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Abstract 

SUMOylation, which is a type of post‑translational modification that involves covalent conjugation of small ubiq‑
uitin‑like modifier (SUMO) proteins to target substrates, regulates various important molecular and cellular pro‑
cesses, including transcription, the cell cycle, cell signaling, and DNA synthesis and repair. Newly synthesized SUMO 
is immature and cleaved by the SUMO‑specific protease family, resulting in exposure of the C‑terminal Gly–Gly 
motif to become the mature form. In the presence of ATP, mature SUMO is conjugated with the activating enzyme 
E1 through the cysteine residue of E1, followed by transfer to the cysteine residue of E2‑conjugating enzyme Ubc9 
in humans that recognizes and modifies the lysine residue of a substrate protein. E3 SUMO ligases promote SUMOyla‑
tion. SUMOylation is a reversible modification and mediated by SUMO‑specific proteases. Cumulative studies have 
indicated that SUMOylation affects the functions of protein substrates in various manners, including cellular localiza‑
tion and protein stability. Gene knockout studies in mice have revealed that several SUMO cycling machinery pro‑
teins are crucial for the development and differentiation of various cell lineages, including immune cells. Aberrant 
SUMOylation has been implicated in several types of diseases, including cancers, cardiovascular diseases, and autoim‑
mune diseases. This review summarizes the biochemistry of SUMO modification and the general biological func‑
tions of proteins involved in SUMOylation. In particular, this review focuses on the molecular mechanisms by which 
SUMOylation regulates the development, maturation, and functions of immune cells, including T, B, dendritic, 
and myeloid cells. This review also discusses the underlying relevance of disruption of SUMO cycling and site‑specific 
interruption of SUMOylation on target proteins in immune cells in diseases, including cancers and infectious diseases.
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Background of SUMOylation
Mechanisms of SUMOylation
SUMOylation is a dynamic and reversible process of 
post-translational modification (PTM). This modification 

involves several proteins, including small ubiquitin-like 
modifier (SUMO), enzymes that catalyze the conjugation, 
and enzymes that remove conjugated SUMO from sub-
strates. SUMO has 18% amino acid sequence similarity to 
ubiquitin and plays a critical role in the biology of most 
eukaryotic organisms [1–3]. This PTM affects various 
aspects of protein functions, including stability, localiza-
tion, and transcriptional regulation, which have a signifi-
cant effect on cellular processes and contribute to both 
physiological and pathophysiological states in health and 
disease [4].
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The SUMO protein family consists of five paralogs 
in mammals: SUMO1, SUMO2, SUMO3, SUMO4, 
and SUMO5, each of which is 10–20  kDa in size 
[5–12]. SUMO2 and SUMO3 are highly similar with 
95% sequence identity, but have only 45% similarity to 
SUMO1 [13]. SUMO4 has similarity of 86% to SUMO2/3 
[6, 14]. Although the paralogs share some identity, many 
questions related to whether they function redundantly 
have been raised. Previous reports have shown that 
SUMO paralogs have different localizations in cells, sug-
gesting that they may function differently [15]. SUMO2/3 
are found in nucleoplasm and promyelocytic leuke-
mia protein (PML) bodies. SUMO1 is found not only in 
nucleoplasm and PML bodies but also in nucleoli, the 
nuclear envelope, and cytoplasmic foci [15].

A series of enzymatic reactions (Fig.  1), including 
maturation, activation, ligation, and deconjugation, 
are required for SUMO conjugation [16]. Maturation 
of SUMO involves pre-cleavage at the C-terminus by 
SUMO-specific proteases (SENPs), which exposes the 
diglycine motif essential for SUMO ligation [9]. Then, 
SUMO activation requires SAE1/SAE2 heterodimer, an 
ATP-dependent E1-activating enzyme [17]. In the third 
step, Ubc9, the SUMO-conjugating E2 enzyme, receives 
SUMO from SAE1/SAE2, forms a thioester bond with 
SUMO and catalyzes covalent conjugation of SUMO 
with the substrate [18, 19]. Although Ubc9 is the pri-
mary E2 conjugation enzyme involved in SUMOyla-
tion, E3 SUMO ligases are usually required for efficient 

and specific conjugation of SUMO to target proteins. 
E3 ligases facilitate transfer of SUMO from Ubc9 to the 
lysine (K) residue of the target protein. There are sev-
eral families of E3 SUMO ligases with different target 
substrates that regulate various aspects of protein func-
tions [20–22]. Some substrates can be SUMOylated in 
an E3-independent manner, but such cases are gener-
ally rare [23, 24]. In E3-independent SUMOylation, 
the SUMOylation reaction is mediated primarily by 
Ubc9. However, in most cases, E3 ligases are critical to 
regulate the specificity and efficiency of SUMOylation 
[24–28]. There are three families of E3 ligases that have 
been discovered, the protein inhibitor of activated signal 
transducer and activator of transcription (PIAS) fam-
ily [20, 29], RanBP2/Nup358 [22], and Polycomb mem-
ber Pc2 [21]. They stabilize the interaction between the 
E2 enzyme and substrate protein, or facilitate orientat-
ing the target K residue [24]. SUMO-covalent binding 
to the K residue is often, although not always, embed-
ded in a consensus sequence motif, ψ-K-X-D/E (ψ—large 
hydrophobic amino acid, X—any amino acid, D—aspar-
tic acid, and E—glutamic acid), on the substrate [30, 31]. 
To be precise, three different mechanisms of K selection 
for SUMO conjugation have been demonstrated. First, 
Ubc9 directly binds to the K residue within the consen-
sus site and catalyzes SUMO for conjugation. Second, 
target proteins can interact with the SUMO-interacting 
motif (SIM) in the SUMO moiety of Ubc9-SUMO thi-
oester, which allows Ubc9 to catalyze the conjugation of 

Fig. 1 Model of SUMOylation. Initially, SUMO is an inactive precursor. SENPs, and sentrin‑specific proteases catalyze and expose the diglycine (GG) 
motif of SUMO at the C‑terminus. Then, through E1, E2, and E3 enzymes, SUMO is conjugated to the lysine (K) residue in the substrate that is often 
found in a consensus sequence. This modification modulates downstream biological functions of target proteins, such as protein–protein 
interactions and transcriptional regulation. SUMO attachment is reversible and removed from the substrate by SENPs
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SUMO with proximal K residues on the substrate. Lastly, 
E3 ligase mediates site selection by interacting with some 
target proteins with K residues, which involves the opti-
mal positioning of Ubc9-SUMO thioester to catalyze the 
SUMO conjugation. In the latter two circumstances, the 
K residue does not necessarily have to be within the con-
sensus site [32].

SUMO conjugation can be mono-SUMOylation, multi-
SUMOylation, or poly-SUMOylation. Multi-SUMOyla-
tion occurs when SUMO targets multiple acceptor K 
residues within or outside the consensus site on the 
substrate. Poly-SUMOylation is mainly mediated by 
SUMO2/3 because internal SUMO consensus sequences 
enable iterative linkages of poly-SUMO chains on K11 
[33]. At the end of the SUMOylation cycle, SUMO is 
removed from the substrate by SENPs.

SENPs play a dual role in the SUMOylation process, 
functioning in both maturation and deconjugation steps. 
Maturation requires the hydrolase activity of SENPs to 
remove the diglycine motif from SUMO, whereas decon-
jugation requires the isopeptidase activity of SENPs to 
cleave the covalent bond between SUMO and the sub-
strate protein (Fig. 2) [34].

Six SENPs exist in mammals, namely SENP1, SENP2, 
SENP3, SENP5, SENP6, and SENP7, all of which belong 
to the Ulp cysteine protease family [35]. The Ulp pro-
tease family has a highly conserved catalytic domain at 
the C-terminus [35, 36]. SENP1, SENP2, and SENP5 are 
involved in the maturation phase of SUMOylation with 
different preferences for SUMOs in vitro [14]. The decon-
jugation activities of SENPs are characterized by their dif-
ferent specificities. SENP1 and SENP2 remove all types 
of SUMOs with comparable efficiency, whereas SENP3 
and SENP5 are more specific for SUMO2/3. SENP6 and 

SENP7 are only responsible for editing poly-SUMOyla-
tion chains mediated by SUMO2/3 [14, 34]. Different 
SENPs are found in subcellular locations depending on 
their N-terminal domains. For example, SENP1 is mainly 
located in the nucleus, and mutations in the N-terminal 
region of SENP1 cause cytoplasmic accumulation [37]. 
SENP3 resides primarily in nucleoli, mainly because of 
its interaction with the nucleolar scaffold protein NPM1 
[38]. SENP2 is found at various locations in cells depend-
ing on its alternatively spliced forms. Full-length SENP2 
is found primarily in nucleoplasmic nuclear pore com-
plexes [36]. Another alternative spliced form of SENP2, 
SuPr-1, lacks an exon at the N-terminus and is enriched 
in PML bodies [39]. A murine homolog is Axam2 which 
lacks a different exon at the N-terminus and is found 
mainly in the cytoplasm [24, 40]. By combining the lit-
erature together, the N-terminus sequence of SENP2 
appears to determine whether it is located in the cyto-
plasm, at nuclear pores, or in PML nuclear bodies [39–
41]. Similar to SENP3, SENP5 is found in the nucleolus 
[42]. SENP6 and SENP7 are mainly found in nucleoplasm 
[43–45].

SUMOylation modulates the stability, localization, 
or activity of proteins, and interplays with the regula-
tion by other PTMs, thereby affecting cellular processes 
and contributing to both homeostasis and disease 
states. SUMOylation acts synergistically, sequentially, 
or antagonistically with other PTMs including ubiqui-
tination, phosphorylation, and acetylation [46, 47]. For 
example, poly-SUMO chains bridge further ubiquitina-
tion of common substrates via SUMO-targeted ubiqui-
tin ligases, thereby allowing proteasomal degradation 
[48, 49]. Another report showed that SUMO itself 
is phosphorylated at threonine 76, which increases 

Fig. 2 SENPs act in both maturation of SUMOs and deconjugation of SUMOs from modified proteins. Maturation of SUMO precursors relies 
on the hydrolase activity of SENPs (left). Different SENP family members have an inherent preference for maturation of different SUMO paralogs. 
However, the deconjugation of SUMO depends on the isopeptidase activity (right)
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SUMO1 stability [50]. Furthermore, IκBα is ubiqui-
tinated at K21 and subsequently degraded in the pro-
teasome, leading to nuclear factor kappa B (NF-κB) 
activation. SUMOylation of K21 on IκBα provides 
protection against degradation. Ubiquitination of 
IκBα requires prior phosphorylation at serines 32 and 
36, but phosphorylation of IκBα at both sites inhibits 
SUMOylation. Therefore, phosphorylation appears to 
antagonize SUMOylation [51]. Signal transducer and 
activator of transcription 5 (STAT5) is another example 
of modulating other types of PTMs [52]. Phosphoryla-
tion and acetylation of STAT5 are required for dimeri-
zation and translocation of STAT5 to the nucleus. Van 
Nguyen et al. showed that SUMOylation inhibits tyros-
ine phosphorylation of STAT5, changing STAT5 from 
an active to inactive state [52].

The discovery of phosphorylation-dependent 
SUMOylation motif (PDSM), ψ-K-X-D/E-X-X-S-P, 
is another example of the coordination of phospho-
rylation and SUMOylation [53–55]. PDSM contains 
a SUMO consensus site and a proline-directed phos-
phorylation site at the adjacent serine residue. It can 
be found in many transcription factors, such as myo-
cyte-specific enhancer factor 2A (MEF2A), GATA-1, 
heat-shock factors (HSF1 and HSF4b) and PPARγ [53, 
56]. Hietakangas et  al. showed that the phosphoryla-
tion-dependent SUMOylation plays an important role 
in repressing the transactivation activity of HSF1 and 
HSF4b [53]. Mohideen et  al. further showed that E2 
Ubc9 is involved in the  phosphorylation-dependent 
SUMO conjugation to MEF2A [54].

General biological functions of SUMOylation
The importance of SUMOylation in mammals has been 
demonstrated in several reports [57–60]. Wang et  al. 
showed that Sumo1 knockout mice develop congeni-
tal heart defects and undergo premature death [61]. 
Wang et al. reported that Sumo2-deficient mice exhibit 
delayed development and die at the embryonic stage 
[62]. Moreover, Nacerddine et al. showed that embryos 
with a deleted Ubc9 gene, the E2 enzyme required for 
SUMO1/2/3 conjugation, die at the early postimplanta-
tion stage because of the loss of nuclear integrity and 
chromosomal defects [58]. In terms of SENPs, Cheng 
et  al. found that Senp1 knockout mice exhibit severe 
fetal anemia because of deficient erythropoietin pro-
tein, leading to embryonic lethality [59]. Chiu et  al. 
reported that Senp2 knockout mice show abnormal 
cell cycle progression during trophoblast development 
and embryonic lethality [60]. These findings high-
light the importance of SUMOylation for embryonic 
development.

SUMOylation in diseases
Owing to the critical roles of SUMOs and SENPs in 
maintaining the balance of substrate proteins between 
SUMOylated and unSUMOylated states, it is conceiv-
able that altered expression or abnormal functions of 
molecules in SUMO cycling can lead to various diseases. 
Indeed, some diseases, such as cancers, heart diseases, 
and autoimmune diseases, result from dysregulation of 
SUMOylation [3, 63–65].

In terms of SUMOylation in cancers, recent studies 
have revealed the significance of SUMOylation in the 
malignant properties of tumor cells and tumor immunol-
ogy. For example, activated SUMOylation enables tumor 
cells to evade immunosurveillance by suppressing antigen 
presentation by the MHC-I pathway. Specifically, MYC 
overexpression in lymphoma increases SUMO2/3-con-
jugated SAFB (scaffold attachment factor B), a transcrip-
tional corepressor that inhibits MHC-I gene expression 
[66]. However, blocking SUMOylation by TAK-981, a 
SUMOylation inhibitor that targets the E1 activating 
enzyme SAE2 [67], reverses the effect on MHC-I expres-
sion [68]. In cancer cells, SENP2 is a potential tumor sup-
pressor because it negatively regulates the proliferation, 
invasion, and migration of osteosarcoma cells by promot-
ing ubiquitination and degradation of SRY-box-9 (SOX9) 
[69], a transcription factor required during embryonic 
development [70]. Abnormal expression of SOX9 is 
involved in various cancers, such as osteosarcoma [71], 
lung cancer [72], and breast cancer [73, 74]. Additionally, 
SENP2 upregulates the migration of breast cancer cells 
and contributes to cancer stemness by regulating trans-
forming growth factor (TGF)-β/Smad4-dependent sign-
aling [75].

SUMOylation is also essential for cardiac functions and 
development by regulating various transcription factors 
[57]. For example, GATA4, a transcription factor crucial 
for cardiomyocyte differentiation [76], is modified by 
SUMO1 [77]. This modification augments the transcrip-
tional activity of GATA4, which in turn increases the 
expression of cardiac genes such as α-MHC (α-myosin 
heavy chain) and ANF (atrial natriuretic factor) [77]. 
Disruption of the dynamic balance of SUMOylation and 
deSUMOylation cycling causes severe heart diseases 
[78]. As an example, SUMO1 modification maintains 
stability, ATPase activity, and calcium transient of SER-
CA2a, a calcium-transporting ATP2A2 ATPase, which is 
important for cardiac contractility. However, decreased 
expression of SUMO1-conjugated SERCA2a is often 
observed in patients and mouse models with heart fail-
ure [79]. Another example is SENP3, which plays an 
important role in vascular remodeling [80]. Cai et  al. 
demonstrated that SENP3 is highly expressed in vascu-
lar smooth muscle cells during oxidative stress-induced 
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vascular remodeling and is responsible for deSUMOyla-
tion of β-catenin (Wnt/β-catenin is involved in vascular 
remodeling [81]) to protect β-catenin from proteasomal 
degradation, suggesting a role of SUMO regulation in 
hypertension and atherosclerosis [80].

In the context of autoimmune disorders, SUMOyla-
tion of c-Maf is inversely correlated to disease severity 
in the NOD mouse model of type 1 diabetes. Specifically, 
the SUMOylation status of c-Maf is negatively associ-
ated with the level of IL-21 produced by T cells, which is 
involved in the pathogenesis of type 1 diabetes. SUMO-
defective c-Maf promotes the generation of IL-21-secret-
ing extrafollicular helper T cells and effector/memory 
 CD8+ T cells [65]. These findings indicate that c-Maf 
SUMOylation has a regulatory role in diabetes patho-
genesis. Moreover, accumulating evidence suggests that 
SUMOylation is involved in rheumatoid arthritis [82, 
83]. Pascual et  al. demonstrated that peroxisome prolif-
erator-activated receptor-γ (PPAR-γ), which is a crucial 
regulator of anti-inflammatory responses in monocytes 
[84], macrophages [85], and fibroblast-like synovial cells 
[86], is modified by SUMO [85]. In their study using a 
macrophage-like cell line, the authors demonstrated 
that SUMOylation of PPAR-γ is facilitated by PIAS1 
and required for its ability to target nuclear receptor 
corepressor-histone deacetylase-3 complexes on the pro-
moter of proinflammatory genes [85], implying targeting 
PIAS1 for rheumatoid arthritis treatment [82].

Dysregulation of the development and differentiation 
of immune cells is linked to several types of diseases. 
Because SUMOylation dynamically regulates the func-
tions of substrate proteins, we next focus on the func-
tions of SUMOylation and the underlying effect on 
SUMO substrate proteins in immune cells and responses.

SUMOylation in the immune system
SUMOylation in lymphoid cell progenitors
Growing evidence suggests that SUMOylation plays an 
important role in regulating lymphoid cell development 
[2]. Previous studies have shown that SUMOylation is 
crucial for various aspects of lymphoid cell develop-
ment. For example, Liu et al. reported that the E3 ligase 
of SUMO machinery, PIAS1, is essential for hematopoi-
etic stem cell (HSC) maintenance [87]. PIAS1 plays a 
critical role in HSC self-renewal and prevents dormant 
HSCs from entering the active cycle. Additionally, PIAS1 
regulates proper lymphoid cell differentiation by epige-
netically repressing expression of Gata1 [87], a crucial 
transcription factor in the myeloid-erythroid lineage [88]. 
Disruption of PIAS1 expression impairs lymphoid cell dif-
ferentiation, particularly B cells. In particular, significant 
reduction has been observed in the expression of genes 
associated with early B cells, such as Il7r (interleukin-7 

receptor subunit alpha), Pax5 (paired box protein 5), Ebf1 
(early B cell factor 1), and Igll1 (immunoglobulin lambda-
like polypeptide 1), in Pias1 knockout HSCs. However, T 
cell-related genes, such as Gata3 (Gata-binding factor 3), 
are not altered. Thus, PIAS1 expressed in HSCs is essen-
tial to regulate HSC self-renewal and support B cell lin-
eage differentiation [87]. Other reports have also shown 
the effect of disruption of SUMO cycling on the differ-
entiation of lymphoid progenitors. For example, Van 
Nguyen et  al. found that SENP1 is highly expressed in 
early B and T cells, and is crucial for proper lymphocyte 
development [52]. STAT5 is a downstream signaling mol-
ecule of IL-7R, which is essential for immune cell devel-
opment and functions [89, 90]. Downstream of IL-7/
IL-7R-mediated signaling, STAT5 activity is regulated by 
phosphorylation and acetylation [91, 92]. The phospho-
rylation and acetylation of STAT5 promote its dimeriza-
tion and subsequent translocation to the nucleus to drive 
the transcription of target genes. Considering that K696 
targeted by the acetyl group is the SUMO conjugation 
site of STAT5, SUMOylation prevents acetylation and 
converts STAT5 from an active to inactive form. SENP1-
mediated removal of SUMO2 from STAT5 is crucial for 
STAT5 to re-enter the activation–inactivation cycle. An 
absence of SENP1 results in accumulation of SUMO2-
modified STAT5 in early lymphoid precursors, which 
blocks STAT5 acetylation and subsequent signaling. 
These findings suggest that SENP1 plays a critical role in 
maintaining proper early lymphoid cell development by 
regulating STAT5 activity through deSUMOylation [52].

SUMOylation in B cells
SUMOylation of death domain-associated protein (Daxx) 
plays a critical role in regulating the growth of early B 
cells. Daxx is induced by type I interferons (IFN-I) and 
interacts with Pax5 to guide Pax5 to be a transcriptional 
activator or repressor, thereby regulating B cell develop-
ment [93]. Daxx contains a SUMO-interacting motif, 
which mediates the interaction with SUMO-conjugated 
proteins [94]. Daxx itself can be SUMOylated, and 
SUMO-conjugated Daxx suppresses the growth of early 
B cells. Specifically, SUMOylation of Daxx at K630 or 
K631 is important for its nuclear translocation in pro-B 
cells and required for by IFN-I-induced suppression of 
B cell development and apoptosis [95]. Dobreva et  al. 
showed that the pre-B cell-specific nuclear matrix attach-
ment region protein SATB2 is modified by SUMO1 or 
SUMO3, thereby reducing the expression of the immu-
noglobulin μ gene [96], in which PIAS1 enhances SATB2 
SUMOylation. Matrix attachment regions are sequences 
crucial for chromatin organization and associate with the 
nuclear matrix, which affects transcriptional regulation 
[97]. Subnuclear localization of SATB2 is regulated by 
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SUMOylation because SUMOylation of SATB2 is prefer-
entially located in the nuclear periphery, explaining the 
reduced transcriptional activation [96].

In addition to the early stage of B cell development, 
SUMOylation participates in the regulation of functions 
of mature B cells, germinal center B cells, and plasma 
cells. SUMOylation regulates B cell receptor (BCR) 
signaling. In  vitro studies conducted by Schmidt et  al. 
showed that B cell-restricted factor B-cell regulator of 
IgH transcription (Bright) binds to the lipid raft of rest-
ing B cells. Following BCR ligation, Bright becomes con-
jugated to SUMO1 and disassociates from the lipid raft. 
The concentration of Bright in the lipid raft regulates 
the threshold of BCR signaling, i.e., less Bright bound to 
the lipid raft leads to stronger BCR signaling [98]. This 
study indicated that SUMO modification of Bright shapes 
the threshold of BCR signaling, implying the underly-
ing relevance in immunological tolerance and autoim-
munity. Thus, further studies are required to understand 
the importance of SUMO1-modified Bright in vivo. The 
functional significance of SUMO modification in other 
transcription factors important for the B cell lineage 
includes B lymphocyte-induced maturation protein-1 
(Blimp-1), which is a master regulator of plasma cell dif-
ferentiation [99]. Blimp-1 is modified by SUMO1 at the 
K816 residue, which is mediated by SUMO E3 ligase 
PIAS1 [100]. Blimp-1 interacts with chromatin modifiers 
such as histone deacetylase 2 (HDAC2) to repress target 
gene expression, leading to downregulation of the gene 
expression program of mature B cell identity, including 
Pax5 and Ciita. However, SUMO conjugation-defective 
Blimp-1 (K816R), which carries a mutated SUMO accep-
tor site from K to arginine (R) at the 816 residue, interacts 
poorly with HDAC2. The decreased interaction between 
Blimp-1 and HDAC2 reduces the transcriptional repres-
sion activity of Blimp-1 and plasma cell differentiation. 
[100]. PIAS1 in B cells has also been implicated this pro-
cess. Overexpression of PIAS1 in B cells leads to abnor-
mal activation of MYC, which may contribute to the 
development of B cell lymphoma [101]. In terms of class 
switch recombination, TGF-β induces IgA class switch-
ing in B cells [102]. Smad4 is an intracellular signal trans-
ducer of TGF-β signaling [103]. SUMOylation of Smad4 
promotes protein stability and nuclear localization of 
Smad4 [104]. Therefore, SUMO modification may regu-
late class switch recombination. However, overexpression 
of SUMO1, SUMO2, and SUMO3 does not affect TGF-β/
Smad-mediated transcriptional responses of germline 
α in mouse B cell line CH12F3-2A [105]. Instead, E3 
ligase PIASy and HDAC1 cooperatively inhibit TGF-β/
Smad-mediated transcriptional responses of germline α. 
Transcription factor Yin Yang 1 (YY1) promotes long-dis-
tance DNA interactions and is required for class switch 

recombination [106]. PIASy-mediated SUMOylation of 
YY1 at the K288 site suppresses transcriptional activity 
of YY1 [107]. Therefore, it is plausible that SUMOylation 
regulates class switch recombination by modulating the 
function of YY1 [108].

SUMOylation in T cells
Accumulating studies have indicated that disruption 
of SUMOylation machinery affects T cell develop-
ment or functions. Ubc9 deficiency causes defective 
T cell receptor (TCR)-driven cell proliferation, down-
regulates expression of activation molecules, such as 
CTLA4, PD-1, and ICOS, and reduces IL-10 production 
in regulatory T (Treg) cells, thereby compromising the 
suppressor function of Treg cells [109]. Ding et  al. gen-
erated Treg-specific Ubc9 knockout mice to show that 
conditional knockout of Ubc9 in Treg cells resulted in 
defective TCR signaling and decreases in the stability 
and activity of the transcription factor interferon regu-
latory factor 4 (IRF4). IRF4 has been identified as the 
transcription factor responsible for Treg cells and plays 
an important role in generating Treg cells in peripheral 
lymphoid organs [110]. The expression of IRF4 is induced 
by TCR signaling. Mice with specific deletion of Irf4 in 
Treg cells develop multiorgan autoimmunity due to exac-
erbated Th2 responses and plasma cell infiltration [111]. 
Therefore, SUMO regulates the function of IRF4 in Treg 
cells and immunotolerance. Ubc9 participates in T cell 
development, and T cell-specific knockout of Ubc9 sig-
nificantly reduces CD4 and CD8 single-positive T cell 
populations in the thymus and peripheral lymphoid tis-
sues. Notably, Ubc9 deficiency in T cells results in defec-
tive positive selection of thymocytes during transition 
from the double-positive stage to single-positive thymo-
cytes. Additionally, less natural killer T (NKT) and Treg 
cells are observed in Ubc9-deficient mice than WT mice 
[112]. E3 ligase PIAS1 also plays a role in regulating T 
cell homeostasis. Natural Treg (nTreg) cells are critical to 
establish peripheral tolerance by self-antigen presenta-
tion and selection [113]. The frequencies of thymic and 
splenic nTreg cells increase significantly in Treg-specific 
Pias1 knockout mice [114]. These findings suggest that 
PIAS1 negatively regulates nTreg differentiation.

As discussed, a Senp1 knockout mouse study revealed 
that SENP1 deficiency results in embryonic lethality and 
severe defects in early T and B cell development [52]. 
SENP1 is highly expressed during the early stages of T 
cell development. Senp1 deficiency results in accumu-
lation of SUMOylated STAT5, which prevents STAT5 
acetylation and signaling. Signal transduction of the 
IL-7-STAT5 cascade is critical for early T cell develop-
ment in the thymus. Therefore, impaired STAT5 activa-
tion leads to severe defects in T cell development. Yang 
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et al. showed that T cell-specific Senp2 deletion in mice 
negatively regulates Th17 cell differentiation in the coli-
tis mouse model and results in a more severe pathogen-
esis [115]. In particular, differentiation of non-classical 
Th17 cells (also called pathogenic Th17 cells), which are 
different from classical Th17 cells, is enhanced. Patho-
genic Th17 cells differentiate from naïve T cells induced 
by TGF-β3/IL-6 or IL-6/IL-23/IL-1β-mediated signaling. 
Furthermore, pathogenic Th17 cells produce granulocyte 
macrophage-colony stimulating factor and IFN-γ, which 
is critical for the pathogenicity of Th17 cells in inflam-
mation [116, 117]. Yang et al. further showed that SENP2 
regulates nuclear translocation of Smad4, which pro-
motes RORγt expression in Th17 cells, through deSU-
MOylating Smad4 at the K159 site. Additionally, SENP3 
plays a role in maintenance of Treg cell stability. Yu et al. 
found that T or Treg cell-specific knockout of Senp3 
causes a global increase in SUMO-conjugated proteins, 
dysregulates immune tolerance, and ablates suppressor 
functions of Treg cells [118]. Furthermore, the authors 
found that Senp3 regulates the functions of Treg cells 
by controlling the status of SUMOylation and nuclear 
localization of a repressor, BTB, and CNC homolog 2 
(BACH2). BACH2 controls T cell maturation and differ-
entiation [119]. Reactive oxygen species following TCR 
and CD28 stimulation induces SENP3 accumulation to 
regulate Treg cell stability.

Overexpression of SUMO2 in a T cell-specific man-
ner in mice promotes differentiation of IL-17-producing 
 CD8+ T cells with an efficient anti-tumor activity. Over-
expression of SUMO2 in T cells suppresses tumor growth 
in vivo, linking to higher mRNA levels of IFN-γ and gran-
zyme B in tumor tissues. Overexpression of SUMO2 also 
increases IL-6-dependent STAT3 phosphorylation [120]. 
These findings suggest that SUMO overexpression in T 
cells plays a role in anti-tumor responses.

The functions of several transcription factors are 
regulated by SUMOylation in T cells. Nuclear factor of 
activated T cells (NFAT) regulates the T cell prolifera-
tion and activation [121]. NFAT also regulates cytokine 
production and the expression of cytokine recep-
tors [122]. Nayak et al. showed that an NFAT isoform, 
NFATc1/C, is highly SUMOylated, and its translocation 
is regulated by SUMOylation. SUMOylated NFATc1/C 
translocates to promyelocytic leukemia (PML) bodies 
in the nucleus, leading to the interaction of class I and 
II histone deacetylases (HDACs) and suppression of 
Il2 expression [123]. Xiao et al. generated a transgenic 
mouse model, in which SUMO-sites of NFATc1, K702 
and K914, are mutated. In their study, the authors found 
that the defect in NFATc1 SUMOylation ameliorates 
autoimmune and alloimmune responses in the disease 

model of experimental autoimmune encephalomyelitis 
(EAE) and graft-versus-host disease through the pro-
motion of Treg cell expansion [64]. The authors showed 
that the increased IL-2 expression negatively regulates 
IL-17 and IFN-γ expression through the induction of 
STAT5 and Blimp-1. Downstream signaling molecules 
of TCR is also SUMOylated. For example, the activa-
tion of TCR signaling induces phosphorylation and 
activation of another transcription factor, JunB, which 
translocates into the nucleus and promotes the produc-
tion of cytokines, such as IL-2, IL-4, and IL-10, in T 
cells [124]. JunB is SUMOylated at the K237 site. Block-
ing SUMOylation on JunB prevents expression of IL-2 
and IL-4 in T cells [125]. Therefore, SUMOylation of 
JunB regulates its ability to induce cytokine expression 
for T cell activation.

SUMO modification modulates the function of tran-
scription factors important for driving  CD4+ T cell 
subset differentiation. For example, the transcription 
factor c-Maf is a Th2 cell-specific factor that transac-
tivates the Il4 gene [126] and is modified by SUMOyla-
tion at K33 [127]. Hsu et  al. showed that SUMO 
modification of c-Maf regulates diabetes development 
through IL-21 signaling from  CD4+ T cells in nonobese 
diabetic (NOD) mice. SUMO-defective c-Maf promotes 
IL-21 expression in T cells, and T cell-specific trans-
genic NOD mice overexpressing SUMOylation site-
defective c-Maf resulted in more rapid development of 
the diabetes than control mice [65]. These data suggest 
that regulating the status of SUMOylation is an alter-
native approach to manage T cell-mediated inflamma-
tory diseases. Mechanistically, SUMO-defective c-Maf 
selectively inhibits recruitment of HDAC2 to the Il21 
promoter, but enhances histone acetylation, mediated 
by cAMP response element-binding protein (CREB)-
binding protein and p300, to transactivate Il21. Addi-
tionally, RORγt, a transcriptional factor critical for 
driving Th17 differentiation [128], is SUMOylated at 
K187 by Ubc9 [129]. SUMOylation of RORγt promotes 
binding of HDAC2 to the Il17 promoter and inhibits 
IL-17 expression in Th17 cells. Mutation of the SUMO 
conjugation site K187 in RORγt facilitates disease pro-
gression in spontaneous colitis of the T cell transfer 
mouse model [130]. In the EAE autoimmune disease 
model, disruption of RORγt SUMOylation at the K31 
residue downregulates Th17 differentiation and causes 
resistance to EAE induction [131]. RORγt is modified 
by SUMO3, which is catalyzed by the E3 ligase PIAS4 
[131]. To mimic fever in humans, under the condi-
tion of febrile temperature, the transcription cofactor 
SMAD4 is modified by SUMOylation through Ubc9, 
which promotes Th17 differentiation and enhances dis-
ease progression in the mouse model of EAE [132].
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SUMOylation in dendritic cells and anti‑viral responses
SUMOylation regulates the development and function 
of dendritic cells (DCs). Emerging evidence has shown 
that overexpression of SUMO may affect DC develop-
ment and maturation. For example, Kim et  al. showed 
that SUMO2 overexpression does not generally affect DC 
maturation, but shifts naïve  CD4+ T cells to the Th2 type 
response in vitro [133]. Mechanistically, IκBα is modified 
by SUMO2, and ectopic expression of SUMO2 prevents 
translocation of NF-κB/p65 into nucleus, thereby reduc-
ing the binding of NF-κB/p65 to the Il-12/p40 promoter. 
In addition to SUMO2, IκBα is modified by SUMO1 and 
SUMO4, which is important for the stability of IκBα and 
translocation of the NF-κB subunit p65 [5, 51]. Therefore, 
all SUMO proteins appear to be able to regulate NF-κB 
activity in DCs.

In addition to its role in DC development and matura-
tion, SUMO machinery affects the anti-viral responses 
of DCs. A splice variant of tripartite motif protein 5 
(TRIM5α) protein is a retrovirus restriction factor in a 
species-specific manner [134]. An absence of TRIM5α 
restriction is observed in DCs derived from human and 
non-human primates. TRIM5α is modified by SUMO at 
K10, but disruption of the SUMO conjugation site does 
not affect the anti-viral activity of TRIM5α [135], sug-
gesting that a non-covalent interaction with SUMO or 
SUMOylated proteins accounts for the anti-viral activ-
ity of TRIM5α. In DCs derived from humans and non-
human primates, SUMOylated TRIM5α is imported into 
Cajal bodies, a type of nuclear body [136], in the nucleus, 
whereas deSUMOylation of TRIM5α causes its accumu-
lation in Cajal bodies and nucleoplasm. Mechanistically, 
deSUMOylation of TRIM5α by the deSUMOylating 
enzyme USPL1 in Cajal bodies allows TRIM5α to be 
sequestered in the nucleus, leading to efficient type I 
interferon responses by the DNA sensor cGAS during 
retroviral infection. In support of this, treatment with 
SUMOylation inhibitor ginkgolic acid, which leads to 
cytoplasmic expression of TRIM5α, abrogates IFN-I 
responses and restores retroviral restriction. Therefore, 
the unique SUMO-dependent subcellular localization 
of TRIM5α in DCs accounts for regulation of retroviral 
restriction [137]. Another study also revealed the indis-
pensable role of SUMO machinery in regulating the 
anti-viral function of DCs. Chang et  al. found that the 
viral protein VP35 from Ebola Zaire virus interacts with 
PIAS1 and Ubc9, the main players in the SUMO modi-
fication cascade, to facilitate SUMOylation of IRF7 in 
DCs and macrophages. Ebola Zaire virus inhibits IFN-I 
responses, allowing for rapid viral replication, while not 
affecting proinflammatory cytokine production [138]. 
IRF7 is essential for IFN-I induction in plasmacytoid DCs 
[139]. VP35 promotes SUMO1- and SUMO3-mediated 

SUMOylation of IRF7 to inhibit Ifn gene transcription. 
In addition to IRF7, IRF3 is modified by SUMO, which 
inhibits interferon responses [140]. Further evidence 
supports the negative role of SUMOylation in regulating 
the anti-viral function of DCs. Decque et  al. found that 
the absence of SUMOylation in DCs leads to a signifi-
cant increase in IFN-β expression by regulating the dis-
tal element upstream of the Ifnb1 promoter, resulting in 
enhanced resistance to viral infection [141]. Using Ubc9 
knockout bone marrow-derived DCs, the authors found 
that SUMOylation deficiency increases the production 
of proinflammatory cytokines and IFN-β. Additional 
evidence suggests that SUMO2/3 is crucial to suppress 
spontaneous IFN responses via a non-canonical pathway 
[142]. Knockdown of SUMO2/3 expression in THP-1 
cells elevates expression of IFN-related genes, includ-
ing IFNB1, IFI27, and ISG15. Together, these studies 
shed light on the potential relevance of SUMOylation in 
autoimmune disorders that exhibit abnormal type I IFN 
responses [142].

Additional evidence indicates that SUMOylation in 
DCs plays a significant role in anti-tumor responses. 
Under oxidative stress, SENP3 accumulates in the cyto-
plasm of tumor cells, which triggers deSUMOylation of 
IFI204 [143], a DNA sensor necessary for STING activa-
tion [143]. As a result, STING undergoes phosphoryla-
tion and activation. STING activation is critical to initiate 
the IFN-I response in DCs. Specific deletion of Senp3 in 
DCs does not affect DC development, but promotes the 
growth of colon cancer tumor cells in vivo, which may 
be attributed to a defect in the cytosolic DNA-sensing 
pathway. The absence of SENP3 expression in DCs abro-
gates IFN-I responses, and the low frequency of IFN-γ-
expressing  CD4+ and  CD8+ effector T cells in the tumor 
and draining lymphoid nodes results in poor anti-tumor 
activity [144]. However, PIAS1 and STAT3 collaboratively 
suppress the expression of iNOS in cytotoxic DCs, which 
is cytotoxic against tumor cells [145]. Therefore, the role 
of SUMO modification in DCs in diseases appears to be 
temporally regulated and likely depends on the stage of 
disease progression.

SUMOylation in myeloid cells
Macrophages polarize to M1 or M2 subtypes. M1 mac-
rophages have immunostimulatory properties and induce 
an anti-tumor immune response, whereas M2 mac-
rophages have immunosuppressive properties and pro-
mote tumor growth [146]. Conjugating enzyme Ubc9 
regulates macrophage polarization in prostate cancer and 
reverses the immunosuppressive effect of tumor-asso-
ciated macrophages [147]. Xiao et  al. found that mac-
rophage-specific deletion of Ubc9 in mice reduces the 
growth of prostate cancer cells in  vivo. Tumor-bearing 
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mice lacking Ubc9 in macrophages have enhanced acti-
vation of macrophages and antigen-specific  CD8+ T 
cells. Mechanistically, Ubc9-mediated STAT4 SUMOyla-
tion at the K350 site suppresses nuclear translocation 
and stability of STAT4 to affect the expression of IFN-γ 
and TNF-α. Wang et  al. showed that SENP1 is respon-
sible for KLF4 deSUMOylation and the SENP1-KLF4 
axis participates in M1 macrophage polarization through 
the NF-κB signaling pathway [148]. Kruppel-like factor 4 
(KLF4) is a transcription factor for macrophage polari-
zation, and its SUMOylation is critical for macrophage 
M2 polarization [149]. KLF4 is SUMOylated at the K278 
site. KLF4 SUMOylation-deficient macrophages promote 
the expression of M1 macrophage-associated genes in 
tumor cells and have strong anti-tumor activity. In the 
context of immunometabolism, macrophage polarization 
is associated with metabolic reprogramming. Glycolysis 
increases in M1 macrophages, whereas M2 macrophages 
have increased fatty acid oxidation and oxidative phos-
phorylation [150]. Sirt3 is a major deacetylase in mito-
chondria and regulates metabolic processes, including 
oxidative phosphorylation and fatty acid oxidation [151]. 
Zhou et al. showed that, upon stimulation by lipopolysac-
charide (LPS) and IFN-γ, SENP1 enters mitochondria to 
deSUMOylate Sirt3, thereby activating Sirt3 to induce 
M2 macrophage polarization [152].

SUMO modification modulates therapeutic efficacy in 
certain myeloid cancers. Retinoic acid, a class of com-
pounds derived from vitamin A, has been used for the 
treatment of acute promyelocytic leukemia (APL), a sub-
type of acute myeloid leukemia (AML) [153]. However, 
retinoid therapy has limited effectiveness in patients 
with non-APL AML. Baik et  al. showed that inhibition 
of SUMOylation promotes the sensitivity of non-APL 
AML cells to all-trans-retinoic acid (ATRA) treatment 
[154]. Blocking SUMOylation by overexpressing either 
SENP2 or SENP5 makes non-APL AML cells more sus-
ceptible to ATRA and increases apoptosis. Therefore, 
inhibition of SUMOylation potentiates the anti-leukemic 
effect of ATRA. Additionally, Subasumstat, a small mol-
ecule inhibitor of SUMOylation, enhances the activity of 
rituximab, a monoclonal antibody used for treatment of 
B cell non-Hodgkin’s lymphoma [155]. Nakamura et  al. 
showed that Subasumstat promotes IFN-I-dependent 
macrophage M1 polarization and macrophage phagocy-
tosis. Subasumstat treatment also potentiates the activity 
of anti-CD20 monoclonal antibody (rituximab) in xeno-
graft models [156]. These studies provide a strategy to 
improve the therapeutic efficacy in some cancer types by 
inhibiting SUMOylation.

SUMOylation in macrophages has been implicated 
in the regulation of inflammation. Activation of micro-
glia, tissue macrophages of the central nerve system, 

during ischemic brain injury induces inflammation 
and tissue repair [157]. SUMOylation of annexin-A1 
(ANXA1), which is involved in the resolution of inflam-
mation, plays a crucial role in modulating microglial 
polarization after cerebral ischemia [158]. Specifically, 
SUMOylation of ANXA1 regulates the stability of IκB 
kinase, which inhibits NF-κB signaling [158]. SUMOyla-
tion of ANXA1 suppresses the activation of NF-κB in 
microglia. Overexpression of SUMOylated ANXA1 in 
microglia/macrophages improves neurological functions 
in a mouse model of cerebral ischemia. This study sug-
gests that elevated SUMOylation of ANXA1 in microglia 
is another potential therapeutic strategy for stroke and 
neuroinflammatory diseases. Additionally, peroxisome 
proliferator-activated receptor gamma (PPARγ) sup-
presses the transcription of inflammatory response genes 
in macrophages through SUMOylation of PPARγ at the 
ligand-binding domain, which targets PPARγ to nuclear 
receptor corepressor-histone deacetylase-3 complexes 
and represses proinflammatory genes [85].

Conclusions and perspectives
This review summarizes the current understanding of 
the SUMO-involved molecular and biochemical mecha-
nisms. We also provided several examples of the roles of 
SUMO modification in health and diseases. Disruption 
of SUMO cycling causes a variety of cellular abnormali-
ties and is relevant to various diseases. The significance of 
SUMOylation in various cell lineages, including immune 
cells, in physiological and pathophysiological states has 
prompted scientists to develop inhibitors to block or alter 
the cycling of SUMOylation. At least three categories of 
compounds/agents alter the SUMOylation process [159, 
160]. One is SUMO mimics, which block endogenous 
SUMO from entering SUMOylation enzymatic cascades. 
Another category is enzyme inhibitors that target E1 or 
E2, or polypeptides that promote degradation of Ubc9 
and PIAS1 E3. The other category is SENP inhibitors in 
the form of small molecule compounds or small hairpin 
RNA. These inhibitors, which are under development, 
have been tested in various diseases, including cancers, 
neurological disorders, human immunodeficiency virus 
infection, and cardiovascular diseases. Recently, small 
molecule TAK-981 was developed as a potent and selec-
tive inhibitor of the E1/SAE SUMO-activating enzyme 
[161], which is currently in phase I clinical trials for 
patients with solid tumors and lymphomas. TAK-981 
induces IFN-I signaling and upregulates IFN receptor 1 
in cells of the tumor microenvironment, thereby inhib-
iting tumor growth. The effect of TAK-981 on tumor 
growth is linked to increased T and natural killer cell 
infiltration and activation in tumors. Therefore, compre-
hensive studies of the biochemical mechanisms of SUMO 
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regulation, the physiological role of molecules involved 
in regulation of SUMO cycling in cells, and the SUMO 
substrate proteins in particular physiological and patho-
physiological states may facilitate the development of 
molecules to specifically alter SUMO machinery, which 
provides a new strategy to modulate disease progression.
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