 3D space enclosed by another hydrogel. As these
platforms progress, they are expected to become more
widely accessible [190, 191]. In the interim, it remains
crucial to maintain an open and collaborative dialogue
between cell biologists, materials scientists, and engi-
neers. This collaborative effort will ensure that the next
generation of scaffold-based 3D cell culturing systems is
well-equipped to address the significant challenges posed
by the increasing biological and technical complexities.

Conclusion

To conclude, scaffold-based 3D cell culture has emerged
as a valuable tool in cancer research, providing a more
physiologically relevant environment for studying tumor
behavior, drug responses, and interactions between can-
cer cells and the surrounding microenvironment. Vari-
ous scaffold materials, including polymers, decellularized
tissue, hydrogels, and hybrids with microfluidics, have
been explored to create complex and biomimetic 3D
models. Polymer-based scaffolds offer tunable mechani-
cal properties and are relatively easy to fabricate, making
them versatile for 3D cell culture. The choice of polymers
can influence cell behavior, proliferation, and migra-
tion, allowing researchers to study cancer progression
and metastasis in a more realistic context. Additionally,
incorporating bioactive molecules into polymer scaffolds
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can enable the controlled release of drugs and growth
factors, facilitating drug screening and targeted therapy
development. Furthermore, hydrogels offer high biocom-
patibility and can be functionalized with bioactive signals
to direct cell behavior and tissue formation. In cancer
research, hydrogels provide a platform to investigate the
effect of mechanical cues on tumor growth, immune cell
infiltration, and angiogenesis. Additionally, the ease of
incorporating multiple cell types within hydrogels ena-
bles the study of tumor-stroma interactions. Likewise,
decellularized tissue scaffolds retain native ECM com-
position, topography, and mechanical properties, closely
mimicking the natural tumor microenvironment. As a
result, cancer cells cultured in decellularized tissue scaf-
folds can exhibit more accurate tumor behaviors, includ-
ing invasion and angiogenesis. Moreover, these scaffolds
can be derived from patient-specific tissues, enabling
personalized medicine approaches and improving the
predictability of drug responses. Lastly, hybrid scaffolds
that integrate microfluidic channels offer unique advan-
tages for cancer research. By combining 3D cell culture
with microfluidics, researchers can study tumor angio-
genesis, metastasis, and drug penetration in a more phys-
iologically relevant manner. Furthermore, microfluidics
can facilitate high-throughput screening of anticancer
drugs, enabling rapid and cost-effective testing of poten-
tial therapies.
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