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Abstract 

Background Metabolic remodeling and changes in tumor immune microenvironment (TIME) in osteosarcoma are 
important factors affecting prognosis and treatment. However, the relationship between metabolism and TIME needs 
to be further explored.

Methods RNA-Seq data and clinical information of 84 patients with osteosarcoma from the TARGET database 
and an independent cohort from the GEO database were included in this study. The activity of seven metabolic super-
pathways and immune infiltration levels were inferred in osteosarcoma patients. Metabolism-related genes (MRGs) 
were identified and different metabolic clusters and MRG-related gene clusters were identified using unsupervised 
clustering. Then the TIME differences between the different clusters were compared. In addition, an MRGs-based risk 
model was constructed and the role of a key risk gene, ST3GAL4, in osteosarcoma cells was explored using molecular 
biological experiments.

Results This study revealed four key metabolic pathways in osteosarcoma, with vitamin and cofactor metabolism 
being the most relevant to prognosis and to TIME. Two metabolic pathway-related clusters (C1 and C2) were identi-
fied, with some differences in immune activating cell infiltration between the two clusters, and C2 was more likely 
to respond to two chemotherapeutic agents than C1. Three MRG-related gene clusters (GC1-3) were also identified, 
with significant differences in prognosis among the three clusters. GC2 and GC3 had higher immune cell infiltra-
tion than GC1. GC3 is most likely to respond to immune checkpoint blockade and to three commonly used clinical 
drugs. A metabolism-related risk model was developed and validated. The risk model has strong prognostic predic-
tive power and the low-risk group has a higher level of immune infiltration than the high-risk group. Knockdown 
of ST3GAL4 significantly inhibited proliferation, migration, invasion and glycolysis of osteosarcoma cells and inhibited 
the M2 polarization of macrophages.

Conclusion The metabolism of vitamins and cofactors is an important prognostic regulator of TIME in osteo-
sarcoma, MRG-related gene clusters can well reflect changes in osteosarcoma TIME and predict chemotherapy 
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and immunotherapy response. The metabolism-related risk model may serve as a useful prognostic predictor. 
ST3GAL4 plays a critical role in the progression, glycolysis, and TIME of osteosarcoma cells.

Keywords Osteosarcoma, Metabolism, Tumor immune microenvironment, Prognosis, Vitamin and cofactor, 
Treatment response, ST3GAL4

Introduction
Osteosarcoma is a malignant bone tumor that pre-
dominantly affects children and young adults. Despite 
advances in treatment, the prognosis for patients with 
osteosarcoma remains poor, with a 5-year survival rate 
of approximately 60–70% for localized disease and less 
than 30% for metastatic disease [1]. The development and 
progression of osteosarcoma is a complex process that 
involves multiple molecular and cellular mechanisms. 
In recent years, there has been increasing interest in the 
role of metabolic reprogramming and the tumor immune 
microenvironment (TIME) in osteosarcoma, and their 
potential as therapeutic targets.

Tumor cells have to modify their metabolic program 
to support the energy and macronutrient requirements 
of rapid proliferation. Metabolic reprogramming is now 
recognized as a hallmark of cancer and is one of the most 
critical biological differences between tumor cells and 
normally differentiated cells [2]. For example, in many 
tumor cells, altered carbohydrate metabolism, repre-
sented by the Warburg effect, provides a proliferative 
advantage for tumor cells [3]. Osteosarcoma cells exhibit 
a variety of metabolic alterations, including increased 
glucose uptake, altered mitochondrial function, and 
increased reliance on glycolysis for ATP generation [4]. 
These metabolic changes are driven by a variety of sign-
aling pathways, including the PI3K/AKT/mTOR path-
way and the HIF-1α pathway [5]. They provide potential 
therapeutic targets for the treatment of osteosarcoma, 
as inhibition of key metabolic pathways could poten-
tially starve cancer cells of the nutrients they need to 
proliferate.

TIME plays a critical role in a variety of biologi-
cal processes including proliferation, metastasis, and 
treatment response (including chemotherapy, radia-
tion therapy and immunotherapy) in osteosarcoma 
[6–8]. Previous studies have shown that patients with 
different TIME status within their osteosarcoma have 
very different prognoses [9]. Specifically, patients with 
“hot” tumors that have more immune cell infiltration 
in TIME have a better prognosis, while patients with 
“cold” tumors that have less immune cell infiltration 
have a worse prognosis. Therefore, therapeutic agents 
that modulate TIME, transform “cold” tumors into 
“hot” tumors, and use existing immunity to destroy 
osteosarcoma cells are increasingly being considered 

as new options with great potential for application [10, 
11]. Indeed, recent studies have proven that immu-
notherapy has shown advantages over conventional 
interventional strategies in inhibiting osteosarcoma 
metastasis and recurrence, and satisfactory efficacy in 
inhibiting the progression of advanced osteosarcoma 
[12–14].

The interaction between tumor metabolism and immu-
nity has been intensively studied and it is generally rec-
ognized that oncogenic transformation can lead to the 
adaptation of a well-characterized metabolic pheno-
type in cancer cells that can profoundly affect the TIME 
[15]. Specifically, in addition to affecting cancer cells 
directly, metabolic reprogramming of tumors also alters 
the TIME by affecting the behavior of other cell types, 
such as immune cells and stromal cells [16]. For exam-
ple, the acidic microenvironment created by aerobic gly-
colysis can suppress the immune system and promote 
the growth of blood vessels, which can in turn promote 
tumor growth and metastasis [17]. In particular, the lac-
tate produced by aerobic glycolysis can induce the infil-
tration of regulatory T cells and the M2 polarization of 
macrophages in tumors, thereby promoting immune 
suppression [18]. Tumor metabolic heterogeneity refers 
to the significant differences in metabolic characteristics 
that exist between different tumors or within the same 
tumor tissue. It is an important aspect of tumor het-
erogeneity and is mainly driven by different genotypes 
or microenvironments [19–21]. The research by Feng 
et  al. demonstrates that within the same type of tumor, 
patients can be divided into subgroups suitable for dif-
ferent treatment methods based on different metabolic 
characteristics [22]. Therefore, identifying the metabolic 
profile of different osteosarcoma patients will not only 
explore the impact of different metabolic landscapes 
on TIME, but also guide treatment decisions. However, 
few studies have been conducted to genomically analyze 
osteosarcoma from a global perspective of metabolic het-
erogeneity. The few previous studies have been limited 
to a specific metabolic pathway [23, 24]. In this study, we 
focused on the seven most prominent metabolic super-
pathways with the aim of comprehensively assessing 
metabolic pathways of prognostic importance in osteo-
sarcoma, identifying tumor subtypes with different met-
abolic profiles and exploring the heterogeneity of TIME 
profiles and treatment response across tumor subtypes.
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Methods and materials
Data acquisition, clinical samples and cell lines
Standardized RNA-Seq data and clinical information 
for 88 independent osteosarcoma samples from the 
TARGET database were obtained from Xena Func-
tional Genomics Explorer (http:// xena. ucsc. edu/), of 
which 84 samples with complete survival information 
were included in this study. In addition, standardized 
microarray expression data and clinical information for 
34 osteosarcoma samples from the GSE16091 cohort 
were obtained from the GEO database (https:// www. 
ncbi. nlm. nih. gov/ geo/) [25]. The gene expression data 
distribution from the TARGET and GEO databases was 
analyzed using the PCA algorithm, and it was found 
that there were no apparent batch effects in the data 
(Additional file 1: Figure S1). In addition, gene sets for 
seven metabolic super-pathways annotated according 
to the Reactome database were collected from a previ-
ous study (Additional file  2: Table  S1) [26]. Together, 
these gene sets represent the major metabolic pro-
cesses, including amino acid metabolism, carbohydrate 
metabolism, integration of energy metabolism, lipid 
metabolism, nucleotide metabolism, tricarboxylic acid 
(TCA) cycle, and vitamin & cofactor metabolism.

Tumor samples of 14 primary osteosarcoma patients 
who underwent surgical resection between 2018 and 
2019 and 5 normal tissue samples were obtained from 
Xiangya Hospital, Central South University, Hunan, 
China. All samples were evaluated by pathologists and 
preserved in paraffin. Only relapse-free survival (RFS) 
data is currently available, as most patients are still alive. 
The collection of human tissues was approved by the 
Medical Ethics Committee of Xiangya Hospital of Cen-
tral South University (Approval number: 202303046).

U2OS, MG-63 and THP-1 cell lines were obtained from 
the Xiangya cell repository and U2OS and MG-63 were 
cultured in Dulbecco’s modified Eagle’s medium (DMEM, 
Biological Industries, Israel) containing 10% fetal bovine 
serum (Gibco, USA) at 5% CO2 and 37  °C. THP-1 cell 
line was cultured in RPMI 1640 medium (Gibco, Thermo 
Fisher Scientific, USA). THP-1 cells were differentiated 
into M0 macrophages by incubation with 100  ng/mL 
phorbol 12-myristate 13-acetate for 24 h. Typical images 
of THP-1 cells, M0 macrophages, and M2 macrophages 
were shown in Additional file 1: Figure S2. The ST3GAL4 
overexpression plasmid was synthesized by Sino Biologi-
cal (Beijing, China) and the overexpression efficiency was 
shown in Additional file 1: Figure S3. The small interfer-
ing RNA si-ST3GAL4 and the empty vector si-NC were 
synthesized by GenePharma (Shanghai, China). A total 
of three siRNAs were validated, among which siRNA-2 
showed the highest efficiency and was used for subse-
quent experiments (Additional file 1: Figure S4).

Pathway enrichment analysis
To quantify the activity of the seven metabolic path-
ways in a single tumor sample, gene set variation analy-
sis (GSVA) was performed using the R package “GSVA” 
to calculate the enrichment score of each pathway in 
the individual sample. Subsequently, Kaplan- Meier 
curve and log-rank test were used to explore the rela-
tionship between the seven metabolic pathways and 
overall survival (OS) of patients with osteosarcoma. 
The “surv_cutpoint” function of the “survminer” R 
package was used to determine the optimal cut-off 
point of each metabolic pathway based on the maxi-
mally selected log-rank statistics. In addition, a set of 
core biological pathway gene sets closely related to 
tumors was collected from the study of Mariathasan 
et al. and the activity of each pathway was calculated by 
GSVA [27]. This includes three epithelial mesenchymal 
transition (EMT) signatures originating from different 
publications and composed of different genes. The cor-
relation of key metabolic pathways with core biological 
pathways was then calculated using Spearman’s corre-
lation analysis. Gene set enrichment analysis (GSEA) 
between the two groups of samples was performed in 
Sangerbox (http:// vip. sange rbox. com/) using the GSEA 
software (Version 4.1.0) based on the HALLMARK and 
KEGG gene sets [28].

Identification of hub genes in the vitamin & cofactor 
metabolic pathway
The protein–protein interaction (PPI) network was con-
structed using the STRING database (https:// string- db. 
org/) and visualized using the Cytoscape software (Ver-
sion 3.8.2). The hub genes of the vitamin & cofactor 
metabolic pathway were then identified based on the 
PPI network using the “cytohubba” plugin in Cytoscape 
[29]. Gene modules in the vitamin & cofactor metabolic 
pathway were analyzed using the “MCODE” plugin. After 
matching the hub genes with RNA-Seq data, univariate 
Cox regression analysis was performed to determine the 
effect of the hub genes on OS in patients with osteosar-
coma. In addition, similar methods were used to analyze 
the hub genes of other metabolic super-pathways.

Identification of metabolic pathway‑related clusters
After identifying key metabolic pathways in osteosar-
coma, PAM-based unsupervised consensus clustering 
was used to identify potential metabolic subtypes as we 
described previously [30–32]. In brief, 1000 bootstraps 
were performed and K value was set to 2–10, and the 
optimal number of clusters was defined by the consen-
sus cumulative distribution function and the consensus 

http://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://vip.sangerbox.com/
https://string-db.org/
https://string-db.org/
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heatmap. This method was also used for the identifica-
tion of clusters based on seven metabolic pathways.

Immune infiltration analysis
The ESTIMATE algorithm is a method for inferring 
the overall level of immune infiltration in tumor tissues 
based on gene expression data and has been widely used 
in a large number of previous studies [33, 34]. This study 
used this algorithm to infer the ImmuneScore, StromalS-
core and ESTIMATEScore (inversely correlated with 
tumor purity) of patients with osteosarcoma. In addition, 
the single sample GSEA (ssGSEA) method was used to 
infer the levels of 28 immune cell infiltration in osteosar-
coma based on a previous report [35].

Identification of metabolism‑related genes (MRGs) 
in osteosarcoma
Using the R package “limma” to compare differentially 
expressed genes between different metabolic pathway-
related clusters, the threshold was set to p < 0.05 and 
 log2|fold change|> 0.25. These genes were considered as 
MRGs. Subsequently, Gene Ontology (GO) enrichment 
analysis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis were performed on MRGs. The 
prognostic role of MRGs in patients with osteosarcoma 
was analyzed using univariate Cox regression. After 
obtaining prognosis-related MRGs, potential MRG-asso-
ciated gene clusters were identified using unsupervised 
clustering analysis.

Construction of the risk model
In this study, prognosis-related MRGs were downscaled 
and hub prognostic genes were obtained using the Least 
Absolute Shrinkage and Selection Operator (LASSO) 
regression analysis. Subsequently, the hub prognostic 
genes were placed into the stepwise multivariate regres-
sion to construct risk models, and the risk model with the 
largest C-index was considered the best risk model. The 
risk model was calculated using the following formula:

where  kj is the coefficient of each gene in the risk model, 
and  Expi is the gene expression. The prediction accuracy 
of the risk score was quantified by drawing ROC curves 
using the “timeROC” R package. This R package is widely 
used to estimate time-dependent ROC curves and the 
area under the time-dependent ROC curve (AUC) in 
the presence of censoring data [36]. The package uses 
the inverse probability of censoring weighting method to 
estimate and handle censoring data.

risk score = kj × Expi

Analysis of drug sensitivity and response 
to immunotherapy
As previously described [37], normalized gene expression 
data of 809 tumor cell lines and response data for each 
cell line to three guideline-based used chemotherapeutic 
agents (cisplatin, cyclophosphamide and gemcitabine) 
for osteosarcoma and one targeted agent (sorafenib) 
with clinical application value were downloaded from 
the Drug Sensitivity in Cancer (GDSC) database, and the 
drug response data were converted to the  IC50. Then the 
 IC50 of every drug in individual osteosarcoma patient was 
estimated based on oncoPredict algorithm using the gene 
expression profile of these cell lines and drug response 
data as the training set. Maeser et al. provided a detailed 
explanation of the usage details of the oncoPredict algo-
rithm [38]. Jiang et  al. developed TIDE using RNA-Seq 
data from tumors treated with anti-PD1 and anti-CTLA4 
therapies, and identified it as an effective predictor of the 
responsiveness to these therapies [39]. In this study, it 
was used to infer the response of osteosarcoma patients 
to immune checkpoint blockade (ICB). The TIDE score 
is based on two mechanisms of tumor immune escape, 
including the dysfunction of tumor-infiltrating cyto-
toxic T lymphocytes (CTL) and the exclusion of CTLs 
by immunosuppressive factors, and three cell types that 
limit T cell infiltration in tumors, including the tumor-
associated fibroblasts (CAF), myeloid-derived suppressor 
cells (MDSC), and M2 tumor-associated macrophages 
(TAM_M2).

Single‑cell RNA‑sequencing (scRNA‑seq) analysis
The scRNA-seq dataset GSE152048 containing 11 
osteosarcoma samples was downloaded from the GEO 
database [40]. The dataset was processed and analyzed 
according to the standard procedure of the R package 
“Seurat” (v.4.3.0), and a total of 26,175 genes and 123,322 
cells were included in the study. After performing data 
downscaling and clustering, the clusters were annotated 
using the previously reported cellular markers [40]. In 
addition, the expression of ST3 beta-galactoside alpha-
2,3-sialyltransferase 4 (ST3GAL4) in the scRNA-seq 
dataset GSE162454 was also analyzed using the Tumor 
Immune Single-cell Hub (TISCH) (http:// tisch. comp- 
genom ics. org/) [41].

Quantitative reverse transcription‐PCR (RT‐qPCR)
Adding 1  ml TriPure, chloroform, isopropanol and 75% 
anhydrous ethanol to the 6-well plate to extract cell RNA. 
After quantification, RNA reverse transcription and RT-
qPCR were performed as described previously [42]. The 
PCR primers used are listed in Additional file 3: Table S2.

http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
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Cell proliferation assay
After cell transfection using the  Lipofectamine® 3000 
(Invitrogen, Carlsbad, CA, USA) according to the man-
ufacturer’s instructions, the transfected cells were cul-
tured for 24 h and inoculated in 96-well plates with 2000 
cells per well. After cell walling, cells were incubated for 
different time periods (0, 1, 2 and 3  days) and 10  µl of 
CCK-8 reagent was added to each well. After incubation 
at 37 °C for 3 h, absorbance was measured at 450 nm to 
determine cell viability.

Cell invasion and migration assays
Cell invasion ability was measured using the Transwell 
assay and cell migration ability was measured using the 
scratch assay. The Transwell and scratch assays were car-
ried out as described previously [9]. The scratch assay 
was incubated for 36 h. For Cell invasion assay, the cells 
were resuspended in serum-free medium and placed 
in the upper chamber of the Transwell system. Culture 
medium with 10% serum was added to the lower cham-
ber and was used as a chemoattractant. After 24  h of 
incubation, the cells were stained and counted.

Colony formation assay
MG-63 and U2OS cells with knocked down or overex-
pressed ST3GAL4 were seeded in 6-well plates at a den-
sity of 1000 cells per well. After 10 days of cultivation, the 
cells were fixed with 4% paraformaldehyde at room tem-
perature for 30 min. Subsequently, the cells were stained 
with 0.1% crystal violet, and the number of colonies in 
each well was counted.

Seahorse assays
10,000 tumor cells were seeded in a Seahorse 96-well 
assay plate and incubated overnight. The probe plates 
were pretreated and the calibration solution was pre-
pared following the manufacturer’s protocol. Subse-
quently, the probe plates were placed in a  CO2-free 
incubator overnight. After the overnight incubation, the 
detection solution was prepared as per the instructions 
of the Glycolysis Stress Test kit (Agilent Technologies, 
#103020-100) and the reagents were added sequentially. 
Real-time metabolic changes in cells were detected using 
the Agilent Seahorse XFe96 (Agilent Technologies).

Co‑culture experiment and flow cytometry assay
Co-culture was performed using the Boyden chamber, 
M0 macrophages were seeded at upper chamber and 
tumor cells were seeded at lower chamber. After 48  h, 
cells from the upper chamber were collected. For flow 
cytometry assay, cells were prepared for single cell sus-
pension and were fixed with 2% paraformaldehyde solu-
tion in PBS.

Then, cells were fixed and permeabilized with the FIX 
& PERM Kit (MultiSciences Biotech, Hangzhou, China) 
and stained with CD206 (321104; Biolegend). A FACS 
flow cytometer (BD FACS LSRFortessa, USA) was used 
for the flow cytometry analysis.

Immunohistochemistry (IHC)
IHC was carried out as described previously [43]. The 
rabbit polyclonal antibody to ST3GAL4 was purchased 
from Invitrogen (PA5-62056, 1:200 dilution). Two 
blinded pathologists scored the intensity and percent-
age of positive cells for ST3GAL4 staining. The intensity 
was scored as follows: 0 (negative), 1 (weakly positive), 2 
(moderately positive), and 3 (strongly positive). The per-
centage of ST3GAL4-positive cells was scored as follows: 
0 (0%), 1 (1–25%), 2 (26–50%) and 3 (> 50%). The IHC 
score was defined as the sum of the intensity score and 
the percentage score of positive cells.

Statistical analysis
Differences between two groups were compared using 
unpaired Student’s t-test or Wilcoxon rank sum test. For 
comparisons between more than two groups, differences 
were compared using one-way ANOVA or Kruskal–
Wallis test. The correlation between two groups was 
calculated using Sperman’s correlation analysis. Unless 
otherwise indicated, statistical significance was set at 
two-sided p < 0.05. All statistical calculations were per-
formed using R software (Version 4.2.1).

Results
Identification of key metabolic pathways in osteosarcoma
Metabolic heterogeneity may lead to differences in clini-
cal outcomes, and we are committed to exploring the key 
metabolic pathways associated with clinical outcomes. 
After quantifying the activity of the seven metabolic 
super-pathways, Kaplan–Meier curve analysis identi-
fied four key metabolic pathways that were significantly 
associated with prognosis. Higher levels of carbohydrate 
(p = 0.038), energy (p = 0.017), lipid (p = 0.010), and vita-
min & cofactor metabolism (p = 0.009) were associ-
ated with better OS in osteosarcoma (Fig.  1A). Among 
them, vitamin & cofactor metabolism has the highest 
significance. These four key metabolic pathways were 
first explored in relation to the overall level of immune 
infiltration. As shown in Fig.  1B, only vitamin & cofac-
tor metabolism is significantly positively correlated with 
overall immune and stromal infiltration and negatively 
correlated with tumor purity. Further analysis of immune 
cell infiltration revealed a potential positive correlation 
between vitamin & cofactor metabolism and infiltra-
tion of most immune cells, including activated CD8 T 
cells and activated dendritic cell (Fig.  1C). Consistently, 
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in the subgroup analysis, only the high vitamin & cofac-
tor metabolism group showed higher levels of immune 
cell infiltration compared to the low vitamin & cofactor 
metabolism group (Additional file  1: Figure S5). Due to 
the positive correlation with vitamin & cofactor metabo-
lism, carbohydrate and lipid metabolism were also posi-
tively correlated with infiltration of some immune cells. 
Immune checkpoint analysis only found a potential 
positive correlation between hepatitis A virus cellular 
receptor 2 (HAVCR2) and metabolic pathways (Fig. 1D). 
Moreover, a robust positive correlation prevails among 
diverse immune characteristics, encompassing immune 
checkpoints and the infiltration of immune cells (Addi-
tional file 1: Figure S6). Core biological pathway analysis 
revealed that vitamin & cofactor metabolism was poten-
tially associated with immune-related biological path-
ways, such as CD8 T effector, antigen processing and 
immune checkpoint (Fig. 1E). The results of the subgroup 
analysis further confirmed these findings (Additional 
file  1: Figure S7). Lipid metabolism was associated with 
some immune pathways, but also with cell cycle and mis-
match repair. Overall, vitamin & cofactor metabolism is 
the important metabolic pathway affecting prognosis and 
TIME in osteosarcoma.

Identification of hub genes in the vitamin & cofactor 
metabolic pathway
Given the importance of the vitamin & cofactor meta-
bolic pathway, we constructed a PPI network of path-
way genes and found extensive interactions (Fig. 2A). In 
addition, the top 10 hub genes in the vitamin & cofactor 
metabolic pathway were identified according to the PPI 
network (Fig. 2B). Notably, most of the hub genes belongs 
to the apolipoprotein (APO) family, indicating the central 
role of APO family genes in vitamin & cofactor metabo-
lism. Eight hub genes were subsequently matched in the 
RNA-Seq data of the TARGET cohort, and correlation 
analysis showed some positive correlations among the 
APO family genes in the eight hub genes (Fig. 2C). Uni-
variate Cox regression analysis showed that APOB and 
APOE were significantly associated with OS in patients 
with osteosarcoma (Fig.  2D). Furthermore, two gene 
modules were also identified from the PPI network, one 

of which contains many APO family genes (Fig.  2E). 
Furthermore, hub genes were identified in three other 
prognostic-related metabolic super-pathways (Additional 
file 1: Figure S8-S10). Among them, the top 10 hub genes 
in the carbohydrate metabolism pathway are not associ-
ated with prognosis. The top 10 hub genes in the energy 
metabolism pathway are mainly composed of the G pro-
tein family, and GNG4 and GNG10 have prognostic sig-
nificance. The top 10 hub genes in the lipid metabolism 
pathway are mainly composed of the mediator complex 
family, and only CD36 among the top 10 genes has prog-
nostic significance. Moreover, we have also constructed 
interaction networks and identified hub genes in three 
additional non-prognostic metabolic super-pathways 
(Additional file 1: Figure S11-S13).

Identification of metabolic pathway‑related clusters 
and the relationship between clusters and TIME 
in osteosarcoma
To systematically assess the metabolic patterns of osteo-
sarcoma, the four key metabolic pathways were analyzed 
using unsupervised clustering. As shown in Fig. 3A, oste-
osarcoma samples can be clearly divided into two distinct 
metabolic pathway-related clusters (C1 and C2). C1 has a 
higher level of energy metabolism compared to C2, while 
C2 has a higher lipid and vitamin & cofactor metabolism 
(Fig.  3B, C). Survival analysis showed that C1 patients 
had relatively better long-term OS and RFS, but it did not 
reach statistical significance, which could be attributed to 
the limitation in sample size (Fig. 3D, E).

We also explored the relationship between metabolic 
clusters and osteosarcoma TIME. Immune checkpoint 
analysis showed that C2 had higher CD274 (PD-L1) and 
HAVCR2 expression than C1 (Fig. 3F), suggesting higher 
immunosuppression in C2. Immune cell infiltration anal-
ysis showed that C2 had a higher infiltration of activated 
CD4 and CD8 T cells, as well as a higher infiltration of 
regulatory T cells that exerted immunosuppressive 
effects (Fig.  3G, H). However, there was no significant 
difference in the overall level of immune infiltration 
between C1 and C2 samples (Fig.  3I). Core biological 
pathway analysis revealed that C2 had higher levels of 
antigen processing, CD8 T effector and mismatch repair, 

Fig. 1 Identification of key metabolic pathways in osteosarcoma. A Kaplan–Meier curves depict the overall survival difference between pathway 
activity-high and pathway activity-low groups in the TARGET cohort. Red representing the pathway activity-high group and blue representing 
the pathway activity-low group. B Correlations between four key metabolic pathways and immune infiltration scores, only correlations that are 
significant are shown. C Correlations between four key metabolic pathways and abundance of 28 immune cells, only correlations that are significant 
are shown. D Correlations between four key metabolic pathways and expression of immune checkpoint genes. E Correlations between four key 
metabolic pathways and known core biological pathway scores. Correlation coefficients are calculated by Spearman’s correlation analysis, with red 
representing negative correlations and blue representing positive correlations. Blank represents a correlation P-value > 0.05

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Fig. 2 PPI network and hub genes in the vitamin & cofactor metabolic pathway. A PPI network of vitamin & cofactor metabolic pathway genes 
according to the STRING database. B The top 10 hub genes of vitamin & cofactor metabolic pathway genes. C Correlations among eight matched 
hub genes in the TARGET cohort. Red representing negative correlations and blue representing positive correlations. Blank represents a correlation 
P-value > 0.05. D Univariate Cox regression analysis of overall survival for eight hub genes. E The two gene modules identified from the PPI network
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and C1 had higher levels of EMT and fibroblast growth 
factor receptor 3 (FGFR3)-related genes (Fig.  3J). It is 
noteworthy that we also identified two clusters based on 
seven metabolic pathways (7MC1 and 7MC2). However, 
there were no obvious differences observed in terms of 
prognosis, immune checkpoint expression, immune infil-
tration, and core biological pathways between 7MC1 and 
7MC2 (Additional file 1: Figure S14).

Identification of MRG‑related gene clusters
To further characterize and understand the biological 
features of metabolic pathway-related clusters and to 
find a more effective classification, we identified 1218 
differentially expressed MRGs between C1 and C2. Not 
surprisingly, GO enrichment analysis showed that MRGs 
were mainly enriched in biological processes related to 
antigen presentation and cellular respiration as well as 
mitochondria-related cellular components (Fig.  4A). 
KEGG pathway analysis also showed that MRGs were 
enriched in pathways represented by antigen processing 
and oxidative phosphorylation (Fig. 4B). Then 114 repre-
sentative prognosis-related MRGs were identified by Cox 
regression analysis (Additional file  4: Table  S3). Based 
on these representative MRGs, osteosarcoma patients 
were divided into 3 distinct patient groups, termed 
MRG-associated gene clusters 1–3 (GC1-3, Fig.  4C). 
GC1 had the highest level of energy metabolism among 
the three clusters, while GC2 and 3 had higher level of 
vitamin & cofactor metabolism (Fig.  4D, E). Survival 
analysis showed significant prognostic differences among 
gene clusters, with GC2 having the best OS (p = 0.0002) 
and the best RFS (p < 0.0001), while GC3 had the worst 
(Fig. 4F, G).

The relationship between MRG‑related gene clusters 
and TIME in osteosarcoma
To understand whether significant prognostic differ-
ences among gene clusters were associated with TIME, 
we first assessed the overall immune infiltration differ-
ences across GC1-3. As shown in Fig. 5A, GC2 had the 
highest ImmuneScore and the lowest tumor purity, rep-
resenting a better immune response, while there was 
no significant difference in StromalScore among gene 

clusters. More detailed analysis of immune cell infiltra-
tion showed that GC2 and GC3 had higher infiltration of 
immune activating and immunosuppressive cells (Fig. 5B, 
C). In addition, GC2 and GC3 also had higher expression 
of immune checkpoint genes (Fig. 5D). Although in the 
core biological pathway analysis both GC2 and GC3 had 
higher activity of immune-related pathways such as anti-
gen processing, immune checkpoint and CD8 T effector 
and lower EMT and FGFR3-related genes. GC2 had sig-
nificantly lower Wnt signaling pathway activity than GC3 
(Fig. 5E), which may be one of the reasons of the prog-
nostic differences between the two. Further GSEA anal-
ysis showed that GC3 had the worst prognosis despite 
high immune infiltration probably due to the highly acti-
vated MYC and MTOR pathways (Fig. 5F).

Construction of a metabolism‑related risk model 
and the relationship between the risk model and TIME
To further construct a metabolism-related risk predic-
tion tool, 114 prognosis-related MRGs were first down-
scaled and 25 hub prognosis MRGs were identified using 
LASSO regression analysis (Additional file  1: Figure 
S15). The optimal risk model containing 17 core MRGs 
was subsequently constructed by stepwise multivariate 
regression analysis. There are some correlations among 
the expression of the 17 MRGs (Additional file  1: Fig-
ure S16). Figure  6A illustrates the coefficients of each 
MRGs in the risk model. After dividing the TARGET 
cohort into two groups by the median risk score, it was 
seen that patients with osteosarcoma in the low-risk 
group had significantly better OS (Fig.  6B, p < 0.0001). 
Using the GSE16091 cohort as an independent validation 
cohort, although only 15 risk MRGs could be matched, 
patients with low risk score in this cohort still had a bet-
ter prognosis than patients with high risk scores (Fig. 6C, 
p = 0.05). The ROC curve showed that the risk score was a 
good predictor of OS in the TARGET cohort, with AUCs 
of 0.987, 0.979, and 0.985 at 1, 3, and 5 years, respectively 
(Fig. 6D). In addition, patients with high risk scores had 
significantly worse RFS (Fig. 6E, p < 0.0001), and the risk 
score also had good efficiency in predicting RFS (Fig. 6F).

To understand the differences in TIME across risk 
groups, ESTIMATE analysis was performed. It found 

Fig. 3 Metabolic pathway-related clusters and the relationship between clusters and TIME in osteosarcoma. A Consensus heatmap based on four 
key metabolic pathways in the TARGET cohort. B The heatmap of four key metabolic pathways between C1 and C2. C Differences of four key 
metabolic pathways between C1 and C2. D, E Kaplan–Meier curves depict the OS (D) and RFS (E) difference between C1 and C2. Red representing 
the C1 patients and blue representing the C2 patients. F Differences of immune checkpoint genes expression between C1 and C2. G The heatmap 
of 28 immune cells between the two clusters and the correlations of the clusters and clinical parameters. H Differences of the abundance of 28 
immune cells between C1 and C2. I Differences of ImmuneScore, StromalScore and tumor purity between C1 and C2. J Differences of core 
biological pathway activity between C1 and C2. *P < 0.05, **P < 0.01, ****P < 0.0001

(See figure on next page.)
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that low-risk patients had higher ImmuneScore and Stro-
malScore and lower tumor purity than high-risk patients 
(Fig.  6G), implying that low-risk patients had higher 
overall immune and stromal infiltration. The heatmap 
demonstrated the relationship between risk score and 
immune cell infiltration and clinical parameters such as 
survival status (Additional file 1: Figure S17). As shown 
in Fig. 6H, high-risk patients had significantly lower lev-
els of immune cell infiltration, such as activated CD8 T 
cells, than low-risk patients. In addition, low-risk patients 
also had higher immune checkpoint gene expression 
(Fig. 6I). In the correlation analysis, consistent with these 
findings, the risk score was negatively correlated with 
the level of immune cells infiltration and the expression 
of immune checkpoint genes (Additional file  1: Figure 
S18A-C). In the core biological pathway analysis, the risk 
score potentially exhibited a negative correlation with 
antigen processing, CD8 T effector, and immune check-
point (Fig. 6J). Differential analysis revealed that patients 
with high-risk scores had lower enrichment levels of 
CD8 T effector and immune checkpoints (Additional 
file 1: Figure S18D). The alluvial diagram in Fig. 6K dem-
onstrated the relationship among metabolism clusters, 
MRG-related gene clusters, and risk levels. GC1 patients 
were mainly from C1 and GC3 patients were mainly from 
C2. In addition, most GC2 patients were assigned to the 
low-risk group and most GC3 patients were assigned to 
the high-risk group.

Immunotherapy response and drug sensitivity analysis
It is well known that higher TIDE score is associated with 
lower response to ICB treatment [39].The TIDE score 
helps in the clinical selection of patients who may be suit-
able for ICB treatment and in identifying responders. 
This study explored the relationship between metabo-
lism clusters, MRG-related gene clusters, and risk score 
with ICB treatment response by TIDE score. There is no 
difference in TIDE score between the different metabo-
lism clusters (Fig. 7A). Among the different MRG-related 
gene clusters, GC3 had the lowest CTL dysfunction, 
exclusion, and TIDE scores (Fig.  7B), indicating a good 
response to ICB treatment. The risk score is potentially 
negatively correlated with the CTL dysfunction score, 
but potentially positively correlated with the MDSC 
score (Fig. 7C). Consistent with these results, there was 

no significant difference in ICB response between C1 and 
C2 and between high and low risk groups, but GC3 had 
the highest proportion of ICB responders (Fig. 7D), sug-
gesting that the MRG-related gene cluster may be a good 
predictor of ICB response.

Three guideline-based used chemotherapeutic agents 
(cisplatin, cyclophosphamide and gemcitabine) for osteo-
sarcoma and one targeted agent (sorafenib) with clinical 
application value were retrieved from the GDSC data-
base. Then, the relationship of these drugs with different 
clusters as well as the risk score was explored. As shown 
in Fig. 7E, C2 patients had lower half-maximal inhibitory 
concentration (IC50) values for cisplatin and gemcit-
abine than C1 patients, indicating that C2 patients were 
more sensitive to cisplatin and gemcitabine. Among the 
MRG-related gene clusters, the IC50 values of cisplatin, 
gemcitabine, and sorafenib were sequentially lower in 
GC1-GC3, indicating the different sensitivity of the three 
clusters to these three drugs (Fig. 7F). Although the risk 
score did not correlate with IC50 values for these drugs 
(Fig. 7G), we screened for 18 drugs that were significantly 
associated with the risk score (Additional file 5: Table S4). 
Therefore, the risk score may serve as the predictor of 
sensitivity to these drugs.

ST3GAL4 is highly expressed in malignant cells 
and is closely associated with the TIME of osteosarcoma
In the above results we identified 17 core MRGs to con-
struct a risk model. The advent of scRNA-seq has ena-
bled researchers to investigate the activity of genes across 
diverse cell types. The activation of genes in malignant 
cells can significantly impact their biological behav-
ior, consequently influencing tumor progression. To 
delve deeper into the expression patterns of the 17 core 
MRGs across distinct cell types, we initially identified 
11 major cell types using characteristic gene expression 
in the scRNA-seq cohort GSE152048 (Fig.  8A, B). Sub-
sequently, ST3GAL4 was found to not only have a high 
positive coefficient in the risk model, but also to be pre-
dominantly expressed in malignant cells (osteoblastic and 
chondroblastic osteosarcoma cells) compared to other 
core MRGs (Fig. 8C, Additional file 1: Figure S19 A, C). 
Notably, the violin plot showed that ST3GAL4, rather 
than other MRGs, was specifically highly expressed in 
proliferating osteoblastic osteosarcoma cells (Fig.  8D, 

(See figure on next page.)
Fig. 4 Enrichment analysis of MRGs and identification of MRG-related gene clusters. A The top eight enriched terms in GO enrichment analysis 
of MRGs. B The KEGG pathway analysis networks of MRGs. C Consensus heatmap based on MRGs in the TARGET cohort. D The heatmap of four 
key metabolic pathways among GC1-3. E Differences of four key metabolic pathways among GC1-3. F, G Kaplan–Meier curves depict the OS (F) 
and RFS (G) difference among GC1-3. Red representing the GC1 patients, blue representing the GC2 patients, and yellow representing the GC3 
patients. *P < 0.05, **P < 0.01
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Fig. 5 The relationship between MRG-related gene clusters and TIME in osteosarcoma. A Differences of ImmuneScore, StromalScore and tumor 
purity among GC1-3. B The heatmap of 28 immune cells among the three gene clusters and the correlations of the gene clusters and clinical 
parameters. C Differences of the abundance of 28 immune cells among GC1-3. D Differences of immune checkpoint genes expression 
among GC1-3. E Differences of core biological pathway activity among GC1-3. F GSEA enrichment plot based on the HALLMARK gene set showing 
the relatively significantly enriched pathways in GC3 patients. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Additional file 1: Figure S19 B, D), suggesting the poten-
tially important role of ST3GAL4 in the proliferation of 
osteosarcoma cells. Importantly, it was also verified in 
the scRNA-seq cohort GSE162454 that ST3GAL4 was 
predominantly expressed in malignant cells (Fig. 8E).

Further, osteosarcoma patients with high ST3GAL4 
were found to have significantly worse OS and RFS 
(Fig. 8F, all p < 0.001). C2 samples had significantly higher 
ST3GAL4 expression compared to C1 samples (Fig. 8G), 
and, although not statistically significant, GC2 samples 
had relatively lower ST3GAL4 expression compared to 
GC1 and GC3 samples (Fig.  8H). Immune checkpoint 
analysis revealed that samples with high ST3GAL4 
had significantly lower expression of CD274, cytotoxic 
T-lymphocyte associated protein 4 (CTLA4), HAVCR2 
and programmed cell death 1 ligand 2 (PDCD1LG2) 
(Fig. 8I). Samples with high expression of ST3GAL4 also 
had lower ImmuneScore, StromalScore and higher tumor 
purity (Fig.  8J). Analysis based on the TIDE algorithm 
revealed that ST3GAL4 expression was positively corre-
lated with MDSC score and TAM-M2 score (Fig. 8K), but 
not correlated with CAF score, TIDE score, and dysfunc-
tion and exclusion of CTLs (Additional file 1: Figure S20). 
Taken together, samples with high ST3GAL4 may have 
difficulty responding to ICB treatment. The response pre-
diction based on the TIDE algorithm also demonstrated 
that patients with high ST3GAL4 had a relatively low ICB 
response rate (Fig.  8L). However, there was no signifi-
cant associations between ST3GAL4 and sensitivities to 
cisplatin, cyclophosphamide, gemcitabine and sorafenib 
(Additional file 1: Figure S21). ST3GAL4 expression was 
potentially positively correlated with cell cycle and mis-
match repair and potentially negatively correlated with 
immune checkpoint and Pan-F-TBRS (Fig. 8M).

The ST3GAL family consists of six members 
(ST3GAL1-6), and it is necessary to further analyze 
the other members of this family. ScRNA-seq analy-
sis showed that other ST3GAL members were not spe-
cifically highly expressed in proliferating malignant cells 
(Additional file  1: Figure S22A, B). In addition, survival 
analysis showed that only ST3GAL1 was associated with 

shorter OS and RFS in osteosarcoma, but its prognos-
tic value was not as significant as ST3GAL4 (Additional 
file  1: Figure S22C-G). Immune-related analysis found 
that only ST3GAL2 was associated with overall immune 
infiltration in osteosarcoma, but immune checkpoint 
analysis failed to find a widespread correlation (Addi-
tional file  1: Figure S22H, I). Furthermore, it was found 
that ST3GAL5 and ST3GAL6 were negatively correlated 
with TIDE score, MDSC score, CAF score, exclusion 
of CTLs, and some core biological pathways includ-
ing EMT (Additional file  1: Figure S22J, K). In sum-
mary, only ST3GAL4 in the ST3GAL family is associated 
with both the prognosis and immune characteristics of 
osteosarcoma.

ST3GAL4 is a potential prognostic marker and associated 
with tumor progression, glycolysis and the M2 polarization 
of macrophages in osteosarcoma
To verify the clinical application, IHC staining was per-
formed on osteosarcoma and normal tissue samples. 
The protein expression of ST3GAL4 was found to be 
significantly higher in tumor tissue than in normal tis-
sue (Fig.  9A). Survival analysis indicated that patients 
with high ST3GAL4 protein expression had shorter RFS 
(Fig.  9B, p = 0.0014). We knocked down and overex-
pressed ST3GAL4 in the osteosarcoma cell lines MG-63 
and U2OS to explore its effect on the malignant phe-
notype of osteosarcoma cells. After the knockdown of 
ST3GAL4, the proliferation, invasion, migration and the 
ability of colony formation of MG-63 and U2OS were all 
inhibited (Fig.  9C–F). After overexpressing ST3GAL4, 
the malignant phenotypes mentioned above were all 
enhanced.

Although no correlation was found between ST3GAL4 
and the four metabolic super-pathways (Additional 
file 1: Figure S23), based on previous studies [44–48], we 
speculate that ST3GAL4 may have a potential associa-
tion with glycolysis. To further explore the relationship 
between ST3GAL4 and glycolysis, seahorse assay was 
conducted. As expected, the knock down of ST3GAL4 
reduced the basal glycolysis level and maximal glycolysis 

(See figure on next page.)
Fig. 6 Construction of a metabolism-related risk model and the relationship between the risk model and TIME. A Coefficients for the 17 genes 
in the risk model. B Kaplan–Meier curve depicts the OS difference between high-risk and low-risk groups in the TARGET cohort. Red representing 
the high-risk group and blue representing the low-risk group. C Kaplan–Meier curve depicts the OS difference between high-risk and low-risk 
groups in the GSE16091 cohort. Red representing the high-risk group and blue representing the low-risk group. D ROC curve analysis of the risk 
score for OS in the TARGET cohort. E Kaplan–Meier curve depicts the RFS difference between high-risk and low-risk groups in the TARGET cohort. 
Red representing the high-risk group and blue representing the low-risk group. F ROC curve analysis of the risk score for RFS in the TARGET cohort. 
G Differences of ImmuneScore, StromalScore and tumor purity between high and low risk groups. H Differences of the abundance of 28 immune 
cells between high and low risk groups. I Differences of immune checkpoint genes expression between high and low risk groups. J Differences 
of core biological pathway activity between high and low risk groups. K Alluvial diagram of metabolism clusters, MRG-related gene clusters, and risk 
levels. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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level in osteosarcoma cells (Fig.  10A, B). Furthermore, 
through the co-culture system, we explored the impact of 
ST3GAL4 on macrophage polarization. RT-PCR analy-
sis showed that the knock down of ST3GAL4 signifi-
cantly decreased the expression of the M2 macrophage 
marker CD206 (Fig.  10C). Interestingly, the expres-
sion of PD-L1 in macrophages was also reduced in the 
ST3GAL4 knockdown group (Fig. 10C). Flow cytometry 
analysis further confirmed a lower proportion of M2 
macrophages in the ST3GAL4 knockdown group com-
pared to the control group, confirming the regulation of 
ST3GAL4 on macrophage polarization in osteosarcoma 
(Fig. 10D).

Discussion
Metabolic reprogramming is considered to be one of the 
hallmarks of cancer [2, 49]. The metabolic activity of can-
cer is extremely complex and needs to be systematically 
characterized. However, several previous studies have 
demonstrated considerable heterogeneity in the expres-
sion of genes involved in various metabolic pathways 
[50–54], and thus, metabolic gene expression alone can-
not accurately reflect the metabolic changes in tumors. 
Based on studies with parallel metabolomics data as well 
as transcriptomics data, Peng et  al. proved that meta-
bolic pathway-based expression patterns reflect the true 
metabolic status well [26]. Therefore, the investigation of 
osteosarcoma metabolism from metabolic pathways is 
equally promising. Current studies on the metabolic pro-
file of osteosarcoma tend to focus only on a specific met-
abolic pathway [23, 24, 55], and the authors are not aware 
that any studies have yet examined the impact of differ-
ent metabolic pathways on osteosarcoma from a holistic 
perspective. In addition, it is well known that metabolic 
activity greatly influences the formation of TIME [15–
17], therefore it is necessary to further reveal the relation-
ship between metabolism and TIME in osteosarcoma.

In this study, we first explored the impact of enrichment 
levels of the seven most prominent metabolic super-path-
ways on the prognosis of osteosarcoma. Unexpectedly, 
four of the seven metabolic super-pathways (carbohy-
drate, lipid, energy, and vitamin & cofactor) were all asso-
ciated with better OS in osteosarcoma. This appears to 
be a departure from previous knowledge that cancer cells 
have an increased need for glucose and energy uptake 

[56]. However, in agreement with our study, Peng et  al. 
found that lipid metabolism was associated with a better 
prognosis for a variety of tumors in a pan-cancer analysis, 
and energy metabolism showed a heterogeneous prog-
nostic correlation [26]. Notably, they found that carbohy-
drate and vitamin & cofactor metabolism were associated 
with worse prognosis in tumors, which is different to our 
results in osteosarcoma. They are highly heterogeneous 
tumors containing multiple subtypes including osteo-
blastic and chondroblastic osteosarcoma [57]. The exact 
characteristics of osteosarcoma metabolism remain to 
be elucidated, which may result in a different metabolic 
pattern from other tumors as well as clinical relevance. 
It should not be overlooked that a large number of pre-
vious studies have focused on carbohydrate metabolism 
in osteosarcoma [57–60]. In this study, the most signifi-
cant difference was found between OS of osteosarcoma 
with different levels of vitamin & cofactor metabolism, 
implying that vitamin & cofactor metabolism may largely 
influence the prognosis of osteosarcoma. Importantly, 
vitamin & cofactor metabolism was strongly correlated 
with immune and stromal cell infiltration in the TIME of 
osteosarcoma, and carbohydrate and vitamin & cofactor 
metabolism were also correlated with infiltration levels 
of various antitumor immune cells such as effector mem-
ory CD8 T cells. Previous studies have demonstrated 
that higher immune cell infiltration in osteosarcoma is 
associated with better prognosis [9], which may par-
tially explain why osteosarcoma patients with high lev-
els of carbohydrate and vitamin & cofactor metabolism 
have better clinical outcomes. Given the importance of 
vitamin & cofactor metabolism in osteosarcoma prog-
nosis and TIME, further in-depth study of its mecha-
nism in osteosarcoma and development of therapeutic 
strategies targeting the vitamin & cofactor metabolism 
may be promising. Further, we identified the hub genes 
in the vitamin & cofactor metabolic pathway. Remark-
ably, most of the hub genes belonged to the APO family. 
APOs are proteins that bind to lipids (such as cholesterol 
and triglycerides) in the blood, forming lipoproteins and 
transporting them through the bloodstream to cells and 
tissues. Lipoproteins play an important role in vitamin 
metabolism. For example, APOA is the main component 
of high-density lipoprotein (HDL) and is directly corre-
lated with the level of vitamin E in the blood, promoting 

Fig. 7 Immunotherapy response and drug sensitivity analysis. A Differences of TIDE-related scores between C1 and C2. B Differences of TIDE-related 
scores among GC1-3. C Correlations of the risk score with TIDE-related scores. D Rate of predicted clinical response to ICB immunotherapy 
in different clusters and risk levels. E Differences in IC50 values of cisplatin, cyclophosphamide, gemcitabine and sorafenib between C1 and C2. 
F Differences in IC50 values of cisplatin, cyclophosphamide, gemcitabine and sorafenib among GC1-3. G Correlations of the risk score with IC50 
values of cisplatin, cyclophosphamide, gemcitabine and sorafenib. *P < 0.05, **P < 0.01, ****P < 0.0001

(See figure on next page.)
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its absorption in the intestines [61]. In colon cancer cells, 
APOB also participates in the transport of vitamin E [62]. 
In addition, APOE largely affects the concentration of 
fat-soluble vitamins in plasma [63]. Recent studies have 
found that APOC1 promotes osteosarcoma progres-
sion through binding to MTCH2 [64], and preoperative 
APOB/APOA1 has been identified as an independent 
prognostic factor for osteosarcoma in children and ado-
lescents [65]. In addition, APOD induced the osteoblastic 
differentiation of the osteosarcoma cell line Sao-2 [66]. 
This suggests that the APO family may regulate osteosar-
coma vitamin & cofactor metabolism and affect the prog-
nosis of osteosarcoma.

Based on the activity levels of the four clinically relevant 
key metabolic super-pathways, two distinct metabolic 
pathway-related clusters (C1 and C2) were identified in 
a cluster analysis. C1 is mainly characterized by energy 
metabolism, while C2 is characterized by lipid and vita-
min metabolism. Although C1 and C2 do have distinct 
metabolic characteristics, there was no significant dif-
ference in survival between them due to the limitation 
in sample size. It is necessary to explore the prognostic 
differences between them in larger cohorts in the future. 
It is noteworthy that C2 patients were more sensitive to 
cisplatin and gemcitabine. Therefore, this classification 
may be appropriate to identify osteosarcoma patients 
with different metabolic profiles and to guide the dosing 
of cisplatin and gemcitabine. To further explore the clini-
cal significance of the metabolic profile of osteosarcoma, 
we identified MRGs based on metabolic pathway-related 
clusters. It should not be overlooked that MRGs were 
enriched not only in metabolism-related pathways, such 
as oxidative phosphorylation, but also in immune-related 
pathways, including antigen processing and presenta-
tion. Previous studies have demonstrated that metabo-
lites in TIME affect the differentiation and function of 
immune cells, thereby modulating the immune response 
[67, 68]. The results further emphasize the importance 

of the metabolism in the immune regulation of osteosar-
coma. Previous studies have shown that many metabolic 
genes are also important immunomodulatory genes. 
For instance, Wolf et al. found that hexokinase, which is 
involved in the process of glycolysis, is an important reg-
ulator of innate immunity [69], demonstrating the over-
lap between cellular energy metabolism and the immune 
system. PDCD1 (also known as PD-1), a well-known 
immune checkpoint gene, has been identified to inter-
act with arginine biosynthesis or fatty acid degradation 
and elongation [70]. According to the identified MRGs, 
we defined MRGs-related gene clusters (GC1-3), which 
may have more important clinical translational implica-
tions than metabolic pathway-related clusters. Firstly, 
the significantly different clinical outcomes among GCs 
suggest that these GCs reflect essential aspects of tumor 
development and can be used as potential prognostic 
predictors. Secondly, different GCs had significantly dif-
ferent TIME, that is, GC2 and GC3 had higher immune 
infiltration and were more likely to respond to ICB treat-
ment, suggesting that this classification approach may 
facilitate the development of personalized ICB treatment 
strategies for osteosarcoma. In addition, differences in 
sensitivity to cisplatin, gemcitabine and sorafenib among 
GCs also suggest their potential to guide clinical dos-
ing. From a mechanistic perspective, GC3 with the worst 
prognosis exhibits higher activity in the MYC and mTOR 
pathways. MYC is one of the most frequently dysregu-
lated oncogenes known so far, highly expressed in various 
tumors including osteosarcoma [71]. Its expression pro-
motes tumor progression by providing sufficient energy 
and metabolic substrates for uncontrolled cell prolifera-
tion [72, 73]. The mTOR pathway is also abnormally acti-
vated in many cancers, including human osteosarcoma 
[74]. In osteosarcoma, mTOR promotes cell growth and 
proliferation, induces cell metastasis, inhibits apoptosis, 
and suppresses autophagy [74]. Therefore, the activa-
tion of the MYC and mTOR pathways may be one of the 

(See figure on next page.)
Fig. 8 ST3GAL4 is highly expressed in malignant cells and is closely associated with the TIME of osteosarcoma. A The dot plot shows the expression 
of 41 characteristic genes in 11 cell clusters. The size of the dots indicates the proportion of cells expressing a specific marker, and the color 
indicates the average expression level of the markers. MSC, mesenchymal stem cell; TIL, tumor-infiltrating lymphocyte. B The t-SNE plot 
of the 11 main cell types in osteosarcoma. C Feature plot for ST3GAL4. The color legend shows the normalized expression levels of the genes. 
D Violin plot showing the normalized expression levels of ST3GAL4 across the 11 cell types. E Expression of ST3GAL4 among different cell types 
in the GSE162454 cohort. The color indicates the average expression level of ST3GAL4. F Kaplan–Meier curves depict the OS and RFS difference 
between high-ST3GAL4 and low-ST3GAL4 groups in the TARGET cohort. Red representing the high-ST3GAL4 group and blue representing 
the low-ST3GAL4 group. G Differences of the expression of ST3GAL4 between C1 and C2. H Differences of the expression of ST3GAL4 among GC1-3. 
I Differences of immune checkpoint genes expression between high-ST3GAL4 and low-ST3GAL4 groups. *P < 0.05. J Differences of ImmuneScore, 
StromalScore and tumor purity between high-ST3GAL4 and low-ST3GAL4 groups. K Correlations of the expression of ST3GAL4 with MDSC 
score and TAM-M2 score. L Rate of predicted clinical response to ICB immunotherapy in high-ST3GAL4 and low-ST3GAL4 groups. M Correlations 
between the expression of ST3GAL4 and known core biological pathway scores. Correlation coefficients are calculated by Spearman’s correlation 
analysis, with red representing negative correlations and blue representing positive correlations. Blank represents a correlation P-value > 0.05
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intrinsic factors contributing to the poor prognosis of 
GC3. It is worth noting that the Wnt signaling pathway is 
highly active in both GC1 and GC3. This signaling path-
way is associated with tumorigenesis and can regulate 
the metastasis of osteosarcoma cells through autocrine 
or paracrine mechanisms, thus reducing patient survival 
rate [75]. This may be one of the reasons for the poor 
prognosis of GC3. Admittedly, in GC1, the activation 
of immune response contributes to a better prognosis 
even with higher Wnt pathway activity. This reflects the 
importance of immune response in the survival of GC1.

Furthermore, we downscaled the MRGs by mul-
tiple algorithms and identified 17 core MRGs and 
constructed a risk model. It has shown that risk strati-
fication could significantly improve the treatment out-
come of many tumors including osteosarcoma [9, 76, 
77]. This risk model has good efficacy and was vali-
dated in an independent cohort, suggesting its poten-
tial value of clinical application. In addition, the risk 
model reflects the different immune status for osteo-
sarcoma, whereby patients with higher risk score have 
lower immune infiltration, which is consistent with 
previous studies [9]. Remarkably, scRNA-seq-based 
analysis revealed that ST3GAL4, one of the 17 core 
MRGs, was highly expressed in proliferating malignant 
cells. Mechanistically, ST3GAL4 was also associated 
with cell cycle and mismatch repair, further suggest-
ing that ST3GAL4 influences the development of oste-
osarcoma. The ST3GAL4 gene encodes the enzyme 
Galβ1-4GlcNAc α2,3-sialyltransferase. This enzyme 
is involved in protein glycosylation and the synthe-
sis of the sialyl Lewis x antigen [78]. Previous studies 
have shown that ST3GAL4 affects several biological 
behaviors in tumors such as proliferation, invasion, and 
migration in non-small cell lung cancer and pancreatic 
cancer cells [42, 79]. The present study demonstrated 
for the first time that knockdown of ST3GAL4 in cell 
lines (MG-63 and U2OS) suppressed the malignant 
phenotype of osteosarcoma. More importantly, we con-
firmed the clinical feasibility of ST3GAL4 as a prognos-
tic marker in an independent clinical cohort. Although 

no association was found between ST3GAL4 and four 
metabolic super-pathways, this study confirmed the 
involvement of ST3GAL4 in glycolysis in osteosarcoma. 
Similarly, previous studies indicated that ST6GAL1 
regulates glycolysis in ovarian cancer [45]. Liu et  al. 
identified ST3GAL4 as a hypoxia-related gene [47], and 
it is well-known that a hypoxic microenvironment can 
induce glycolysis in tumor cells [48]. These findings 
support our results. Additionally, the hyperactivation 
of glycolysis in tumors sustains and promotes various 
malignant behaviors in osteosarcoma cells [80], which 
may also be a potential mechanism by which ST3GAL4 
influences the malignant phenotype of osteosarcoma 
cells. In addition, it was found that samples with high 
expression of ST3GAL4 were mainly enriched in cell 
cycle and DNA repair-related pathways, which may 
be a potential mechanism by which ST3GAL4 pro-
motes malignant phenotypes (Additional file  1: Figure 
S24A). We further provided GSEA results of other core 
MRGs (Additional file 1: Figure S24B) to explore their 
relationship with tumor-related pathways and suggest 
potential therapeutic targets.

ST3GAL4 was also associated with the immune 
response in osteosarcoma and may be an important regu-
lator of the TIME of osteosarcoma. This study confirmed 
the regulatory effect of ST3GAL4 on macrophage polari-
zation in osteosarcoma using a co-culture system. Studies 
have demonstrated that lactate, a metabolite generated 
during the glycolytic process in tumor cells, plays a role in 
inducing M2 polarization in macrophages, thereby exert-
ing direct immune-suppressive effects [81]. Our find-
ings provide evidence for the involvement of ST3GAL4 
in promoting glycolysis, which could partially explain 
its role in regulating macrophage polarization. A recent 
study has shown that ST3GAL4 is not only involved in 
protein glycosylation processes, but also affects the sign-
aling pathways of Siglec-7 and Siglec-9 by promoting the 
synthesis of ligands in tumor cells, thereby promoting 
macrophage polarization [82]. This further validates our 
findings and potentially unveils additional mechanisms 
through which ST3GAL4 facilitates macrophage M2 

Fig. 9 Protein expression of ST3GAL4 in osteosarcoma tissues and its effects on proliferation, invasion and migration of osteosarcoma cells. 
A IHC staining images of ST3GAL4 in osteosarcoma tissues (#6, n = 14) and corresponding normal tissues (#2, n = 5). The IHC scores indicated 
that the protein expression of ST3GAL4 was higher in tumor tissues. B Kaplan–Meier curve depicts the RFS difference between high and low 
ST3GAL4 protein group in the Xiangya cohort. Red representing the high ST3GAL4 protein group and blue representing the low ST3GAL4 protein 
group. C Folded line plots showing the effect of ST3GAL4 knockdown and overexpression on the proliferation of MG-63 and U2OS cells. The blue 
line represents the control group and the yellow line represents the knockdown/overexpression group. D Transwell chamber experiments showing 
the effect of ST3GAL4 knockdown and overexpression on the invasion of MG-63 and U2OS cells. Scale bar: 100 μm. E Scratch assays showing 
the effect of ST3GAL4 knockdown and overexpression on the migration of MG-63 and U2OS cells. F Colony formation assays showing the effect 
of ST3GAL4 knockdown and overexpression on the ability of colony formation of MG-63 and U2OS cells. Data are represented as mean ± SEM. 
*P < 0.05, **P < 0.01, ***P < 0.001

(See figure on next page.)
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Fig. 9 (See legend on previous page.)
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polarization. These findings provide support for consid-
ering ST3GAL4 as a promising and innovative target for 
cancer immunotherapy.

However, further investigation is required to further 
elucidate the role of ST3GAL4 in the TIME of osteosar-
coma. Notably, while patients exhibiting high ST3GAL4 
expression demonstrated a relatively low response rate 
to ICB, there was minimal disparity in ICB response 
rates between the high-risk and risk groups, as well as 
between subtypes C1 and C2. This is because there is no 
absolute linear relationship between ST3GAL4 expres-
sion and risk score or C1/C2. There are a large number 
of differentially expressed genes between high and low 
risk groups or C1 and C2, not just ST3GAL4. Therefore, 

it is reasonable that there are some differences between 
ST3GAL4 expression and risk score or C1/C2 in response 
to ICB, because the population with high/low ST3GAL4 
expression does not completely overlap with the popula-
tion represented by high/low risk group or C1/C2. Over-
all, our findings support the potential utility of ST3GAL4 
as a prognostic marker and a new therapeutic target.

There are still some limitations in this study. Firstly, 
due to the rarity of osteosarcoma, it is difficult to obtain 
a large sample cohort to validate the results. Secondly, 
using an osteosarcoma cohort with parallel metabo-
lomics and transcriptomics data would increase the value 
of this study. In addition, the effects and mechanisms of 
vitamin & cofactor metabolism and ST3GAL4 on the 

Fig. 10 ST3GAL4 regulates the glycolysis of tumor cells and the M2 polarization of macrophages in osteosarcoma. A, B Seahorse assays indicated 
that the knock down of ST3GAL4 inhibited glycolysis in osteosarcoma cells. Left, representative curve; Right, quantification of basal ECAR and maxi 
ECAR. ECAR, extracellular acidification rate. C RT-qPCR analysis is shown for PD-L1 and M2 marker CD206 in macrophages. D Flow cytometry analysis 
is shown for expression of CD206 in macrophages cultured with si-NC or si-ST3GAL4 tumor cells. Shown are representative plots and quantification 
of the percentage of CD206 positive cells in total macrophages
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TIME of osteosarcoma require further in-depth in  vivo 
and in vitro studies.

Conclusion
Vitamin & cofactor metabolism plays an important role 
in the prognosis and TIME of osteosarcoma. MRG-
related gene clusters can reflect the immune status of 
osteosarcoma and facilitate the development of person-
alized immunotherapy and chemotherapy strategies. 
The metabolism-related risk model may serve as a useful 
prognostic predictor. ST3GAL4 plays a critical role in the 
progression, glycolysis, and TIME of osteosarcoma and 
affects the prognosis.
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