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Revolution in sepsis: a symptoms-based 
to a systems-based approach?
Geoffrey P. Dobson1*, Hayley L. Letson1 and Jodie L. Morris1 

Abstract 

Severe infection and sepsis are medical emergencies. High morbidity and mortality are linked to CNS dysfunc-
tion, excessive inflammation, immune compromise, coagulopathy and multiple organ dysfunction. Males appear 
to have a higher risk of mortality than females. Currently, there are few or no effective drug therapies to protect 
the brain, maintain the blood brain barrier, resolve excessive inflammation and reduce secondary injury in other vital 
organs. We propose a major reason for lack of progress is a consequence of the treat-as-you-go, single-nodal target 
approach, rather than a more integrated, systems-based approach. A new revolution is required to better understand 
how the body responds to an infection, identify new markers to detect its progression and discover new system-
acting drugs to treat it. In this review, we present a brief history of sepsis followed by its pathophysiology from a sys-
tems’ perspective and future opportunities. We argue that targeting the body’s early immune-driven CNS-response 
may improve patient outcomes. If the barrage of PAMPs and DAMPs can be reduced early, we propose the multiple 
CNS-organ circuits (or axes) will be preserved and secondary injury will be reduced. We have been developing 
a systems-based, small-volume, fluid therapy comprising adenosine, lidocaine and magnesium (ALM) to treat sepsis 
and endotoxemia. Our early studies indicate that ALM therapy shifts the CNS from sympathetic to parasympathetic 
dominance, maintains cardiovascular-endothelial glycocalyx coupling, reduces inflammation, corrects coagulopathy, 
and maintains tissue  O2 supply. Future research will investigate the potential translation to humans.
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Introduction: a global perspective

At the present time there is no magic bullet or phar-
macological therapy for controlling the bioburden of 
propagating inflammation from intra-abdominal 
sepsis.
Coccolini and colleagues (2023) [26]

Sepsis is recognised by the World Health Organization 
(WHO) as a global health priority across all countries 

and ages [26]. It is the most common cause of admission 
and death in the Intensive Care Unit (ICU) [91]. Each 
year, ~ 49 million are afflicted and 11 million patients 
die, with the majority occurring in low- and middle-
income countries [142]. Nearly half, ~ 20 million cases, 
occur in children under 5 years of age, with ~ 2.9 million 
deaths [91, 142]. These global mortality numbers trans-
late to ~ 1200 deaths per hour or one death every 3 s. The 
most common causes are infections of the respiratory 
tract (up to 50%), followed by the abdomen, bloodstream, 
renal system, skin and central nervous system (CNS) 
[177]. Males appear to have a higher risk of mortality 
than females [122], which may be due to females having 
a more robust cell-mediated immune response [144]. 
Sepsis continues to pose a significant threat to the senior 
population with their lower physiological reserves and 
multiple comorbidities [80].
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Sepsis is a clinical syndrome that develops from a dys-
regulated host response to infection [68, 91]. It is char-
acterized by a systemic inflammatory response syndrome 
(SIRS) comprising hyperinflammation, immunosuppres-
sion, immune paralysis and multiple organ dysfunction 
syndrome (MODS) [91, 177]. Septic shock is a further 
complication that leads to persistent hypotension, wide-
spread tissue hypoperfusion, SIRS, MODS and an altered 
mental state [4, 22, 56, 91]. Modern core definitions of 
sepsis emphasize a more systemic pathobiology with 
underlying sub-phenotypes, each potentially requiring 
different management strategies [148]. These new sub-
phenotypes were recently identified by Seymour and 
colleagues, who used artificial intelligence and machine 
learning clustering techniques of multiple data sets from 
over 20,000 patients [148]. The different phenotypes 
appear to reflect different patient responses to infec-
tion that may be associated with varying degrees of CNS 
hyperactivation, inflammation, immune dysregulation, 
cardiac depression, endothelial-glycocalyx activation, 
coagulopathy and organ supply–demand imbalances. 
Today, diagnosing and treating sepsis begins with iden-
tifying the type of infection, measuring the host response 
using biomarkers, such as C-reactive protein, procalci-
tonin and lactate, predicting the likelihood of organ dys-
function, fluid therapy and possible drainage/surgery for 
source control [91, 142]. After providing a brief history 
of sepsis, we will discuss its pathophysiology from a sys-
tems’ perspective, and the challenges and opportunities 
for the twenty-first century.

Brief history

The medical profession will make early diagno-
sis, will insist on early intervention, will limit its 
surgical procedures to the least possible handling 
and trauma consistent with closure of the opening 
and relief of pus tension, will limit the duration of 
anaesthesia and the amount of the anaesthetic, will 
shorten the actual time of operation, will insure the 
continued absence of pus tension, will eliminate the 
sepsis already in the blood, restore the blood pres-
sure and will inhibit absorption by position.
John Murphy (1908) [120] p872

Pioneer surgeon John Murphy (1857–1916) wrote 
this description on how to treat a patient with perfora-
tive peritonitis over 100  years ago. When we study the 
history of medicine, one is humbled by how far we have 
come in advancing knowledge, on one hand, and appreci-
ate the long road ahead to improve current practices, on 
the other (Fig. 1). Despite flares of brilliance from ancient 
times to the renaissance, major strides did not occur until 

the mid-1800s when knowledge and practice became more 
evidence-based [40, 60, 158]. Louis Pasteur’s and Robert 
Koch’s germ theory of diseases, Rudolf Virchow’s medi-
cine and cellular pathology and Claude Bernard’s unifying 
concept of the internal milieu all formed the basis of the 
modern era [60] (Fig. 1). During the latter half of the 19th 
century, emergent surgery for intra-abdominal peritonitis 
with drain tubes was advocated by Johann von Mikulicz; 
Robert Tait practiced aseptic techniques and lavage of the 
peritoneal cavity; Joseph Lister made great strides in perio-
perative infection-control, and John Murphy incorporated 
most in his surgical practice (quote above), including the 
use of 0.9% saline infusions to avoid dehydration (Fig.  1). 
Despite these advances, sepsis mortality remained high 
(> 70%) [60, 127, 158].

This clinical landscape changed in 1928, when Alexander 
Fleming discovered Penicillium, which launched the mod-
ern antimicrobial era [127] (Fig. 1). Advances in bacteriol-
ogy and antibiotic use in the 1940s and 1950s resulted in 
a  slight mortality reduction from sepsis and septic shock 
[60, 158]. In the 1960s, the molecular revolution led to an 
increased understanding of the underlying pathology of 
infection and clinical trials targeted blunting the immune 
and inflammatory responses [60]. In the 1980s, animal 
models of sepsis were introduced into basic research. 
Today, despite new molecular-based technologies, nano-
technology diagnostics, thousands of research papers and 
hundreds of clinical trials, unacceptably high mortality 
rates still remain [27, 155]. A new revolution is required to 
better understand how the body responds to an infection, 
identify new markers to detect its progression and discover 
new system-acting drugs to treat it.

Pathophysiology from a system’s perspective
We begin our systems analysis of sepsis with the central 
nervous system (CNS) as it is the hierarchical controller 
of whole-body homeostasis through the multiple feed-
back circuits (or axes) linking the  O2 we breathe to mito-
chondrial ATP production. The term ‘systems’ refers to the 
whole body’s response to an infection, which includes its 
activation, progression and outcome [51–53]. A systems-
acting drug is defined as one that treats the pathophysio-
logical response from a systems’ perspective (see later).

CNS sympathetic hyperactivity: major controller 
of pathophysiology

Sepsis-associated encephalopathy is a diffuse brain 
dysfunction that occurs secondary to infection in the 
body without overt CNS infection.
Gofton and Young (2011) [62]
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During an infectious challenge, immune cells and their 
inflammatory products modulate the hypothalamic–
pituitary–adrenal (HPA) axis and activate sympathetic 
stress response via the nucleus tractus solitarius (NTS) 
[42, 49, 54, 153]. In sepsis, the CNS balance switches to 
sympathetic dominance with suppression of parasym-
pathetic outflows [7, 96]. This promotes a systemic pro-
inflammatory state because the parasympathetic system 
normally keeps inflammation at bay via activation of 
vagal cholinergic neurons and splanchnic/splenic nerves, 
known as the inflammatory reflex [78, 132, 170]). This 
shift in CNS balance also impacts on multiple brain-axes 
including the lung, heart and vasculature, gut microbi-
ome, liver, spleen, kidney, lung and muscle (Fig. 2). Ani-
mal studies, for example, have shown that blockade of the 
brain renin–angiotensin–aldosterone system appears to 
prevent sympathetic hyperactivity and markedly attenu-
ates LV dysfunction during sepsis [36]. Targeting the 
CNS to reduce its sympathetic discharge offers a poten-
tial target for future system-based therapies [96].

In addition to increased sympathetic discharge, sepsis 
affects brain function through neural afferents, hormones 
and signals from systemic immune cells and tissues (see 
below), which can enter the brain via a leaky blood–brain 
barrier (BBB) (Fig.  2) [124, 146]. This creates a hostile 
CNS environment of inflammation, oxidative stress and 
redox imbalance, which can activate glial cells, con-
strict the microcirculation and cause ischemia, hypoxia 
and structural nerve damage [104, 183]. In severe cases, 
the bombardment of injury signals can cause a condi-
tion known as sepsis-associated encephalopathy (SAE), 
defined as diffuse brain dysfunction secondary to sep-
sis with manifestations ranging from delirium to coma 
[62, 146, 183]. SAE occurs in up to 70% of septic shock 
patients, especially in the elderly, neonates, and patients 
with chronic illness [62]. Furthermore, SAE is a common 
cause of long-term neurological damage, such as anxi-
ety, memory impairment, and consciousness disorders 
following severe sepsis [62]. Potential therapeutics could 
target the maintenance of BBB integrity to reduce the 

Fig. 1 Brief history of infection and sepsis from the Renaissance to the present. Note the advances in the 19th century when asepsis, surgical 
practice and research were rapidly being developed for major diseases and trauma. The timeline provides a perspective of the changing ideas, 
practices, and outcomes from which the current thinking and treatments have developed (See text). CNS, central nervous system;  MgSO4, 
magnesium sulfate
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entry of immune cells and their products, and possibly 
reduce neuroinflammation and the incidence of SAE.

Increased CNS-sympathetic outflows may also 
reduce mesenteric blood flow to the gut [37, 177]. 
This is particularly relevant in sepsis because if the gut 
becomes ischemic, it can become leaky and bacteria or 
their active metabolic products (lipopolysaccharides, 
cytokines, neuropeptides, and protein messengers) can 
enter the mesenteric lymph or bloodstream and exacer-
bate the infectious load, increase immune dysfunction, 
heighten inflammation, worsen coagulopathy, and trig-
ger immunosuppression and MODS [25, 37, 75, 156, 
177]. The sepsis-induced derangements in microbial 
balance can themselves have a profound influence on 
immune function and cause harm to the host (Fig.  3) 
[89, 157]. Change in the host’s gut microbiome is bidi-
rectionally linked to the CNS through vagal afferents, 
immune, and HPA axis modulation, and the CNS in 
turn can modulate the gut and enteric nervous system 

[32, 45, 101, 113, 117, 166]. More studies are urgently 
required to examine the gut-brain axis and microbiome 
compositional changes during sepsis, which may offer 
potential targets for future therapeutics [25].

Host response to infection: immune cell activation 
and inflammation

Except on few occasions, the patient appears to die 
from the body’s response to infection rather than 
from it.
Sir William Osler (1904) [128]

William Osler’s statement over 100  years ago remains 
the cornerstone of our thinking today. It is the body’s 
response to infection that is the main determinant of out-
come, not the bacterial challenge per se. This helps to 
explain why a sepsis patient, despite successful removal 
of infectious foci, often fails to respond to ongoing 

Fig. 2 Schematic of CNS-control linked complications following a major infection and sepsis. Excessive inflammation and tissue damage can 
lead to CNS dysfunction, pulmonary injury, cardiovascular uncoupling, endothelial activation, tissue ischemia, microbiome composition changes, 
mitochondrial dysfunction, multiple organ failure, and ultimately death. Mortality rates are from Skei and colleagues [155]. Hyperinflammation, 
immune dysfunction, endotheliopathy, coagulopathy and multiple organ dysfunction are all under the control of the CNS. CNS, central nervous 
system; BBB, blood–brain barrier; NTS, nucleus tractus solitarius; HPA, hypothalamic-pituitary axis; LV, left ventricle; DAMPs, damage-associated 
molecular patterns; PAMPs, pathogen-associated molecular patterns
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treatments [27]. The early systemic response to an infec-
tion involves recruitment of inflammatory leukocytes to 
phagocytose the invading bacteria and associated cellular 
debris. Initially, neutrophils, which reside in large num-
bers in the circulation, are recruited and quickly followed 
by bone marrow-derived monocytes and macrophages 
to resolve the threat and restore homeostasis [42, 139]. 
Other immune cells are also recruited, such as dendritic 
cells, natural killer (NK) cells, B-cells, T-cells and innate 
lymphoid cells (ILC) [6, 22], however, their involve-
ment in sepsis is beyond the scope of the present review 
(Fig. 2).

If an infection, like sepsis, overwhelms the body’s 
defences, innate immune cells continue to infiltrate 

the vital organs of the body, including the brain, result-
ing in collateral tissue damage from cytokines, immune 
modulators, complement, oxidants, proteases, and toxic 
extracellular traps (Fig.  2) [84]. The cytokine ‘storm’ 
that ensues comprises a profound excess of proinflam-
matory over anti-inflammatory cytokines release into 
the circulation (Fig.  2). Key mediators include interleu-
kin (IL-1β), tumor necrosis factor (TNF)-α, IL-6, IL-4, 
IL-8, IL-17, IL-18, and IL-10, [152], as well as platelet-
activating  factor, complement factors and reactants of 
coagulopathy and fibrinolysis [179]. If concomitant anti-
inflammatory processes are not activated sufficiently, 
the cytokine storm is often followed by persistent lym-
phopenia and immunosuppression or paralysis, which 

Fig. 3 A schematic of the source of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) 
in response to an infection, sepsis or the trauma of surgery. The immune-driven inflammatory response is determined by the mix of cytokines 
and other neural and inflammatory mediators that determine the selection, activation, recruitment and fate of immune effector cells. Secondary 
injury is defined as a progressive process that begins with a pathogen or injury and leads to CNS dysfunction, excessive inflammation, immune 
dysfunction, coagulopathy, oxidative stress and mitochondrial energy deficit. Sepsis progresses in the setting of hyperinflammation, immune 
dysfunction, oxidative stress and redox imbalance. TLR, toll-like receptor; NLR, NOD-like receptor; RAGE, receptor for advanced glycation end 
products; CLR, C-type lectin-like receptor; RLR, RIG-I-like receptor; NK cell, natural killer cell; ILC, innate lymphoid cell; ARDS, acute respiratory distress 
syndrome; PIICS, Persistent Inflammation, Immunosuppression, and Catabolism Syndrome; MODS, multiple organ dysfunction syndrome
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involves metabolic reprogramming of many different cell 
types, immune cell depletion, cellular apoptosis and T 
cell exhaustion [49, 54, 110, 177]. A number of potential 
targets for resolution of inflammation are underway [138, 
186]). Razazi and colleagues, for example, have identified 
in septic shock patients that activation of the IL-17/inter-
feron (IFN) pathway and vascular endothelial growth 
factor (VEGF) strongly correlates with i) early sepsis res-
olution (reduced lactate) and ii) improved ICU survival 
[138]. Another target area that appears to show promise 
is metabolic reprogramming of immune cell populations 
for switching the host’s injury phenotype to a healing one 
[92, 102, 103].

Source of pathogen‑ and injury‑generated signals
The two main sources of molecular signals in sepsis that 
activate early immune cell recruitment and drive inflam-
mation are: 1) pathogen-associated molecular patterns 
(PAMPs) from the invading infectious microbes, and 2) 
damage-associated molecular patterns (DAMPs) from 
tissue injury [42, 177] (Fig.  3). PAMPs and DAMPs are 
evolutionary conserved motifs that make foreign patho-
gens or tissue damage recognizable by the host [42, 82, 
112]. PAMPs include bacterial lipopolysaccharide (LPS), 
flagellin and lipoteichoic acid, viral RNA and DNA, sur-
face glycoproteins, lipoproteins, and other membrane 
components [10, 82, 177]. DAMPs from damaged cells 
and tissues caused by the infection include fibrinogen, 
annexins, platelet components, fibronectin, S100 pro-
teins, syndecan-1, F-actin, adenosine triphosphate (ATP), 
histones, deoxyribonucleic acid (DNA), mitochondrial 
transcription factor A (TFAM), mitochondrial reactive 
oxgen species (mitoROS), cytochrome C, IL-1α, high 
mobility group box protein 1 (HMGB1), heparan sul-
fate, tenascin C, defensins, amyloid-β, and many others 
[141]. Another source of PAMPs and DAMPs are derived 
from extracellular vesicles (EVs) released by pathogens, 
immune or endothelial cells, platelets and damaged host 
cells [15, 165, 174].

How do host immune cells sense danger? PAMPs and 
DAMPs are detected by the host’s pattern recognition 
receptors (PRRs) located on the surface or in the cyto-
plasm of immune cells [160, 177]. PRRs are the body’s 
“sensors” of a threat and communicate it to the host via 
immune cell activation. These sensors include toll-like 
receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like 
receptors (NLRs), C-type lectin-like receptors (CLRs), 
receptors for advanced glycation end products (RAGE) 
and cytosolic DNA sensors (Fig. 3) [1, 86, 173]. Another 
important PRR that senses a wide range of PAMPs and 
DAMPs is the NLR family pyrin domain containing 3 
(NLRP3) protein that activates a cytoplasmic multipro-
tein platform assembly known as the inflammasome 

[85], which if overexpressed can lead to the death of the 
patient [181]. Importantly, PAMPs and DAMPs are not 
mutually exclusive, and immune cells may express  co-
receptors and accessory molecules that  form ‘partner-
ships’ to coordinate an immune response [134]. The extra 
barrage of DAMPs from an emergent laparotomy, if 
required, in a sepsis patient is an additional burden rarely 
mentioned as a potential target to improve outcomes 
[168] (see later). Identifying the different PAMPs and 
DAMPs in the blood of sepsis patients may offer a new 
early diagnostic treatment window for personalized care 
before the cytokine storm develops or tissue blood flow 
and  O2 becomes limiting [15, 165, 174].

Endothelial‑glycocalyx: a sensor and effector of immune 
activation

In acute inflammation, we find, as a general rule, 
vascular dilatation accompanied by an active con-
dition of the endothelium of the vessel-walls and 
an exudation with diapedesis, that is to say, three 
events which concur in producing a considerable 
afflux of leucocytes towards the injured spot.
E. Metchnikoff (1893) [116] p171

During sepsis, immune cells and their inflammatory 
products activate the endothelium that result in shedding 
of its ‘fuzz-like’ glycocalyx, indicated by serum elevations 
in syndecan-1 and soluble-thrombomodulin [81, 83, 
179]. This is called sepsis-induced endotheliopathy [83]. 
The glycocalyx is negatively charged and anchored to 
the single layer of endothelial cells that forms the nexus 
between the vasculature and the tissues [88, 176]. It cov-
ers a vast surface area of over 55,000  m2 [49, 54]. During 
sepsis, the activated endothelium becomes more adhesive, 
leaky, pro-apoptotic, pro-inflammatory, pro-thrombotic 
and vasoactive (Fig.  3) [81, 83, 105, 123]. Glycocalyx 
shedding is facilitated by stress-activated membrane-
bound enzymes, called sheddases, in response to pro-
inflammatory cytokines (e.g. TNF-α and IL1-β), reactive 
oxygen species (ROS) (e.g. superoxide, hydroxyl radical), 
and by aggressive fluid resuscitation [171]. Of clinical sig-
nificance, it appears that glycocalyx shedding can repair 
itself quickly [185]. Luft states that “these cells usually are 
able to replace their missing coats in a matter of minutes” 
[106]. However, very little is known about the loss and 
recovery of the glycocalyx during an infection or sepsis 
[171].

In critically ill patients, sepsis-induced endotheliopa-
thy is sometimes  associated  with vascular microthrom-
bosis mediated by platelet activation and the endothelial 
release of von Willebrand factor (vWF) multimers, which 
in turn impairs  O2 delivery to mitochondria. Excessive 
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production of vWF multimers become anchored to 
endothelial cells as elongated strings and form platelet-
vWF complexes known as “microthrombi” [23, 81]. If the 
pathology becomes more diffuse and systemic, it can lead 
to a lethal condition known as disseminated intravascular 
coagulopathy (DIC) (see below). Reducing the early acti-
vation of the endothelial glycocalyx or facilitating rapid 
recovery after shedding may be potential targets for new 
therapeutics.

Sepsis‑induced coagulopathy: a dynamic entity 
that evolves over time

Reconstituted systems are as realistic as our insight 
into the clotting mechanism allows: extrapolation 
to physiology should therefore be regarded with due 
suspicion.
Hemker and colleagues [76], p171

CNS dysfunction, inflammation, endotheliopathy and 
coagulopathy are all functionally linked through common 
pathways involved in the regulation of tissue factor (TF) 
[23, 47, 48, 100, 178, 179]. The common pathways include 
the TF inhibition pathway, platelet inhibition pathway, 
the heparin-antithrombin III system, thrombomodulin/
protein C system and fibrinolytic pathways (Fig.  4) [47, 
48, 123, 126]. Inflammasome-activated pyroptotic mac-
rophages [181], microbial agents, cytokines and comple-
ment factors can further increase TF levels, which can 
activate the endothelial-glycocalyx and aggravate coagu-
lopathy [177–179]. Wu and colleagues further showed in 
their mouse sepsis model that inhibition of TF abolishes 
inflammasome-mediated blood clotting and protects 
against death [172, 181].

Diagnosing sepsis-induced coagulopathy, like trauma-
induced coagulopathy (TIC), has undergone major devel-
opments in the last 10 years as whole blood viscoelastic 
methods have replaced the older unreliable plasmatic 
methods of prothrombin time (PT), activated partial 
thromboplastin time (aPTT) and international normal-
ized ratio (INR) [14, 46–48]. Sepsis-induced coagulopa-
thy is not a static state but a dynamic one with multiple 
phenotypes that can change over time (Fig. 4) [14, 47, 48, 
100]. In the rotational thromboelastometry (ROTEM) 
study of Davies and colleagues, they examined 100 ICU 
patients (50 with sepsis, 20 with severe sepsis and 30 with 
septic shock) and found increased sepsis severity was 
associated with shift from a hypercoagulable to hypoco-
agulable state, with no change in maximum clot firmness 
[35]. In septic shock, fibrinolysis was markedly impaired 
towards a bleeding phase, and was significantly associ-
ated with 28-day mortality [35]. Anatomopathologic 

fibrin deposition was not evaluated at autopsy to assess 
DIC. In 2023, Bui-Thi and colleagues undertook another 
prospective, observational, single-center study and 
reported 73% of 161 patients had sepsis/septic shock 
[14]. ROTEM showed 26% were hypercoagulable, 55% 
were hypocoagulable, 14% had mixed hypo-hypercoagu-
lation patterns, and 19% were hyperfibrinolytic [14].

The different coagulopathies appear to reflect differ-
ent timings and severity of infection and sepsis. An early 
common phenotype in septic patients appears to be a 
hypercoagulable subtype characterized by prolonged 
initial clot time with increased maximum  clot firmness 
(MCF) and high fibrinogen levels (Fig.  4). Bui-Thi and 
colleagues further showed that progression from sepsis to 
severe sepsis was accompanied by a shift from hyper- to 
hypo-coagulability with fibrinolysis [14]. The thrombel-
astography (TEG) study of Luo and colleagues confirmed 
a hypocoagulopathy in severe sepsis patients which, if 
present at hospital admission, was an independent risk 
factor for 30-day mortality [107]. Possible mechanisms 
responsible for the switch from a hyper- to hypo-coagu-
lopathy are summarized in Fig. 4 [47, 48].

A common mistake in the literature is to equate hypo-
coagulopathy and fibrinolysis (a bleeding phenotype) 
with disseminated intravascular coagulopathy (DIC) [47, 
48, 100, 125]. DIC is a rare and specific phenotype with 
diffuse anatomopathologic fibrin deposition in small and 
mid-size vessels (Fig. 4) [46, 74, 99, 163]. Clinically, DIC 
continues to be diagnosed using a scoring system involv-
ing PT, platelet count, fibrinogen, and D-dimer levels [13, 
167, 172]. However, without evidence of intravascular 
fibrin deposition, diagnosis may not be DIC and impact 
on optimal patient treatment. We propose the concept of 
DIC should be confined to a phenotype with confirmed 
microvascular fibrin deposits.

Understanding coagulopathy during sepsis is in its 
infancy. More research in clinically-relevant animal mod-
els and high quality prospective randomized human tri-
als are urgently required to characterize the different 
early and late phenotypes, and their progression to sepsis 
and septic shock, as well as sex differences. With more 
high-quality studies, there is a strong potential that the 
information can lead to more effective personalized and 
goal-directed treatments.

Multiple organ dysfunction syndrome (MODS): not a single 
event but a systems failure

Of those who die, most are from multiple organ fail-
ure which is a still poorly understood consequence 
rather than the immediate effect of infection.
Coccolini and colleagues (2023) [27]
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To highlight the lethality of MODS during sepsis, the 
2023 guidelines redefined sepsis as “life-threatening 
organ dysfunction resulting from a dysregulated host 
response to infection” [143]. In 1975, Arthur Bauer 
introduced the term MODS as multiple physiologi-
cal derangements [8]. Today, MODS is considered a 
clinical syndrome characterized by the development of 

progressive and potentially reversible physiologic dys-
function in two or more organs or organ systems [19, 95]. 
Organ dysfunction syndromes include encephalopathy, 
acute respiratory distress, myocardial infarction, hepato-
renal syndrome, acute necrotizing pancreatitis, acute 
adrenal insufficiency, rhabdomyolysis, and muscle wast-
ing syndrome (catabolic response) [19, 95].

Fig. 4 Coagulopathy is a systemic pathological condition in which the blood’s ability to clot is impaired with varying degrees of fibrinolysis. The 
schematic illustrates the different sepsis-induced phenotypes around the Thrombomodulin (TM)-thrombin switch (1) [47, 48]. The TM-thrombin 
“switch” regulates coagulation and fibrinolysis in both directions depending on different activators and inhibitors at the thrombin-TM active 
sites (EFF-like domains) [47, 48]. During an early infection, patients appear to have a procoagulable phenotype which may form from activation 
of Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) (2), which decreases plasmin levels (3) and increases fibrinogen to form a stronger a stronger 
clot. As infection progresses the phenotype may change to a more hypocoagulable state where fibrinogen is decreased, D-dimers increase 
(fibrinolysis), and in extreme cases progresses to a specific hypocoagulation dominated by hyperfibrinolysis with microvascular fibrin deposits 
(DIC). The phenotypic change from a hyper- to hypo-coagulable state to disseminated intravascular coagulopathy (DIC) appears to be associated 
with a transition from a TF-dominated inflammatory microenvironment, favoring EGF-like Domain 3–6), to a non-TF dominated environment, 
favoring EGF-like Domain 4–6, with high mortality. This hypothesis requires knowledge of cytokines, immune cells, tPA, PAI-1, α2-antiplasmin, 
fibrinogen, TAFI levels and remains to be tested. Drugs to modulate the thrombin-TM “switch” following infection and sepsis are urgently required. 
TPA: tissue plasminogen activator; PAI-1: plasminogen activator inhibitor-1; WVF: Von Willebrand factor; S100A10: S100 calcium binding protein A10; 
FVIII: Factor VIII; EPCR: endothelial protein C receptor; FDP: FDP: fibrin degradation product
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At the cellular level, MODS develops from persistent 
tissue hypoperfusion and loss of mitochondrial integrity 
[49, 54]. ATP is no longer fully replenished leading to 
ischemia, hypoxia, organ dysfunction, and possible fail-
ure. Mitochondrial dysfunction includes decreased pro-
ton pumping across the inner mitochondrial membrane, 
collapsed membrane potential, opening of the mitochon-
drial permeability transition pore,  Ca2+  loading, loss of 
cytochrome C, release of apoptotic-cascade inducing fac-
tors, and increased DAMPs and ROS, which exacerbates 
immune dysfunction, inflammation and coagulopathy 
[49, 54, 73, 79]. Sepsis also impairs mitochondrial biogen-
esis and mitophagy, resulting in insufficient renewal of 
mitochondria, which further impacts cellular respiratory 
capacity and organ dysfunction. Fever, a manifestation of 
sepsis, is a result of uncoupling of muscle mitochondria 
which leads to generation of heat, not energy, and helps 
to explain muscle wasting despite a high caloric intake 
[79]. Targeting mitochondrial dysfunction in muscle, and 
other organs, may offer novel and valuable targets for 
sepsis.

Mitochondria are not only the cell’s powerhouses. 
In immune cells, mitochondrial activity regulates their 
activation, differentiation and survival [94, 102, 103, 
114]. Expression of key mediators involved in regula-
tion of mitochondrial function (Sirt1/3, Ampk, Pgc1, 
Nrf1, Tfam, Mtco3, Nr3c1), for example, are significantly 
reduced in leukocytes from septic patients [20, 102, 103]. 
Sepsis-induced mitochondrial dysfunction leads to meta-
bolic reprogramming and altered functional capacity of 
immune cells, heightened inflammation and immuno-
suppression [94, 102, 103]. Therapies that target recovery 
of mitochondrial function may offer a novel approach to 
reverse leukocyte dysfunction in sepsis [3, 114].

Cardiovascular dysfunction after sepsis: the puzzle 
of myocardial depression

There has been a tendency to equate shock, regard-
less of its origin, with a low cardiac output (CO) and 
high total peripheral resistance (SVR). While our 
experience suggests that this is true of hypovolemic 
and cardiac shock, the same cannot be said of the 
septic form.
Wilson and colleagues (1965) [180]

Cardiovascular collapse is a major reason for mortality 
in septic shock patients (Fig. 3) [77]. In the early 1960s, 
two distinct hypotensive phases of septic shock were 
characterized; the first was a warm dry skin, tachycardic 
condition (“warm” shock), and the second phase was a 
cold clammy skin with a thready pulse with hypotension 
(“cold” shock) [109]. Using this classification, septic shock 

initially went through an early hyperdynamic phase (high 
cardiac output, CO) and either recovered or deteriorated 
into cardiovascular collapse (low CO) [137]. In 1965, 
Wilson and colleagues challenged this view by report-
ing that septic shock patients had normal or elevated CO 
with low systemic vascular resistance (SVR), and very 
rarely had a low CO [180]. This was highly controversial 
and contrary to hemorrhagic/cardiogenic shock, which 
is characterized by a low CO and high SVR [137]. Using 
nuclear imaging techniques and thermodilution meth-
ods, Joseph Parrillo’s group confirmed Wilson’s findings 
and showed that septic shock patients maintained high 
CO and low SVR [28, 60, 130]. The group also reported 
that 75% of patients had a depressed left ventricular ejec-
tion fraction (LVEF) in the first few days after the onset 
of septic shock [130]. Sepsis-induced myocardial depres-
sion appears to have all the hallmarks of myocardial stun-
ning after coronary artery bypass surgery [43, 175].

Today, sepsis-induced cardiomyopathy is an acute 
syndrome of myocardial depression that occurs early 
after the onset of septic shock and normally resolves in 
7–10 days [77]. It occurs in ~ 50% of septic patients and 
characterized by LV dilatation and depressed LVEF with 
maintained coronary blood flow [77, 184]. Myocar-
dial depression in sepsis patients is also associated with 
higher aortic conduit stiffness [64, 87], which may be 
responsible for reduced venticulo-arterial (VA) coupling 
and reduced blood flow and O2 to the tissues [135]. VA 
coupling is defined as the ratio of arterial elastance (Ea) 
to left-ventricular elastance (Ees), and can be derived 
from routine echocardiography [67]. The advantage of 
VA coupling over LVEF or CO is that it provides arterial 
load properties in addition to LV function [24, 67]. New 
therapeutics are required to target VA coupling in septic 
patients, which may prevent myocardial depression and 
impairment of vascular reactivity [151].

There are at least five main hypotheses of myocardial 
depression (Table 1). While all five are plausible, they are 
not mutually exclusive and appear to involve alterations 
in  Ca2+ handling, ATP replenishment and myofilament 
function [9, 17, 64, 70, 77, 93, 115, 131, 138, 145, 159, 161, 
182]. The future challenge is finding which one or more 
of these mechanisms contribute to the decline in myocar-
dial depression and VA uncoupling seen clinically.

Fluid resuscitation: doing more harm than good?

Recently, the safety of intravenous fluids in patients 
with sepsis has been called into question with both 
prospective and observational data suggesting 
improved outcomes with less fluid or no fluid.
Byrne and Van Haren (2017) [16]
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Current supportive strategies for severe sepsis patients 
may include an early and goal-directed fluid resuscitation 
bundle, mechanical ventilation, inotropic and vasopres-
sor therapies, blood cell transfusions, anti-fibrinolytics 
and mechanical ventilation, and possible renal support 
[91, 177]. The primary goal of fluid therapy is to reduce 
dehydration, restore circulating blood volume, optimize 
cardiovascular function and improve tissue  O2 (Fig.  5) 
[16]. Dehydration is common in older adults, often 

necessitating an initial 500  mL crystalloid bolus [80]. 
Prior to 2001, use of fluid resuscitation was largely based 
on historical experience without empirical support from 
either animal studies or clinical trials [16]. The first sup-
portive evidence for fluid therapy came from the human 
study of Rivers and colleagues that showed a 16% mor-
tality reduction in septic shock patients [140]. Unfortu-
nately, the survival benefit was not supported in larger 

Table 1 Five hypotheses for sepsis-induced myocardial depression in the setting of inflammation and immune dysfunction. All five 
are not mutually exclusive

TNF-α tumor necrosis factor-alpha, IL-1β interleukin-1beta, NO nitric oxide, L-NAME  NG-nitro-L-arginine methyl ester, ATP adenosine triphosphate

Hypothesis Mechanism(s) References

1 Circulating myocardial depressant(s) Serum from septic shock patients depressed myocyte contractility in vitro. 
Candidates include bacterial toxins, TNF-α, IL-1β, and interleukin-1 recep-
tor-like 1 (sST2), which may decrease myofilaments’ sensitivity to  Ca2+ 
via the induction of excess NO synthesis (blocked by L-NAME). Possible 
sources of TNF-α and IL-1β are activated monocytes and macrophages.

[120–122, 54, 
123–125, 105]

2 Overexpression of cardiac mitochondrial NOS Excess NO synthesis (and reactive oxygen species), which may partially open 
the mitochondrial pore, depolarize the inner membrane, and reduce ATP 
production for contraction.

 [126, 114]

3 Myofilament  Ca2+ responsiveness Decrease cardio-myofilament  Ca2+ sensitivity, reduces cross-bridge cycling 
responsiveness to reduce contractile activation and force development.

 [127, 128]

4 Cardiac β-adrenergic desensitization Cardiac response to sympathetic hyperactivation and ↑catecholamines. 
Receptor switching from  Gs to  Gi, which signals β-2 adrenergic receptors 
to produce a negative inotropic response, presumably by ↓Ca2+ availability.

 [129]

5 Downregulation of master genes encoding 
for sarcomeric and mitochondrial proteins

Reduce cross-bridge cycling and ATP availability generated by oxidative 
phosphorylation.

 [105]

Fig. 5 Schematic of 2016–2021 Surviving Sepsis Campaign guidelines that suggest initial resuscitation of at least 30 mL/kg of isotonic crystalloid 
fluid within the first 3 h of sepsis identification to restore circulating fluid volume and optimize stroke volume. However, there is a paucity 
of high-quality data to support this clinical practice. The significant heterogeneity of sepsis and the reports that ~ 50% are non-responders makes 
the recommendation highly problematic. Current evidence indicates that administration of large fluid volumes to the critically ill may cause harm 
by exacerbating secondary injury (see text). IV, intravenous; CNS, central nervous system; ADP, adenosine triphosphate; ATP, adenosine triphosphate
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independent trials, including the ProCESS, PROMISE 
and ARISE trials [108].

Despite the lack of clinical evidence, the 2016–2021 
Surviving Sepsis Campaign guidelines continued to pro-
mote fluid therapy for septic shock patients (Fig. 5) [58]. 
The guidelines proposed an initial resuscitation of at least 
30 mL/kg of isotonic crystalloid fluid during the first 3 h 
to restore circulating fluid volume and optimize stroke 
volume [108]. Administering an IV fluid volume up to 
60% of the normal blood volume to a 100 kg septic patient 
over 3 h has little or no clinical support and may be asso-
ciated with higher mortality [58]. The Surviving Sepsis 
campaign has now downgraded this recommendation 
from strong to weak, although the practice appears to 
continue in many hospitals worldwide [58].

Today, fluid resuscitation may cause harm to some 
patients. Contrary to its name, normal saline is not nor-
mal, and the volumes and timings are not effective in 
critically ill patients [11, 16, 108, 121, 149, 150]. Large 
aggressive fluid volumes create dilutional coagulopa-
thy, fluid overload, and pathogenic pulmonary and tis-
sue edema, acute kidney injury, prolonged ICU stays 
and higher mortality [55, 108, 149, 150]. If normal saline 
was evaluated today by the European, USA and Austral-
ian regulatory bodies, there is a high chance it was not be 
approved for human use. The harmful effects of normal 
saline solutions were recognized over 100  years ago by 
George Evans when he wrote in 1911: “One cannot fail 
to be impressed with the danger of such procedure, if one 
observes the utter recklessness with which salt solution 
is frequently prescribed, particularly in the postopera-
tive period, without previous knowledge of the condition 
of blood pressure, the ability of the heart to handle large 
amounts of fluid successfully, or the functional capac-
ity of the kidneys to excrete the large amount of chloride 
thus formed on them” [5, 57]. More recently, vasopressor 
agents that increase cardiac contractility or vasoconstric-
tion have also come under clinical scrutiny that include 
increased cardiac workload, arrhythmias and vasocon-
striction-related tissue ischemia [149, 150].

Another vexing problem with the ongoing use of fluid 
therapies is that up to 50% of patients are non-responders 
(Fig. 5), meaning they fail to increase preload and stroke 
volume with IV fluid infusions, and therefore fails to 
improve tissue  O2 supply [72, 111]. Unfortunately, there 
have been few high-quality clinical trials comparing non-
responders and responders [55]. Some studies recom-
mend the use of a lung ultrasound, echocardiographic 
assessment, urine output, and other measures, to pre-
vent fluid overload in the ICU in an attempt to improve 
patient stratification and optimize treaetment [55].

Trauma of surgery: a forgotten confounder of poor patient 
outcomes

It should be remembered always that the patient 
who has been in shock and resuscitated, and then 
operated upon, is in a precarious state. His nervous 
system has been disturbed not only by the original 
trauma, but also by the low nutrient flow of blood, 
and by the surgical procedures incidental to opera-
tion (our italics).
Walter B. Cannon (1923) Quoted from Traumatic 
Shock [18] p192

Patients with severe abdominal sepsis often require an 
emergency laparotomy, which is associated with higher 
mortality and morbidity compared to less invasive pro-
cedures (Fig.  2) [12, 59, 69, 90, 136, 154, 162]. Possible 
reasons for poorer outcomes include the trauma of sur-
gery itself amplifying immune cell activation, increasing 
inflammation, coagulopathy and MODS [39, 41]. The 
extra barrage of DAMPs comes from tissue damage from 
the first incision, organ manipulation, and surgical cor-
rection and drain (Fig.  2) [2]. Torp and colleagues have 
recently discussed how tissue injury from surgery trig-
gers a generalized inflammatory response and the role 
mitochondrial DAMPs (mDAMPs) play in worsening its 
pathophysiology [168]. In addition, surgical site infec-
tions occur in up to 35% of patients, which further com-
plicates recovery [2]. Another aspect of the trauma of 
surgery that is rarely discussed is that the anesthetized 
brain is still “awake” to the circulating DAMPs from the 
surgery itself [30, 41], which may pass through the leaky 
BBB and activate CNS dysfunction and lead to altered 
mental states [4, 56, 91]. The trauma of surgery aggra-
vates an already precarious state, which is magnified fur-
ther in older patients with multiple comorbidities [41]. 
This is an area that requires new therapies to reduce the 
host’s stress response of surgery [31, 38, 41, 61, 71, 133, 
164].

Future consideration for drug development: 
from symptoms to system

Clinical study of antiinflammation strategies to 
treat sepsis has been characterized by a predictable 
cycle of abundant clinical failures punctuated by an 
intermittent positive result.
Shapiro and colleagues (2023) [149, 150]

Notwithstanding the ongoing challenges in treat-
ing sepsis, great strides are being made in personalized 
care based on blood biomarkers [143]. Individualized 
treatments have also progressed in the chronic, immu-
nosuppressive stage of sepsis responsible for later-stage 



Page 12 of 18Dobson et al. Journal of Biomedical Science           (2024) 31:57 

morbidity and mortality [143]. Notwithstanding these 
advances, there remains few safe and effective drugs for 
the early treatment of sepsis [92, 102, 103, 149, 149, 150, 
150]. For example, there are only a handful of drugs to 
reduce excessive inflammation and immune dysfunc-
tion. Non-steroidal anti-inflammatory drugs (NSAIDs), 
COX-2 inhibitors and TNF-α inhibitors do not appear 
to be pro-resolving, and may in fact exacerbate the pro-
inflammatory process [129]. A relative new area of drug 
design is targeting metabolic reprogramming of immune 
cells responsible for hyperinflammation and immuno-
suppression [102, 103]. The future challenge is to safely 
and effectively translate these immunometabolism-alter-
ing drugs to improve patient outcomes in the hospital 
setting.

Why have there been so few advances in pre-clinical 
drug development for sepsis and translation to humans? 
Three possible reasons include: 1) the widespread use of 
specific-pathogen free (SPF) animal models with their 
altered microbiomes and immature immune systems that 
do not represent the human condition [45, 47, 48, 51–
53], Conventionally bred and housed animals should be 
used if human translation is the end-game [51–53], 2) the 
flawed practice of the treat-as-you go mindset and single 
nodal drug targeting, which ignores the complexity of 
the system [49–54], and 3) poor clinical trial design that 
does not represent the heterogeneity of patient responses 
to sepsis [21, 143]. With respect to single-nodal targets, 
we will give one example. It is well established that the 
IL-1 receptor is a key amplifier of inflammation [149, 
150], and its inhibition may resolve the cytokine storm. 
A drug that inhibits the IL-1-receptor, anakinra, has an 
excellent safety record in humans, however, it has failed 
to show a survival benefit after sepsis or COVID-19 [149, 
150]. The ‘single-step’ drug target approach can be traced 
back to the molecular revolution of the 20th century, 
which began in around 1953 after the discovery of DNA 
[51–53]. Nobel Laureate Sir Francis Crick embodied this 
highly mechanistic mindset when he wrote “the ultimate 
aim of the modern movement in biology is to explain all 
biology in terms of physics and chemistry” [29]. From a 
molecular standpoint Crick was correct, however, its rel-
evance to the workings of the whole body has not kept 
pace [51–53]. The advent of the “Omic” technologies to 
drill deeper into molecular mechanisms has occurred at 
the expense of systems analysis. Reductionism is impor-
tant in breaking a complex system into its simpler parts, 
but it does not do away with the system. New systems-
based therapies are urgently required to treat sepsis.

What would a systems-based drug look like? Ideally, a 
systems-based drug would blunt the CNS-linked feed-
back circuits (or axes) that drive secondary injury and 
poor patient outcomes. The drug would reduce the CNS 

stress response, maintain BBB integrity, promote CNS-
cardiovascular coupling, prevent myocardial depres-
sion, protect the endothelial-glycocalyx, reduce excessive 
inflammation, reduce immune dysfunction, correct coag-
ulopathy, and deliver sufficient  O2 to tissue mitochondria 
[49, 50, 54]. The drug might also involve reprogramming 
immune cell metabolism and placing a ‘brake’ on the 
hyperinflammatory response and permitting anti-inflam-
matory processes to resolve the host’s responses to sep-
sis. No such systems-acting drug exists.

We have been developing an adenosine, lidocaine and 
magnesium (ALM) fluid therapy for hemorrhagic shock, 
traumatic brain injury (TBI) [44, 50–53], burns [34, 
51–53], orthopedic trauma [118, 119] and the trauma 
of surgery [33]. We have shown the drug shifts sympa-
thetic hyperactivity to parasympathetic dominance in the 
rat model of non-compressible hemorrhagic shock [96], 
restores cardiac output [97], protects against endothelial 
glycocalyx shedding with 97% rapid restoration [169], and 
reduces the incidence of MODS [50, 98]. During resus-
citation, we have shown the ALM therapy is neuropro-
tective at hypotensive pressures (MAPs 47–50  mmHg), 
which has important implications for sepsis [50–53, 
97, 98]. This data has been use to formulate a Systems 
Hypothesis of Trauma (SHOT), which may be applicable 
for sepsis and septic shock [49, 50, 54].

Our proof-of-concept studies in a rat polymicrobial 
sepsis model [65, 66] and pig lipopolysaccharide (LPS)-
endotoxin model [63] have been encouraging. In the pig 
LPS model, ALM therapy induced a profound and revers-
ible hypotensive state (MAP 47  mmHg) by maintaining 
CO and lowering SVR with little or no change in tis-
sue  O2 delivery [63]. CO was maintained by preserving 
preload recruitable stroke work and improving VA cou-
pling [63]. Importantly, systemic hypotension is not delete-
rious if CO, VA coupling and O2 delivery to the tissues are 
maintained by lowering SVR [51–53]. This ALM-induced 
hypotensive state involves re-setting the CNS-control of 
 O2 delivery to tissue mitochondria, that may be beneficial 
to sepsis patients [50]. Similarly, ALM therapy induced a 
reversible hypotensive state in a rat model of polymicro-
bial sepsis with reduced pulmonary edema and correc-
tion of coagulopathy [65]. ALM led to 88% survival after 
six days, without antibiotics, whereas saline controls died 
early from inflammatory/immune dysfunction and mul-
tiple organ failure [66]. Importantly, the combination of 
ALM is key to whole body protection whereas the indi-
vidual actives, A, L or M are not [50]. While appreciat-
ing the success rate of translating new drugs to humans 
is less than 5% [147], further ALM preclinical sepsis stud-
ies are required to facilitate translation to human safety 
trials.
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Conclusions
The clinical management of sepsis appears to be at a 
crossroads and requires a new revolution to better under-
stand how the body responds to an infection, new mark-
ers to detect its progression and new system-acting drugs 
to treat it. The current targeting of any single step along 
a signalling pathway has not been successful because 
it ignores the complexity of the system. We argue if the 
immune-driven, CNS-sympathetic hyperactivation can 
be suppressed, cardiovascular-endothelial glycocalyx 
coupling will be improved,  O2 delivery will be main-
tained, and secondary injury, including hyperinflamma-
tion and immunosuppression, will be prevented leading 
to better clinical outcomes. We are developing a systems-
based drug in animal sepsis/endotoxemia models, which 
may confer whole body protection in humans.
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