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The rise of big data: deep sequencing-driven 
computational methods are transforming 
the landscape of synthetic antibody design
Eugenio Gallo1,2*   

Abstract 

Synthetic antibodies (Abs) represent a category of artificial proteins capable of closely emulating the functions 
of natural Abs. Their in vitro production eliminates the need for an immunological response, streamlining the process 
of Ab discovery, engineering, and development. These artificially engineered Abs offer novel approaches to antigen 
recognition, paratope site manipulation, and biochemical/biophysical enhancements. As a result, synthetic Abs are 
fundamentally reshaping conventional methods of Ab production. This mirrors the revolution observed in molecu-
lar biology and genomics as a result of deep sequencing, which allows for the swift and cost-effective sequencing 
of DNA and RNA molecules at scale. Within this framework, deep sequencing has enabled the exploration of whole 
genomes and transcriptomes, including particular gene segments of interest. Notably, the fusion of synthetic Ab dis-
covery with advanced deep sequencing technologies is redefining the current approaches to Ab design and devel-
opment. Such combination offers opportunity to exhaustively explore Ab repertoires, fast-tracking the Ab discovery 
process, and enhancing synthetic Ab engineering. Moreover, advanced computational algorithms have the capacity 
to effectively mine big data, helping to identify Ab sequence patterns/features hidden within deep sequencing Ab 
datasets. In this context, these methods can be utilized to predict novel sequence features thereby enabling the suc-
cessful generation of de novo Ab molecules. Hence, the merging of synthetic Ab design, deep sequencing technolo-
gies, and advanced computational models heralds a new chapter in Ab discovery, broadening our comprehension 
of immunology and streamlining the advancement of biological therapeutics.

Keywords Antibody engineering, Antibody library design, Machine learning, Synthetic antibodies, Deep sequencing, 
Next-generation sequencing

Background
Natural antibodies (Abs) are the key components of an 
adaptive immune response; these are used to effectively 
target and neutralize immunogens. In the past decades, 

important breakthroughs have led to the engineering 
of synthetic Abs, also known as Ab mimetics or artifi-
cial Abs, where such synthetic proteins are designed to 
replicate the function of natural Abs [1]. Importantly, 
synthetic Abs are made fully in  vitro, eliminating the 
requirement of an immunological response for their 
discovery and production [2]. These Abs offer several 
benefits over traditional ones (Table 1); these include rea-
gent reproducibility, enhanced quality control, increased 
target affinity and specificity, improved protein stabil-
ity and solubility, and customizable molecular features 
[3–5]. A further advantage is that their generation is less 
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expensive to manufacture, with faster development times 
[6]. Overall their enhanced attributes permit for stream-
lined and adaptable processes, especially when consider-
ing the development of biological therapeutics. As such, 
the capacity to produce synthetic Abs has fundamentally 
transformed the current landscape of Ab generation.

In recent years, synthetic Abs have found a wide vari-
ety of biological uses; for instance, they have been highly 
disruptive in the medical field, particularly in molecular 
diagnostics and therapeutic  applications [5, 7, 8]. Their 
advantages over natural Ab counterparts encompass 
the capability to efficiently produce large scale  Ab  mol-
ecules able to target specific epitope regions, including 
various antigen conformations. Moreover, synthetic 
Abs offer the ability to conduct sequential in vitro selec-
tions allowing to generate Ab molecules capable of bind-
ing shared epitopes across different antigens. Also, the 
rational design of  synthetic Ab libraries offers opportu-
nity to produce clonal variants with enhanced specificity 
and affinity. This contrasts with Abs obtained through 
immunization, which are constrained by the physi-
ological mechanisms of B cell activation [1]. Moreover, 
in vitro synthetic Ab selections can be adapted to various 
selection conditions, such as pH levels, ions, and com-
peting molecules. This flexibility aids in the production 
of potentially functional Abs tailored to specific environ-
mental conditions/pressures. Furthermore, the synthetic 
Ab frameworks can be pre-defined, such feature allows 
for simplified downstream  molecular re-cloning and 
directed evolution strategies [1]. Also, a pivotal charac-
teristic of synthetic Ab platforms is their compatibility 
with automation and high-throughput screening  plat-
forms. As such, this property offers opportunity increases 
the feasibility to conduct  deep sequencing studies and 
big data generation (Table 2). Overall, synthetic Abs have 

rapidly transformed the field of biotechnology  and bio-
logical therapeutics, streamlining Ab development pipe-
lines from lead identification to molecular optimizations.

Another ground-breaking technology  that has effec-
tively disrupted biological research is deep sequenc-
ing, also known as next-generation sequencing (NGS) 
or high-throughput sequencing. This approach employs 
advanced molecular techniques that conduct DNA or 
RNA sequencing on a large scale with high efficiency. As 
a consequence, the fields of genomics and molecular biol-
ogy research have undergone significant enhancements; 
for instance, deep sequencing has enabled the simultane-
ous sequencing of millions of DNA fragments or RNA 
molecules in a high-throughput manner. In this context, 
high-throughput sequencing offers a rapid, cost-effective, 
and efficient approach for sequencing complete genomes, 
exomes, and specific DNA segments [9–11]. As a conse-
quence, this advancement allows for the swift and afford-
able execution of a wide range of molecular experiments 
associated with complex biological systems at an unprec-
edented level.

Furthermore, due to its rapid data acquisition, cost 
reduction, and ability to generate large datasets (Table 3), 
deep sequencing has found application in diverse sci-
entific domains, including genomics, transcriptomics, 
epigenetics, metagenomics, and others. Its transforma-
tive impact is evident in biological research, where it 
has led to the effective discovery of novel gene variants, 
identification of disease-related biomarkers, and a com-
prehensive  understanding of cancer-causing mutations 
[9, 12–15]. Recently, the integration of deep sequencing 
technologies into clinical diagnostics has revolutionized 
personalized medicine. Here, this integration has enabled 
the swift assessment of a patient’s genetic profile, particu-
larly genes relevant to disease susceptibility; furthermore, 

Table 1 Major advantages of synthetic Abs over natural counterparts

Advantages Description

Low production costs Synthetic Abs can be manufactured in large quantities at a relatively low cost, unlike traditional monoclonal 
Abs, which are derived from animals and can be expensive to produce

Stability and production Synthetic Abs can be engineered to exhibit greater stability promoting large-scale production when compared 
to natural Abs, which may be constrained by factors such as poor stability and host organism production

Reagent reproducibility Synthetic Abs are highly reproducible, meaning each batch will have the same properties. This is important 
for research and diagnostic applications where precise measurements are required

Increased affinity and specificity Synthetic Abs can be meticulously engineered to attain superior specificity and affinity for their target 
when compared to natural Abs. This attribute is crucial for various applications, including diagnostics 
and medicinal applications

Customizable antigen recognition site The antigen recognition site of synthetic Abs can be precisely engineered to target any desired antigen. They 
can be customized to bind to a diverse array of targets, including those that pose challenges for natural Abs. 
Accordingly, synthetic Abs are well-suited for targeting specific molecules, including proteins, viruses, or bacte-
ria

Humanization Synthetic Abs can be engineered to be fully human, minimizing the risk of immune responses when used 
in therapeutic applications
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it has been effective in understanding cellular and molec-
ular effects during treatment responses [16–18]. When 
taken together, deep sequencing is paving the way for 
important breakthroughs in both scientific research and 
medical applications [19].

The incorporation of deep sequencing into the design 
and development of synthetic Abs has significantly dis-
rupted current biotechnological methods. For instance, 
deep sequencing has played a crucial role in expediting 
the discovery of antigen selective Abs, where it is now 
possible to sequence the Ab repertoire of an individual 
and quickly obtain the precise sequences linked with a 
particular immunogen/disease [20–22]. Such level of 

information helps guide the processes of synthetic Ab 
design. Furthermore, deep sequencing can play criti-
cal functions during in  vitro Ab selections producing 
comprehensive sequence datasets for big  data analysis 
(Fig.  1). For instance, during in  vitro selection rounds, 
deep sequencing can be implemented to confirm the 
enrichment of antigen-selective clones. [23–25]. Also, the 
generation of NGS big data aids in assessing the efficacy 
of in vitro selections, helping to uncover repertoire diver-
sity, pinpoint diversified antigen-selective clones, and 
elucidate the biochemical characteristics of Abs within 
the output selection pools. Additionally, deep sequencing 
procedures can be implemented to effectively determine 

Table 2 Global overview of major distinctions between natural versus synthetic Abs [1]

Properties Natural Abs Synthetic Abs

Experimentations In vivo In vitro

Associated technologies Hybridoma Molecular display (e.g. 
yeast, phage, ribo-
some)

Epitope binding Broad Selective

Output affinities Limited Expanded

Antigen conformation Undefined Defined

Sequential selections (for shared epitopes) No Yes

Defined selection conditions (e.g. pH, ions, competitors) No Yes

Molecular re-cloning (e.g. change format, add tag, dimerization, enzymatic fusion, autobio-
tinilation)

Difficult Simple

Directed evolution (e.g. improve affinity, specificity, expression, stability) Difficult Simple

Ab framework Limited Broad

Amino acid positional frequencies and identities No Yes

Financial costs and resources High Low

Time for isolation and production Long Short

Integration into NGS platforms Difficult Easy

Amenable to automation No Yes

High-throughput No Yes

Overcome immunological tolerance Difficult Easy

Allows non-antibody scaffolds No Yes

Specificity for protein sequences and conformations No Yes

Target recognition (e.g. chemical modifications and small molecules) Difficult Simple

Table 3 Several advantages associated with deep sequencing [10]

Advantage Description

High-throughput This technology can effectively sequence millions of DNA fragments in parallel; it generates massive amounts of sequence data 
during a sample run. As a consequence, it allows for the analysis of entire genomes, transcriptomes, and targeted regions of interest 
in a single experiment

Fast A single NGS run can generate millions to billions of sequences in a matter of hours to days, whereas Sanger sequencing is much 
slower and labor-intensive

Cost-effective It has the ability to sequence a large number of samples simultaneously, where the cost per base of sequence data is dramatically 
reduced when compared to traditional methods; this makes studies involving genomics and transcriptomics highly affordable

Accurate Its current error rates are less than 1%
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the various biochemical patterns required for  antigen 
interactions; such observations can be extremely valu-
able for the downstream  engineering of synthetic Ab 
libraries [23–25]. Moreover, high-throughput technolo-
gies can be implemented to monitor alterations in Ab 
sequences across rounds of affinity maturation. Such data 
offers  the swift evaluation of enriched clones over time, 
allowing for a better understanding and improvements in 
target binding efficacy [26].

Furthermore, deep sequencing datasets can be inte-
grated with machine learning algorithms for synthetic 
Ab design. Here, machine learning refers to a broad 
class of computer models that have the capacity to learn 
from input data without being explicitly programmed. 
As such, machine learning-based algorithms can be 
introduced to exploit the enormous sequence space 
(composed of hundreds of millions of Ab sequences) 
obtained by deep sequencing experiments [27, 28]. In 
this context, advanced computational tools have the 
capacity to effectively predict antigen-selective Ab 
sequences; thereby expediting the processes of synthetic 
Ab discovery and development. When taken together, 
the integration of these state-of-the-art technologies 
including  synthetic Abs, deep sequencing, and machine 
learning  approaches is swiftly disrupting current meth-
odologies  in diverse areas of biology and biotechnology, 

including immunology, diagnostics, and therapeutics. 
Significantly, this  technological integration is paving the 
way for precision medicine and customized treatments, 
helping to open new avenues for personalized healthcare 
[29, 30].

Improved synthetic Ab library designs
Deep sequencing can be used as a validation tool for 
the design and engineering of synthetic Ab libraries [31, 
32]. Its implementation offers advantageous statistical 
insights concerning amino acid distributions at com-
plementary determining regions (CDRs); such quantifi-
able observations ultimately help determine the critical 
residue positions associated with antigen interactions. 
Additionally, it can be an effective tool to understand 
the actual clonal diversity, completeness, redundancy, 
and biases found within Ab libraries; as such, this infor-
mation helps improve/optimize the final design of  a 
synthetic Ab library final [33–35]. More recently, deep 
sequencing has been introduced to help validate spe-
cific sequence-encoded Ab features, this has enabled the 
rapid optimization of Ab sequence lengths for improved 
antigen recognition [36, 37]. Also, deep sequencing can 
provide quantitative insights from natural Ab repertoires, 
such information helps identify the critical features 
responsible for structural integrity, solubility, and affinity 

Fig. 1 Schematic describing natural versus synthetic Ab generation strategies. The top schematic shows the generation of natural Abs via animal/
human immunizations followed by either isolation of polyclonal Abs directly from blood serum (A1) or isolation of monoclonal Abs via hybridoma 
technologies involving the isolation and immortalization of monoclonal B-cells grown in culture (A2). The bottom schematic indicates 
the generation of synthetic Abs by molecular display methods (i.e. phage, yeast, ribosome, etc.). This example shows a phage-display synthetic Ab 
library undergoing in vitro selections against a target antigen. The selection is performed during multiple rounds to eventually enrich for antigen 
selective Ab binders. Individual phage clones are then isolated and via recombinant methods monoclonal synthetic Abs are generated (B1). More 
advanced methods utilize next-generation sequencing combined with advanced computational assessments to determine the clonal population 
profiles. Based on mathematical rankings, statistics, and various other computational approaches, individual clones are selected for recombinant 
protein expression, ultimately producing monoclonal synthetic Abs (B2)
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interactions. These observations can then be transferred 
to improve the design of synthetic Ab libraries [38, 39]. 
When taken together, big data explorations offer a quan-
titative approach for the generation of fine-tuned and 
specialized synthetic Ab library designs (Table 4).

The work by Chen et  al. highlights how natural Ab 
features can be designed into synthetic Ab libraries for 
improved activities [40]. To accomplish this, the authors 
performed deep sequencing analysis of Ab repertoires 
from both naïve and immunized mice. Via this process, 
they were able to determine the critical Ab sequence 
features associated with target  antigen affinity interac-
tions. In this context, the implementation of big data 
analysis aided in identifying enriched amino acid fre-
quencies within particular CDRs. These characteristics 
were then incorporated into the construction of a com-
pletely synthetic Ab library. Following in vitro selections 
using this library, the authors successfully isolated unique 
clones exhibiting improved affinities when compared 
to Abs derived from in  vivo immunological responses 
[40]. The functionality of their synthetic Ab library was 

further validated by performing multiple in  vitro selec-
tions against diversified antigens. Via this process, the 
authors identified a complete set of selective Abs against 
distinct molecular targets [40].

Overall, Chen et al.’s findings indicated that their syn-
thetic Ab library possessed broad reactivity, extending 
beyond a singular antigen or molecule family. Addition-
ally, their results demonstrated that the prevalent canoni-
cal structure combination of CDRs derived from mouse 
Ab repertoires serves as a robust framework for gener-
ating highly effective Abs against diverse protein anti-
gens. Collectively, Chen et  al.’s research illustrated the 
potential for designing synthetic Ab libraries based on 
predominant CDR characteristics observed in natural 
Ab repertoires. This approach, utilizing deep sequenc-
ing-based big data alongside statistical analyses, holds 
significant promise in synthetic Ab library construction. 
Particularly, in  the identification of sequence features 
through bioinformatic methods proves essential in devel-
oping fully functional synthetic Ab libraries, catering to a 
wide array of target antigens. Thus, synthetic Ab libraries 

Table 4 List of studies associated with improved synthetic Ab library designs based on deep sequencing big data assessments

Study Findings Limitations

Maruthachalam et al. [36] Deep sequencing of synthetic Ab libraries helped produce 
diversified sub-libraries with fine-tuned CDR lengths 
for improved target antigen recognition

▪ Uses a single-framework synthetic Ab library
▪ The only diversified CDRs include H1–H3 and L3
▪ Target antigen dependent

Chen et al. [39] The authors generated a synthetic Ab library against entero-
virus antigens. Deep sequencing analysis reveals that heavy 
chains of the enterovirus-specific Abs are conserved

▪ The Ab library is based on peripheral blood samples 
of enterovirus-infected donors

Chen et al. [40] The deep sequencing of immunized mice enabled 
the reverse-engineering of an Ab response while helping 
guide the construction of a synthetic Ab library containing 
natural features

▪ The synthetic library complexity is limited to natural Ab 
repertoires

Larman et al. [41] The successful development of a rationally designed 
synthetic Ab library was used in downstream applications 
involving deep sequencing-associated Ab discovery

▪ Limited to a ribosome-display format
▪ The only diversified CDRs include H2–H3 and L3

Tiller et al. [42]
Ravn et al. [43]
Frigotto et al. [44]

These studies demonstrate the effective large-scale, quality 
controlled validations of engineered synthetic Ab libraries 
by extensive deep sequencing analysis

▪ The longer reads show reduced data quality due to greater 
CDR complexities and read-out errors

Li et al. [48] A machine learning model, trained on extensive deep 
sequencing datasets, was able to effectively engineer 
various synthetic Ab libraries in silico. These are highly 
diverse and target-specific

▪ Requires target binding data for supervised training
▪ Demands supervised fine-tuning of pretrained language 
models

Shuai et al. [49] This study presents generative language model employs 
bidirectional context for designing Ab sequence spans 
of varying lengths. It led to the effective in silico design 
of synthetic Ab libraries containing desirable biophysical 
features

▪ Requires data training from natural Ab sequences for tar-
geted infilling of residue spans and full-length sequence 
generation
▪ Desirable biophysical features require the generation 
of large-scale full-length Ab sequences for model training

Amimeur et al. [50] A machine learning model, based on a generative adver-
sarial network, effectively generates feature-controlled syn-
thetic Ab libraries. The method included transfer learning; 
thus enabling chemical and biophysical biases

▪ The proof-of-concept validation library only contains 100 k 
sequences
▪ Validation of the library failed to include antigen selections 
and identify target selective Abs

Shin et al. [51] An autoregressive generative machine learning model 
was able to predict functional Ab sequences for the engi-
neering of synthetic nanobody libraries. These possessed 
high levels of Ab expression, solubility, and stability

▪ Restricted to nanobody libraries
▪ Based on a small library that requires further affinity matu-
rations to identify strong Ab binders
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based on natural Ab repertoire features can yield high 
affinity Abs, capable of targeting various antigens across 
diverse epitopes.

In an independent study, Larman et  al. focused on 
developing a rationally designed synthetic Ab library 
intended for subsequent application in deep sequenc-
ing-associated Ab discovery [41]. To accomplish this, 
the authors constructed an in silico, fully defined single-
chain variable fragment (scFv) library. Also, to stream-
line downstream deep sequencing data analysis they 
introduced specialized sequence features into the scFv 
framework [41]. Another key feature is that they included 
minimal variable region diversifications, just focusing on 
specific CDRs (L3 and H2-H3). Additionally, they fine-
tuned their unique CDR sequence design for protein 
binding by incorporating a hidden Markov model trained 
on thousands of Ab-antigen cocrystal structures obtained 
from the Protein Data Bank [41]. Consequently, their 
computational method was able to delineate  the crucial 
CDR positions essential for antigen binding, culminat-
ing in the creation of a synthetic scFv library founded on 
strategically designed variations that complemented the 
antigen interactions observed in natural Abs.

To materialize their synthetic library, Larman et  al. 
synthesized all unique in silico sequences on a program-
mable microarray. Subsequently, these fragments were 
combinatorially cloned into a unified scFv framework 
for molecular display [41]. With a rationally designed 
synthetic Ab library on hand, the authors then  pro-
ceeded to conduct in  vitro selections against various 
cancer-associated antigens. To confirm the efficacy of 
their library, they conducted deep sequencing analysis 
on all selection output pools. Due to the construction 
features originally  designed in silico, the authors  were 
then able to multiplex the output paired-ended reads to 
effectively  conduct comprehensive computational Ab 
sequence  profilings. In turn, this enabled them to  pin-
point the  highly-ranked clones associated with anti-
gen interactions. Additionally, their statistical analysis 
also served to validate that a rationally constructed scFv 
library was proficient at generating a diverse range of 
Ab binders targeting distinct antigens [41]. When taken 
together, the work presented by Larman et al. highlights 
a paradigm shift in synthetic Ab library design, revealing 
how in silico-derived Ab libraries can be engineered for 
downstream applications involving big data Ab discovery.

Moreover, the utilization of deep sequencing technolo-
gies presents significant advantages for conducting qual-
ity control in the design of synthetic Ab libraries [42–44]. 
Here, big data explorations provide a statistically-driven 
framework to corroborate specific Ab-engineered fea-
tures, such as rationally designed clonal diversities. Fur-
thermore, deep sequencing can be implemented during 

each round of in vitro Ab selections to effectively assess 
the quality of the selection process. In this context, big 
data assists with tracking the evolution and expansion 
of specific clones within a population over the selec-
tion process, providing a snapshot of Ab clonal enrich-
ments and concentrated diversities [26, 45]. An example 
of this feature includes the work by Ravn et al. Here, the 
authors implemented deep sequencing coupled with bio-
informatic analyses to assess the clonal diversities and 
Ab sequence quality of their engineered synthetic Ab 
libraries [43]. To do this, they performed NGS following 
each round of in  vitro selections against distinct target 
antigens. When computationally assessed, the various 
deep sequencing datasets could be used to effectively 
determine the evolution of Ab frequencies and clonal 
enrichments. Furthermore, bioinformatic explorations of 
big data enabled the clustering and parsing of all unique 
clones into specific family lineages; this led to the rapid 
discovery of diversified top-ranking candidate Abs asso-
ciated with target antigen interactions. As such, after 
experimental validations, all selected high ranking Abs 
(derived from distinct lineages) revealed potent inter-
actions against their antigen targets [43]. When taken 
together, the work by Ravn et al. demonstrated how big 
data explorations allow for enhanced quality control dur-
ing both, library design and target selections. Ultimately, 
their approach enabled the streamlined discovery of lead 
candidate Abs.

More recent advances combine deep sequencing-
derived datasets with advanced computational models to 
improve the features of synthetic Ab libraries. An exam-
ple includes the work by Li et al. Here, the authors utilized 
deep sequencing Ab datasets (combined with biochemi-
cal measurements involving Ab-antigen interactions) for 
the supervised training of a machine learning algorithm 
[46, 47]. After training their model, the authors were able 
to effectively extrapolate a Bayesian-based Ab fitness 
landscape [48]. After extensive computational iterations 
and validations, Li et  al. could derive various synthetic 
Ab libraries completely in silico. In their computational 
design they included potential Ab affinity-diversity 
trade-offs, as well as introduction of biochemical fea-
tures beyond affinity, these included hydrophobicity and 
isoelectric point enhancements [48]. Importantly, when 
experimentally validated, their in silico-designed Ab 
libraries yielded multiple target selective Abs, with some 
exhibiting sub-nanomolar binding affinity clones [48], a 
relevant feature for therapeutic Ab development. When 
taken together, the work presented by Li et  al. revealed 
how a machine learning model, trained on extensive 
deep sequencing datasets and biochemical data, was able 
to successfully engineer diversified synthetic Ab librar-
ies. Moreover, when experimentally validated, the in 
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silico-derived libraries produced unique Ab clones with 
favorable target binding affinities and diversities.

In a  different work, Shuai et  al. showed how it was 
possible to develop a deep generative language model, 
termed IgLM, for the in silico generation of synthetic 
Ab libraries [49]. Here, their work focused on the rede-
sign of the variable-length regions in Ab sequences. Ini-
tially, their computational model was trained using 558 
million deep sequencing Ab reads. To further condition 
their model, they incorporated information concerning 
specific Ab chain usage and species-of-origin [49]. Also, 
their generative language model included a bidirectional 
context, this allowed for the design of Ab sequence spans 
containing varying lengths. Furthermore, their deep-
learning model was also  designed to predict sequences 
based on the infill of CDR loops for improved develop-
ability [49]. As such, their computational approach led 
to the effective in silico design of diversified full-length 
heavy and light chain Ab sequences [49]. Its predictions 
were compiled to design in silico synthetic Ab libraries 
containing desirable biophysical features. Thus, Shuai 
et  al. produced a deep generative language model for 
creating synthetic Ab libraries based on re-designing 
variable-length spans of Ab sequences. Importantly, 
their methodology for Ab design effectively  included an 
autoregressive sequence generation task based on text-
infilling in natural language. When taken together, their 
work stands as a proof of concept highlighting that deep 
sequencing datasets and advanced computational algo-
rithms can be combined for the engineering of in silico 
Ab libraries, where these can be fine tuned for desired 
features.

In a different work, Amimeur et al. describe a genera-
tive adversarial network capable to design feature-con-
trolled synthetic Ab libraries [50]. Briefly, the authors 
trained their computational algorithm by utilizing over 
400,000 deep sequencing light- and heavy-chain human 
Ab sequences [47]. This training approach helped to 
computationally define the rules of human Ab formation 
and residue features. Also, their machine learning model 
incorporated transfer learning, a computational strategy 
that adds biases in the generative adversarial network 
towards molecules with desired features. For instance, 
the authors included in their design improved stabil-
ity and developability, lower predicted major histocom-
patibility complex (MHC) Class II binding, and biases 
toward specific CDR residues [50]. After extensive data 
analysis and complex iterative computations, Amimeur 
et al. were capable to design in silico synthetic Ab librar-
ies that contained natural Ab features. Following, they 
validated their computational method by successfully 
expressing a proof-of-concept library of nearly 100,000 
Abs via phage display. After experimental validations, 

the in silico-designed Abs proved structurally stable and 
possessed high solubility index scores, while containing 
correct/desired molecular design features [50]. Taken 
together, the work presented by Amimeur et  al. effec-
tively demonstrates how a generative adversarial net-
work is capable to design feature-controlled synthetic Ab 
libraries. Specifically, it is able to capture the complexity 
of the natural Ab sequence space, providing a basis for 
the generation of novel Abs that span a larger sequence 
diversity than those explored by standard in silico gen-
erative approaches. Also, through transfer learning, their 
model provided an inherent method to bias the physical 
properties of the generated Abs toward improved devel-
opability and biochemical properties.

An alternative strategy includes the work by Shin 
et  al. Here, the authors showed how an autoregressive 
generative model can help predict novel Ab sequences 
for the engineering of synthetic nanobody libraries 
[51]. Briefly, the authors produced a fully unsuper-
vised, alignment-free deep generative model (adapted 
from natural language processing) for the prediction of 
diverse Ab sequences. To train their model, they used 
big data generated from deep sequencing natural Ab 
repertoires. As such, by employing their autoregressive 
model they were then  able to successfully gain insights 
into the different Ab constraints linked to functionality. 
Moreover, their machine learning approach helped gen-
eralize regions of sequence space traditionally considered 
beyond the reach of prediction and design. Ultimately, 
this information led to the effective prediction of specific 
residue positions in Ab sequences, especially those asso-
ciated with missense and indel effects [51]. Following the 
analysis of extensive Ab datasets,  the authors were then 
able to design synthetic nanobody libraries completely in 
silico [51]. As such, subsequent experimental validations  
using a proof-of-concept nanobody library  revealed it 
possessed high levels of Ab expression, solubility, and 
stability. For example, their test  105-nanobody library 
showed better expression levels than a 1000-fold larger 
synthetic library [51]. Altogether, the work presented by 
Shin et  al. revealed an autoregressive machine learning 
model capable to generalize regions of Ab sequence space 
traditionally considered beyond the reach of prediction 
and design. Importantly, their predictive approach was 
able to produce functional  synthetic nanobody libraries 
completely in silico.

Heightened characterization of Abs
Deep sequencing is an effective tool for the characteri-
zation of synthetic Abs at high resolution. It enables the 
comprehensive assessment of Ab sequences, encompass-
ing diversity, binding properties, and functional features 
[23–25]. Here, the combination of big data with advanced 
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computational models offers a statistical framework to 
better characterize Abs (Table  5). Moreover, because 
deep sequencing offers the comprehensive exploration of 
Ab sequence space, it is able to unveil the distinct clonal 
features and diversities to help identify potential candi-
date Abs. For instance, it offers a quantitative strategy 
to parse and select the top ranking immuno-dominant 
sequences in silico, bypassing labor intensive screenings 
and validations [52]. A further advantage is that deep 
sequencing-based Ab discovery can effectively identify 
both unique and rare clonal sequences associated with 
Ab-antigen interactions [53, 54]. In this context, this 
approach broadens the pool of candidate Abs available, 
enabling the comprehensive scrutiny of clones.

In recent years, developments in deep sequencing-
based Ab discovery have utilized advanced bioinfor-
matic processes to effectively mine low-frequency Ab 
clones (i.e. rare clones) hidden in big data. As an exam-
ple, the recent work presented by Kelil et al. describes an 
advanced  motif-based scoring algorithm used for ana-
lyzing deep sequencing datasets [55]. In their work, the 
authors effectively showed how in silico methodologies 
are able to comprehensively interrogate the clonal output 
from in  situ Ab selections against cell surface receptors 
[55, 56]. Briefly, the authors performed multiple rounds 
of in  situ cell-based selections to enrich target selec-
tive Ab-phage pools. Following, they implemented deep 
sequencing analysis from Ab pools derived from both, 
antigen expressing cells and controls. To effectively deal 
with the background noise inherent to the highly het-
erogeneous, in situ-derived Ab-phage pools, the authors 
developed a motif-based scoring algorithm that explored 
all possible sequence paratope motifs (i.e., linear infor-
mation). Here, for each Ab clone they explored the entire 
space of linear information by exhaustively enumerat-
ing all possible motifs matching their CDR sequences. 
Ultimately, Kelil et  al. were able to obtain the frequen-
cies (number of matching sequences/total number of 
sequences) of every motif in the antigen selective versus 
control datasets [55].

In turn, their computational methodology enabled Kelil 
et  al. to compare and contrast the levels of enrichment 
motifs derived from Abs in the in  situ selections versus 
controls. Such strategy successfully identified candidate 
Ab  sequences potentially reactive for the target anti-
gen. Importantly, their motif-based scoring model could 
effectively determine highly diverse Abs beyond the limi-
tations of frequency. This meant that the various in silico 
identified clones had extremely diversified frequencies, 
these varied from very high (30%) enrichment to as low 
as 1 per 1,000,000 sequence reads [55]. Crucially, when 
experimentally validated, all of the identified low fre-
quency Abs (i.e. rare clones) showed high selectivity for 

their cognate antigen. This implied that buried within 
deep sequencing Ab datasets lie highly diverse low-
frequency clones that are specific for their antigen. 
Another feature from their model is that all identified 
rare clones had unique sequences, all divergent from the 
immunodominant classes [55]. This highlights that their 
methodology effectively expands the available pool of 
antigen-selective Abs. When taken together, the work by 
Kelil et  al. described an advanced in silico strategy able 
to screen complex pools of in situ selecion Abs via deep 
sequencing big data mining. Here, the implementation of 
an advanced motif-based scoring algorithm was able to 
effectively mine and resolve low frequency clones selec-
tive for their target antigens.

Additionally, deep sequencing can also be used as a 
tool to effectively analyze the sequence diversity and 
evolution of synthetic Abs, such as those involved in the 
neutralization of pathogens. Notably, implementing this 
strategy allows for the swift identification of lead candi-
date Abs for downstream  therapeutic assessments. The 
effective implementation of this approach was demon-
strated by Tsioris et  al.; here, the authors monitored a 
humoral response over time  in infected subjects with 
West Nile virus using single-cell B-cell receptor (BCR) 
deep sequencing analysis [57]. Via the implementation 
of computational assessments, the authors could track 
over time  the Ab immune response associated with the 
West Nile virus. Importantly, by observing clonal diversi-
ties and increased frequencies  their findings  also led to 
the effective identification of antigen-specific Ab clones. 
Furthermore, the implementation of computational 
ontogeny assessments helped identify the antigen-selec-
tive  clones with the highest viral neutralization activi-
ties [57]. Similarly, to rapidly identify function-specific 
Abs, the work presented by Zhu et al. introduced a deep 
sequencing analysis to B-cell transcripts derived from 
patients infected with the human immunodeficiency 
virus-1 (HIV-1) [58]. To effectively accomplish this, they 
derived a computational algorithm that analyzed specific 
sequence motifs and Ab evolutionary relatedness. Here, 
via metadata analysis of deep sequencing datasets, the 
authors were able to swiftly  identify selective candidate 
Abs with high sequence diversities [58]. Also, based on 
their findings, they were able to derive chimeric synthetic 
Abs using only the in silico identified heavy chain Ab 
sequences; these were then combined with the light chain 
of a previously isolated anti-HIV-1 Ab. When experimen-
tally validated, all the reconstituted Abs showed high 
neutralization potencies against HIV-1, with some clones 
able to neutralize viral infections up to 90% [58].

Besides being utilized as a tool to explore the breadth 
of the selection output and clonal sequence diversities, 
deep sequencing datasets can be used for predicting Ab 
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binding affinities [59–61]. Such feat is commonly done 
by analyzing deep sequencing datasets for clonal enrich-
ments derived from in vivo immunizations or in vitro Ab 
selections.  Because clonal abundances tend to correlate 
with affinity, the incorporation of clonal frequency rank-
ings offers an indirect strategy for predicting Ab affini-
ties. For instance, this was successfully demonstrated 
by Pan et  al.  where the authors isolated bone marrow 
from immunized mice followed by Ab repertoire deep 
sequencing analysis [62]. Post computational screen-
ings, they were able to effectively identify the  distinct 
molecular features from antigen-specific clonal lineages. 
Moreover, they also implemented calculations associated 
with enrichment rankings of the various Ab frequencies 
to effectively identify lead candidate Abs. Notably, when 
experimentally validated, all top-ranking identified clones 
proved to be selective for the target antigen and displayed 
high affinities [62]. Thus, the work presented by Pan et al. 
successfully demonstrated that the application of deep 
sequencing-based clonal rankings can effectively for-
mulate affinity predictions; this is accomplished by per-
forming frequency cross-comparisons among the various 
clones.

Additionally, deep sequencing technologies can help 
monitor the mutagenesis status of CDRs to ultimately 
enhance Ab-antigen affinity interactions. For instance, by 
correlating Ab sequences with affinity data or other effec-
tor properties, desired Ab variants can be swiftly iden-
tified and selected for downstream in  vitro validations 
[63–65]. Furthermore, the implementation of  computa-
tional  comparative sequence analyses can help identify 
specific amino acids associated with improved antigen 
interactions, these can include critical structural loca-
tions and/or charge properties on the Ab framework 
[63–65]. Thus, big data comparative analyses can facili-
tate the discovery of sequence motifs with advantageous 
biophysical properties. As an example, the work pre-
sented by Forsyth et  al. revealed how deep sequencing 
analysis  could help characterize the Ab affinity regions 
involving CDR mutagenesis studies [66]. Here, their 
method uses Ab libraries containing thousands of CDR 
point mutations displayed on mammalian cells; these 
were then sorted by flow cytometry into subpopulations 
based on antigen affinity and subsequently analyzed via 
deep sequencing.

Next, by performing clonal enrichment rankings, the 
authors were able to determine the various mutations 
associated with affinity improvements. Their analytical 
approach assessed the effect of every possible amino acid 
CDR substitution for potential antigen binding interac-
tions. Ultimately, streamlining the identification of Abs 
with enhanced affinity [66]. As a proof-of-concept, they 
applied their method to a humanized Ab version of the 

anti-epidermal growth factor receptor, called cetuxi-
mab. Then they generated a comprehensive dataset that 
included 1060-point mutations that recapitulated previ-
ously identified structural and mutational data for these 
CDRs. In turn, the implementation of  their computa-
tional and experimental findings helped reveal 67 criti-
cal point mutations associated to increase the affinity of 
cetuximab [66]. When taken together, the work presented 
by  Forsyth et  al. highlights  a deep sequencing-based 
CDR mutagenesis scanning platform for the comprehen-
sive understanding of clonal affinities. Moreover, their 
work may prove extremely advantageous for the rational 
design of Ab sub-libraries and for performing mutagen-
esis improvements of specific Ab variants.

Additionally, the combination of deep sequencing data-
sets with advanced computational algorithms can aid in 
the characterization of synthetic Abs. As an example, 
Friedensohn et al. showed how a deep-learning platform 
capable to identify convergent features among distinct 
Ab repertoire pools [27]. Notably, their work provided 
evidence for the presence of shared (convergent) receptor 
sequences across organisms of the same species. Briefly, 
the authors introduced a deep-learning method, based 
on variational autoencoders, to help model the underly-
ing processes of BCR recombinations. For training their 
algorithm they used deep sequencing-derived datasets 
from Ab repertoires involving immunized mice cohorts 
[27]. Following, their advanced computational algo-
rithm performed latent embedding and the clustering 
of assigned labels to help group similar sequences. Such 
analysis allowed for the discovery of convergent, antigen-
associated sequence patterns. Following, they confirmed 
their findings by performing in  vitro validations involv-
ing both natural and in silico-generated Abs with conver-
gent patterns. Here, their experimental results showed 
that all novel in silico-derived Abs exhibited high binding 
affinities for their target antigens [27]. Thus, the work by 
Friedensohn et  al. effectively  highlights how a machine 
learning model, trained on deep sequencing datasets, can 
aid in the discovery of convergent features from distinct 
immune response Ab repertoires. Importantly, their find-
ings show that this occurs even if those convergent  fea-
tures are based on distinct ranges of immunizations and 
antigen conditions [27].

Enhanced affinity maturation strategies
Deep sequencing offers critical information for the 
design of affinity maturation libraries to successfully 
improve Ab-antigen interactions. For instance, via deep 
sequencing it is now possible to guide and monitor the 
changes in Ab repertoires over rounds of affinity matu-
ration; such feature helps track the entire clonal output 
and determine affinity improvements over time [26]. 
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In this context, it can offer a statistical overview of the 
unique clonal repertoires. This capability is pertinent for 
conducting clonal frequency assessments to ascertain 
the efficacy of in  vitro selections, including the pres-
ence of immuno-dominant high-affinity Abs [59–62]. 
Furthermore, this real-time feedback offers opportunity 
for instant responses regarding modifications in the Ab 
library design [67]; in turn, this can help avoid potentially 
cost and time-consuming molecular evaluations. Also, 
deep sequencing explorations can help determine the 
representation of distinct Ab library features associated 
with antigen interactions. These observations can then 
be analyzed via computational models to determine Ab-
antigen interactions and molecular docking predictions, 
ultimately enabling a holistic approach to big data assess-
ments [68, 69]. Moreover, such in silico predictive models 
can offer valuable insights to improve the designs of affin-
ity maturation libraries.

The work by Hu et al. successfully showed how a deep 
sequencing big data platform could be used to effectively 
identify Ab candidates with improved affinities [60]. 
Briefly, their methodology involves the  deep sequenc-
ing of the clonal output from affinity maturation libraries. 
These were then computationally analyzed and clustered 
based on  clonal rankings of the various  frequencies. 
Next, the authors selected the top candidate clones based 
on their enrichment and uniqueness. As a consequence, 
their approach was able to effectively streamline the affin-
ity maturation process, where it allowed to bypass the 
requirements for primary screenings. Also, they corrob-
orated their findings by designing a combinatorial sub-
library that included specific biochemical patterns and 
amino acid positional frequencies at each CDR. These 
were derived from the unique features contained in the 
ten most abundant and diversified Ab variants. Impor-
tantly, after in  vitro selections against a target antigen, 
they were able to rapidly identify and isolate a mutant 
clone with 158-fold improved affinity from the parental 
clones [60]. When taken together, the work presented 
by Hu et  al. helped demonstrate how deep sequencing 
datasets can aid in the swift discovery of affinity matured 
clones. Moreover, the application of deep sequencing 
could effectively discern the specific CDR features asso-
ciated with target antigen interactions, allowing for the 
construction of combinatorial sub-libraries that generate 
clones with significantly improved Ab affinities.

Furthermore, deep sequencing can help identify spe-
cific amino acid positions or motif-regions associated 
with Ab-antigen interactions. For instance, the work by 
Fujino et  al. revealed a robust deep sequencing-based 
engineering strategy that helped derive synthetic Abs 
with enhanced affinities [70]. Briefly, the authors first 
generated a single amino acid mutational scanning 

Ab library (based on a previously identified Ab)  to 
identify the affinity binding hotspots. This scanning 
library was then used for performing in vitro selections 
against the target antigen, with the output repertoire 
analyzed by deep sequencing. After rigorous compu-
tational analysis, Fujino et  al. were able to determine 
the critical residues associated with antigen binding 
[70]. Based on the identified CDR hotspots, the authors 
further engineered a combinatorial sub-library for per-
forming downstream affinity maturations. After in vitro 
selections  using the mutagenesis-guided sub-library, a 
small subset of enriched clones was quickly isolated, 
where post experimental validations all distinct clones 
exhibited strong interactions with the target  antigen. 
Notably, some Abs  exhibited affinities greater than 
2000-fold from the parental clones [70]. When taken 
together, Fujino et  al. described an innovative deep 
sequencing big data strategy for enhancing the affinity 
of Abs in  vitro. Their methodology produced several 
pico-molar affinity clones, an important feature for the 
development of Ab therapeutics.

Moreover, the introduction of advanced computa-
tional models can be leveraged to successfully enhance 
Ab affinities. As an example, the work by Saka et  al. 
revealed how a completely in silico Ab discovery plat-
form is able to derive novel high-affinity Abs [71]. 
Briefly, the authors derived an advanced machine learn-
ing method capable to decipher the distinct CDR pat-
terns associated with high-affinity antigen binding 
interactions. To train their computational algorithm, 
the authors incorporated expansive deep sequencing 
Ab datasets from distinct in  vitro experimentations. 
After big data processing, their machine learning model 
could effectively predict novel synthetic Ab sequences 
that were associated with high-affinity interactions. 
This was done by introducing a Long Short Term 
Memory (LSTM) network capable to generate and pri-
oritize Ab sequences with high affinity interactions. 
This deep generative model uses natural language 
processing, where after training, it can sample virtual 
sequences and avoid combinatorial features commonly 
encountered in the deep sequencing space. As such, 
the authors prioritized and selected the most promis-
ing virtual sequences based on their calculated likeli-
hoods. Eventually, all high-ranking in silico-derived 
clones underwent experimental validations; impor-
tantly, all predicted Abs displayed potent affinities  for 
their target antigens [71]. A distinctive feature of their 
approach was that most of the in silico predicted clones 
had exceptionally improved affinities (some 1800-fold 
higher) when compared to the identified clones derived 
from the  original deep sequencing data [71]. When 
taken together, the work by Saka et al. showed how an 
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advanced machine learning algorythm can be imple-
mented to generate completely novel Ab sequences that 
are target selective and high affinity.

A current  downside of conventionalAb affinity matu-
ration  strategies is that these prove overly costly and 
labor-intensive. This is due to the molecular muta-
tional rearrangements required  to effectively explore 
the sequence space associated with improved affinity 
interactions. To overcome this  current limitation, Liu 
et  al. developed a deep generative model, based on Ab 
sequence generation and prioritization procedures, to 
efficiently predict Ab sequences with higher affinity [72]. 
Briefly, the authors first performed in  vitro selections 
against a target antigen using a synthetic Ab library with 
varying CDR3 sequences. At each selection round, they 
generated extensive deep sequencing datasets that were 
used for training their deep-learning algorithm. Follow-
ing, they introduced LSTM network calculations capable 
to make effective in silico predictions involving Ab-anti-
gen affinity interactions. Notably, their de novo predicted 
clones proved superior in target affinity binding when 
compared to all of the sequences present in their deep 
sequencing training data [72]. For instance, some of the 
affinities measured displayed 1800-fold higher potencies 
than those of the parental clones [72]. In turn, the work 
by Liu et al. revealed how a high-capacity deep-learning 
algorithm can efficiently model the biophysics of Ab-
target interactions given sufficient high-quality train-
ing data. Moreover, when compared to frequency-based 
screenings using deep sequencing datasets, their machine 
learning approach is able to predict de novo sequences 
with far greater affinities.

In summary, big data plays a pivotal role in develop-
ing affinity maturation strategies (Table 6). For instance, 
deep sequencing provides a window for the detailed 
understanding of sequence diversities, structure–func-
tion relationships, and the evolutionary dynamics of 
distinct Ab clones. Also, big data explorations aid in the 
engineering of affinity maturation sub-libraries; in turn, 
these help refine the specific designs and characteristics 
embedded in the sub-library repertoires, ultimately gen-
erating clones with improved affinities. Moreover, the 
introduction of deep sequencing into affinity matura-
tion Ab discovery can help expedite the identification of 
high affinity Abs (in addition to other desired biochemi-
cal features). Also, deep sequencing big data is able to 
effectively train advanced computational algorithms to 
eventually produce in silico-predicted Ab affinity clones. 
Such de novo variants not only contain novel sequence 
features, but possess improved binding interactions with 
their target antigens. Thus, when employed together, big 
data and advanced computational tools can help stream-
line lead candidate Ab development (including affinity 

maturation); this is especially advantageous for biotech-
nology Ab production pipelines.

Reduced Ab immunogenicity effects
The generation of deep sequencing datasets from either 
immunized animals or in  vitro selections can effec-
tively  streamline the Ab discovery process. However, a 
problem arises when non-human origin Abs are intended 
for use in human hosts; there is a risk for inducing an 
immune response, causing the rapid clearance of the non-
human origin Abs. To avoid such issues, non-human Abs 
tend to undergo a process called “humanization”. Via 
this approach, the non-human molecular  Ab features 
are re-configured to resemble human ones  minimizing 
their immunogenicity potential [73, 74]. A common Ab 
humanization technique involves CDR grafting, a proce-
dure that involves the swapping of human Ab CDRs for 
non-human CDR  counterparts [75, 76]. Although this 
approach has been proven mostly effective, it can be 
suboptimal and has important drawbacks. For instance, 
the resulting CDR-grafted chimeric Abs may require 
further molecular engineering and mutagenesis opti-
mizations. This is done to ensure that their desired bio-
chemical properties remain undisturbed, such as affinity, 
solubility, and stability. Also, the retention of non-human 
CDR regions in a human Ab framework can potentially 
induce immunogenicity in some human hosts. Thus, due 
to CDR-grafting into human framework regions of ger-
mline sequences  drawbacks,  recent developments have 
employed  big data  coupled with sophisticated compu-
tational techniques to effectively perform  in silico Ab 
humanizations.

For instance, the recent work by Clavero-Álvarez et al. 
described a computational method, based on a mul-
tivariate Gaussian model, capable to characterize the 
statistical distribution of the sequences of the variable 
regions of human Abs [77]. Here, the authors used  Ab 
sequence  information to effectively  calculate the phe-
notypical correlations between pairs of residues, both 
within and between chains. Furthermore, they imple-
mented a probability score to assess the model’s effi-
ciency in classifying murine and human sequences. To 
accomplish this they introduced large human and murine 
databases, obtained from the IMGT/LIGM-DB server 
(based on cDNA variable heavy and light Ab sequences), 
to help train and test their in silico  model [77]. Their 
approach was then  combined with steepest-descent/
Monte-Carlo simulations to eventually  generate highly 
accurate multivariate Gaussian statistical scores. Ulti-
mately, their results showed that their  model was able 
to derive humanness scores with high precision; as such, 
this feature enabled to perform the humanization of vari-
ous murine sequences. Importantly, when validated their 
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model outperformed other computational  methods 
involved in sequence classifications [77]. Moreover, 
their optimization protocol was able to  effectively gen-
erate humanized sequences that were recognized as 
human-like by various homology modelling tools [77]. 
When taken together, Clavero-Álvarez et  al. described 
an advanced computational model that is capable to infer 
humanness features based on large datasets of experi-
mentally verified Ab sequences. Notably, their approach 
offers a flexible framework that can be adapted to dif-
ferent learning databases  to ultimately extrapolate the 
humanization of animal-derived Abs.

Another example includes the recent work by Schmitz 
et  al. Here, the authors effectively describe a computa-
tional methodology, termed IgReconstruct, that is able 
to characterize the immunogenicity potential from sin-
gle nucleotide frequencies contained in the Ab variable 
regions [78]. To accomplish this, they derived a compu-
tational model that utilizes a position- and gene-specific 
scoring matrix capable to generate human similarity 
scores. Here, their scoring matrix uses sequence back-
translation comparisons, allowing for accurate similar-
ity estimations between human and non-human Ab 
sequences [78]. To derive their calculations they utilized 
big data training sets derived from the deep sequenc-
ing of human BCR repertoires; these included approxi-
mately 326 million Ab sequences [78]. After performing 
computational reiterative alignments to species-specific 
germline genes they were able to map the various non-
human Ab sequences onto the immunome of human 
BCR repertoires. Ultimately, their methodology helped 
discern the immunogenicity potential from single nucle-
otide frequencies of non-human Ab variable regions [78, 
79]. Altogether, the work presented by Schmitz et  al. 
showed how an advanced computational model, depend-
ent on expansive deep sequencing Ab datasets, can effec-
tively identify the key immunogenical features from 
non-human Ab sequences.

Similarly, the recent work by Prihoda et  al. described 
how deep sequencing Ab datasets may be combined with 
deep-learning models to perform accurate Ab humani-
zations [80]. Briefly, the authors incorporated public 
repositories of big data Ab sequences [47] to train their 
in silico humanization model, termed BioPhi. Their strat-
egy utilized a deep-learning methodology able to predict 
the most probable human residues given a particular 
input sequence. For performing accurate determination, 
their computational algorithm first  partitioned a given 
Ab sequence into overlapping 9-mer peptides. Then, by 
introducing exhaustive comparative iterations against 
NGS datasets of human-derived Ab sequences the 
authors could determine the prevalence of human-like 
features from a given input sequence. Ultimately, their 

deep-learning algorithm was able to predict positional 
residue frequencies, allowing to perform guided adjust-
ments to an input sequence. In turn, this procedure could 
then determine the positional Ab residue mutations asso-
ciated with immunogenicity. Furthermore, after perform-
ing experimental validations, the authors showed that the 
in silico-predicted sequences had comparable affinities 
as to those generated by standard methods [80]. When 
taken together, Prihoda et  al. presented a deep-learning 
architecture, trained on extensive deep sequencing data-
sets, that evaluates the “humanness” composition of a 
given Ab sequence. Via such method, the  authors were 
able to perform rapid molecular engineering optimiza-
tions that led to effective Ab humanizations.

Other humanization approaches include the work pre-
sented by Wollacott et al.; here, the authors developed a 
deep-learning model, termed AbLSTM, based on exten-
sive training using NGS-derived BCR repertoires. In their 
work, the authors were able to  effectively identify the 
divergent Ab features from non-human Abs to natural 
human counterparts [81]. Briefly, Wollacott et al. devel-
oped a bi-directional LSTM network trained on extensive 
NGS-derived Ab sequence datasets. To advance their 
computational calculations they introduced a specialized 
recurrent neural network to  effectively learn the distinct 
amino acid distributions found in Ab sequences. This 
helped determine selective pattern identifications involv-
ing long durations of time. When computationally  vali-
dated, their in silico approach could effectively perform 
sequence classifications, allowing for the differentiation 
of human Abs from those of other species. As such, the 
immunogenicity information obtained via their compu-
tational approach helped guide the in  vitro molecular 
humanizations of non-human Abs. Another advantage 
of their method is that it showed direct implications for 
the ’humanness’  evaluation of synthesized Ab libraries, 
as well as at predicting the most favorable architectures 
for downstream CDR grafting into human frameworks 
[81]. When taken together, the work presented by Wol-
lacott et al. described an advanced computational model, 
based on a LSTM network, that is capable of learning the 
specific native features within human Ab sequences. To 
assess the humanness potential of a given Ab sequence, 
their approach employed extensive deep sequencing 
datasets from naturally occurring Ab repertoires; these 
were used as the training vehicle to understand the char-
acteristics associated with human Abs.

Similarly, the work by Marks et  al. described a deep 
sequencing-dependent machine learning algorithm 
capable of discriminating human versus non-human Ab 
sequences [82]. Briefly, to train their model the authors 
used deep sequencing Ab datasets derived from over 
65 million non-redundant human Ab sequences and 
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13 million non-human sequences [82]. Following, the 
authors implemented random forest classifiers to derive 
a quantitative scoring matrix capable of determining the 
human-like features given a random Ab sequence. Next, 
Marks et  al. generated matrix scores based on nega-
tive comparative relationships, including experimentally 
validated immunogenicity effects. As a consequence, 
the higher the ‘humanness’ score the closer the resem-
blance of a given Ab sequence to a human counterpart. 
As such, the matrix scores helped provide a quantitative 
framework to determine non-human features. To effec-
tively  validate their model they incorporated random 
Ab sequences from previously identified therapeutic 
Abs. Importantly, experimental validations showed high 
accuracy of non-human versus human classifications; 
for instance, 175 of the 176 human Abs were classified 
as human, and all 14 mouse Abs were classified as non-
human [82]. When taken together, the machine learning 
model presented by Marks et al. proved to be an effective 
tool for making successful humanness predictions given 
random Ab sequences.

Additionally, the random forest classifiers derived by 
Marks et al. were further used to help build Hu-mAb, a 
computational predictive tool that can systematically 
humanize Abs by suggesting key mutational alterations 
that can increase their humanness scores [82]. Nota-
bly, a key feature of Hu-mAb is that it humanizes Ab 
sequences by minimizing their number of mutations; 
this helps prevent potential unwanted sequence modifi-
cations associated with Ab function and efficacy. Thus, 
to humanize a given Ab sequence, their computational 
algorithm first assesses every possible non-destabilizing 
single-site mutation in the Ab framework. This then gen-
erates a large set of mutated sequences, where these are 
subsequently scored by random forest classifiers to derive 
their final ‘humanness’ scores. Following, the in silico-
generated mutant sequences are ranked, with the top-
scoring sequences then selected as the most human-like. 
Also, these mutagenized sequences all contain the mini-
mal number of possible mutations in combination with 
high humanness scores. When compared to humanized 
Abs derived by conventional methods, the predictive tool 
called Hu-mAb was able to generate non-immunogenic 
de novo sequences just as effectively [82]. Furthermore, 
the mutations suggested by Hu-mAb showed substan-
tial overlap with those deduced experimentally. This 
observation  highlights their computational model as an 
effective replacement for trial-and-error humanization 
experiments by producing similar results in a fraction of 
the time. When taken together, the work presented by 
Marks et al. revealed a powerful and fully automated in 
silico approach  capable to effectively humanize a given 
input Ab sequence. Furthermore, their model also helps 

minimize the number of mutational alteration to avoid 
impact on Ab efficacy, stability, and potency.

In summary, the combination of deep sequencing data-
sets coupled with in silico methods has radically altered 
the current  methodologies associated with Ab humani-
zation, processes that are time and resource intensive. 
On the other hand, big data  Ab sequences can be used 
to train advanced computational models, allowing to suc-
cessfully mine datasets and derive heuristic potentials. 
Notably, these intricate algorithms have demonstrated 
the ability to distinguish subtle Ab sequence differ-
ences between human and non-human Abs at an excep-
tional level [83–87]. For instance, various computational 
models have been successful at identifying position-
dependent probabilities of the critical amino acid resi-
dues associated with immunogenicity hotspots [83–87]. 
Such approach has allowed to effectively survey non-
human Ab sequences against big data phenotypic pools 
of human Abs; in turn, providing high throughput sta-
tistical rankings associated with reduced immunogenic-
ity. Furthermore, big data-driven in silico Ab modeling 
methods can also be implemented to effectively predict 
de novo Ab variants containing properties of low immu-
nogenicity [83–87], where  these big data-assisted com-
putational methodologies can transform non-human Ab 
sequences to closely resemble human counterparts. This 
means that current Ab humanization strategies can be 
performed completely in silico (Table  7), bypassing the 
need for conventional Ab humanization strategies (such 
as CDR-grafting), procedures that are time and resource 
intensive, and lack full efficacy.

Conclusion
The future trajectory of synthetic Ab development lies at 
the convergence of big data resources, involving vast Ab 
sequence databases and deep sequencing datasets, and 
cutting-edge computational algorithms adept at pro-
cessing big data. This amalgamation of technologies, as 
explored in the present report, marks a paradigm shift 
in conventional methodologies ultilized for synthetic 
Ab discovery, engineering, and optimization. As such, 
by harnessing the power of these integrated tools, there 
is potential for broadening the scope of methodologies 
while reducing the requirement for resource-intensive 
and time-consuming procedures, both intrinsic to syn-
thetic Ab discovery and  design.  Furthermore, the stra-
tegic deployment of these innovative tools holds promise 
to fastrack the various development pipelines employed 
in biotechnology and therapeutic Ab production, where  
researchers could  potentially expedite the identifica-
tion of promising candidates, hastening their progres-
sion through preclinical and clinical evaluation stages. 
In essence, the integration of big data resources and 
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computational algorithms not only advances synthetic 
Ab development, but also offers a tangible pathway 
towards accelerating the delivery of therapeutic Abs.

At the same time, it is critical to emphasize that while 
many of the methodologies presented in this report hold 
high promise, these are still in their early stages of devel-
opment. As such, many of these approaches demand fur-
ther refinements and optimizations to eventually  attain 
standardization within research settings. Also, it’s vital to 
recognize that existing computational models rely heav-
ily on extensive training and testing datasets, with their 
accuracy directly correlated to the quality and quantity 
of the available data. Thus, this dependence poses inher-
ent limitations on their practical utility. Furthermore, 
the implementation of big data-driven computational 
analyses comes with certain considerations, particularly 
those  concerning the time-intensive nature of data pro-
cessing. For instance, numerous approaches involving 
extensive data processing require iterative procedures 
associated with significant processing times, includ-
ing access to high-powered hardware resources. Conse-
quently, the implementation of advanced computational 

methodologies demands careful deliberation, specifically 
regarding the  temporal aspects of data processing and 
the costs associated with acquiring advanced computa-
tional hardware.

In addition to addressing these challenges, ongo-
ing scientific efforts should also focus on enhancing the 
scalability, efficiency, and accessibility of computational 
methodologies for synthetic Ab research. Here, col-
laborative initiatives aimed at standardizing protocols, 
improving data sharing practices, and advancing compu-
tational infrastructure will be pivotal in accelerating the 
translation of in silico approaches into robust tools for 
Ab engineering. Despite these inherent drawbacks, it is 
evident that the integration of advanced computational 
models and big data analytics are effectively reshap-
ing the landscape of synthetic Ab discovery, engineer-
ing, and development. These in silico approaches  offer 
high  potential to effectively  expedite and streamline 
existing Ab design processes by  effectively mining, fil-
tering, and analyzing big data, including  the  intricate 
features concealed within deep sequencing datasets. As 
such,  with the continuous evolution of computational 

Table 7 List of various studies highlighting various strategies for reduced Ab immunogenicity based on big data assessments

Study Findings Limitations

Clavero-Álvarez et al. [77] The authors presented a computational method based 
on a multivariate Gaussian analysis that is able to charac-
terize the statistical distribution of the variable sequences 
from human Abs. Their analysis was performed using 
large human and murine learning databases, which led 
to the humanization of various murine sequences

▪ The strategy is dependent on size and quality of the learn-
ing databases
▪ Only developed for humanizing murine Abs
▪ Uses stringent threshold scores that reduce the number 
of potential humanized sequences

Schmitz et al. [78] A large immunome dataset of 326 million human Ab 
sequences was used to create a position- and gene-specific 
scoring matrix. This strategy was used to effectively analyze 
the human Ab sequence space, allowing for a given input 
sequence to be compared against associated human 
Ab features

▪ The scoring is exclusively calculated from V and J gene 
templated regions
▪ The untemplated CDR-H3 region is not included in the score 
calculation
▪ The scoring success depends on the chain type and CDR-H3 
of certain lengths

Prihoda et al. [80] A deep-learning methodology was able to predict the most 
probable human residues given a particular input sequence. 
This was done by performing exhaustive comparative itera-
tions using NGS datasets of human-derived Ab sequences; 
this helped determine the prevalence of human-like 
features from a given input sequence

▪ The model is trained to recognize masked or mutated resi-
dues, and repairing them is based on their sequence context
▪ To compare across humanization methods, only average 
performance results across multiple sequences were used

Wollacott et al. [81] A LSTM network was capable of learning the specific 
native features within Ab sequences. To effectively 
assess the humanness potential of a given Ab sequence, 
the approach was trained using extensive deep sequencing 
datasets from naturally occurring Ab repertoires. Ultimately, 
the model was successful at humanness predictions 
given random Ab sequences

▪ The model performance is related to the underlying 
sequence space used in training
▪ The LSTM model favors sequences that are more germline-
like
▪ The LSTM model attributes rare sequences as being outliers

Marks et al. [82] A predictive model uses machine learning classifiers 
that are trained using deep sequencing big data. It 
is then used to derive specific mutations given an input 
sequence to help reduce its immunogenicity potential. The 
predicted mutations show substantial overlap with those 
deduced experimentally, proving the methodology 
as an effective replacement for trial-and-error humanization 
experiments

▪ The efficiency of predictions reduces when classifying 
sequences of species it has not been trained on
▪ The model is intended for use on murine precursor 
sequences
▪ The model is not applicable for the humanization of alterna-
tive Ab formats (e.g. nanobodies and asymmetric Abs)
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resources and capabilities, as exemplified by Moore’s law, 
and the exponential growth of big data repositories and 
databases, we should expect a disruptive quantum leap in 
synthetic Ab discovery, design, and development  in the 
foreseeable future.
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