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Abstract 

Within the intricate tapestry of molecular research, noncoding RNAs (ncRNAs) were historically overshadowed 
by a pervasive presumption of their inability to encode proteins or peptides. However, groundbreaking revelations 
have challenged this notion, unveiling select ncRNAs that surprisingly encode peptides specifically those nearing 
a succinct 100 amino acids. At the forefront of this epiphany stand lncRNAs and circRNAs, distinctively character-
ized by their embedded small open reading frames (sORFs). Increasing evidence has revealed different functions 
and mechanisms of peptides/proteins encoded by ncRNAs in cancer, including promotion or inhibition of cancer cell 
proliferation, cellular metabolism (glucose metabolism and lipid metabolism), and promotion or concerted metastasis 
of cancer cells. The discoveries not only accentuate the depth of ncRNA functionality but also open novel avenues 
for oncological research and therapeutic innovations. The main difficulties in the study of these ncRNA-derived pep-
tides hinge crucially on precise peptide detection and sORFs identification. Here, we illuminate cutting-edge method-
ologies, essential instrumentation, and dedicated databases tailored for unearthing sORFs and peptides. In addition, 
we also conclude the potential of clinical applications in cancer therapy.
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Introduction
According to previous studies, about 98% of the tens of 
thousands of mammalian transcripts are noncoding RNA 
(ncRNA) [1–6]. These ncRNAs skip protein translation as 
they are transcribed from the genome [7]. Nevertheless, 

they serve a multitude of roles at varying stages and in 
diverse regions, including transcription regulation, 
chromosomal modification, epigenetic alterations, pro-
tein modification, and medical resistance, among oth-
ers [5, 8–15]. Certain ncRNAs have even been employed 
as clinical diagnostic and prognostic markers [16–27]. 
Intriguingly, a growing body of research has discovered 
that ncRNAs, originally deemed incapable of encod-
ing proteins and peptides, can synthesize bioactive pep-
tides [28–38]. Small open reading frames (sORFs) within 
ncRNAs, which typically span less than 300 nucleotides 
and produce peptides of less than 100 amino acids, are 
responsible for encoding these peptides [39–48]. Owing 
to recent advances in detection technology, the capac-
ity to identify peptides and sORFs has substantially 
improved, unmasking previously undetectable peptides 
and shedding light on their vital biological functions. 
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Predominantly, these peptides are encoded by long non-
coding RNAs (lncRNAs), circular RNAs (circRNAs), and 
primary microRNAs (pri-miRNAs).

Traditional open reading frames (ORFs), which span 
over 300 nucleotides and have a canonical start codon 
(AUG), are larger than ncRNA sORFs, which are smaller. 
This divergence is a key factor in the underappreciation 
of ncRNAs’ capacity for encoding [49, 50]. However, 
recent advancements in multi-omics have rendered the 
identification, validation, and functional characteriza-
tion of sORFs and peptides achievable. Researchers have 
improved mass spectrometry (MS) methods to more pre-
cisely detect ncRNA sORFs and their encoded peptides. 
By employing more accurate ribosome analysis, they can 
now differentiate between genuine functional peptides 
and other peptides, thereby better revealing the encoding 
potential and role of sORFs [49, 51–56]. Generally, ribo-
some analysis offers a genome-wide snapshot of actively 
translated regions within a cell [57–60]. Additionally, as 
the ribosome scans sequences one codon at a time, the 
information read maintains a precise three-nucleotide 
cycle and exhibits single-nucleotide resolution [61]. 
Nonetheless, sORFs identification remains challenging. 
Currently, in addition to ribosome sequencing (Ribo-
seq), sORFs can be predicted through bioinformatics 
tools, such as sORFs Finder [62].

ncRNAs classified as lncRNAs by researchers are 
those that have more than 200 nucleotides and per-
form important roles in living things, particularly in 
the context of malignancies [6, 63–71]. Existing stud-
ies have discovered that lncRNAs possess small open 
reading frames (sORFs) capable of encoding peptides, 
with most peptides originating from lncRNAs. Regula-
tory elements upstream of ORF, such as internal ribo-
some entry sites (IRES), have been found to mediate 
the translation of peptides [72, 73]. IRES elements 
are primarily located in the 5 ’untranslation region 
upstream of the ORF controlled by IRES. They facilitate 
sORFs regulatory RNA sequence transfer by recruiting 
ribosomes and conducting ribosome assembly without 
relying on the 5’ cap structure. Additionally, IRES ele-
ments may reside between and within ORFs to medi-
ate translation, subsequently translating the continuous 
sORFs of lncRNAs into peptides [74–78]. m6A modi-
fication is common in mammals, primarily serving to 
modify and regulate mammalian gene expression, as 
well as RNA stability, localization, splicing, and trans-
lation at the post-transcriptional level [79–88]. Recent 
advancements in ribosome analysis, computational 
prediction, and mass spectrometry have revealed that 
m6A-driven endogenous ncRNA translation is wide-
spread. m6A reading protein YTHD3 closely binds to 

translation initiation factor eIF4G2, which promotes 
intracellular circRNA translation [89]. The m6A sites 
on lncRNA were experimentally verified and then ana-
lyzed by mutating the m6A sites that determine the 
translation of small peptides by lncRNA. A cell model 
was constructed by CRISPR/Cas9 method to study 
the function of small peptides encoded by lncRNA in 
tumor cells. Finally, it was found that lncRNA AFAP1-
AS1 translation axis suggests that N6-methyladenosine 
in its 5 ’-UTR is a node-regulator of peptide translation 
[32, 90, 91].

CircRNA is a kind of atypical reverse splicing ncRNA 
[92–94]. Since its first discovery in the virus, circRNA 
has been considered as abnormal transcriptional noise 
[95–97]. However, advancements in bioinformat-
ics and second-generation sequencing have unveiled 
the roles of circRNA [98–106]. CircRNA can act as a 
miRNA sponge, regulating the miRNA-mRNA axis, as 
a transcriptional regulator, and as a prognostic marker 
[107–127]. Formed by reverse splicing, circRNA lack 
the 5 ’cap and 3’ end, which makes them resistant to 
ribonuclease and therefore are thought to lack the tra-
ditional translation promoter [128–131]. Numerous 
recent studies have discovered that circRNA contains 
sORFs, which also possess peptide-encoding functions 
[32, 132]. In addition to peptide translation mediated 
by IRES elements and m6A, two peptide translations 
similar to lncRNA, there is also an endogenous rolling 
translation process that terminates by the codons out-
side the ring. This unique translation mechanism con-
tributes to the complex and multifaceted role circRNA 
plays in biological processes [89, 129, 133–142].

As a precursor to microRNA (miRNA), pri-miRNA 
contain hairpin, 5 ’-cap, and 3’ -polyadenylate (AAA) 
sequences that share the same characteristics as other 
mRNA [143]. Now pri-miRNA has been found to con-
tain sORFs, which can encode plant-related peptides 
and have important applications in agriculture [144].

NcRNA-encoded peptides have been demonstrated 
to participate in diverse physiological and pathologi-
cal processes within the human body, encompassing 
embryonic development, muscle formation and regen-
eration, metabolism, stress responses, inflammation, 
and immune regulation [32, 145–151]. Crucially, these 
peptides also hold significant sway over tumorigenesis 
and progression, influencing aspects such as tumo-
rigenesis, proliferation, invasion, and metastasis [152–
155]. In the subsequent discussion, we will show the 
different come of peptides and inhibiting cancer and 
elucidate their respective mechanisms, further high-
lighting the intricate and multifaceted roles these pep-
tides play in biological processes.
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Peptides encoded by ncRNA
Peptides from lncRNA
Long noncoding RNAs (lncRNAs), one of the most 
common types of ncRNA, were among the first to gar-
ner researchers’ attention for their peptide-encoding 
potential [156]. Recent research exploring this pos-
sibility uses a variety of methods, including ribosome 
profiling, MS-based proteomics, microscopy, and 
CRISPR-based genetic screening. This approach has 
uncovered hundreds of non-canonical lncRNA coding 
DNA sequences (CDSs) capable of producing stable 
functional peptides essential for cell growth. Conse-
quently, peptides encoded by lncRNAs are now less 
likely to be considered "translation noise" and more 
as functional peptides [157]. For instance, LncFORCP, 
predominantly found in the cytoplasm of normal colon 
and stomach cells, is regulated by the transcription fac-
tor FOXA1. This lncRNA encodes a 79-amino acid pep-
tide named FORCP, largely localized in the endoplasmic 
reticulum (ER) [158]. Another lncRNA, AC025154.2, 
has the potential to code an acid peptide, MIAC, which 
acts as an inhibitor of the actin cytoskeleton [159, 160]. 
Furthermore, LINC00665, mainly located in the cyto-
plasm and possessing four open reading frames (ORFs), 
has one ORF (ORF1) encoding the peptide CIP2A-
binding peptide (CIP2A-BP) [161].

Peptides from circRNA
CircRNA, as the first known ncRNA capable of encod-
ing peptides, wields a pivotal role in biological systems, 
owing to its unique structure and distinctive transla-
tion process [162–164]. CircMAPK1, primarily located 
in the cytoplasm, encompasses an open reading frame 
(ORF) initiated by the start codon ATG and guided 
by an internal ribosome entry site (IRES). It gives rise 
to a 109-amino acid peptide, MAPK1-109 aa, known 
for its tumor proliferation inhibitory properties [165]. 
Hsa_circ_0061137, or CircDIDO1, originates from the 
back splicing of exons 2–6 of the linear DIDO1 gene 
transcript. Spanning 1787 nucleotides in length, it is 
predominantly found in the nucleus and cytoplasm of 
gastric cancer (GC) cells. CircDIDO1 exhibits a marked 
downregulation in GC cells compared to normal gas-
tric mucosal epithelial cells [166]. Similarly, both circ-
SEMA4B and its encoded peptide, SEMA4B-211aa, 
manifest at lower levels in breast cancer (BC) and func-
tion as tumor suppressors both in  vivo and in  vitro 
[167]. Lastly, hsa-circ-0000437, featuring a 144nt ORF 
that encodes the peptide CORO1C-47aa through IRES, 
adds to the complexity and variety of the circRNA-pep-
tide landscape [168].

Peptides from other ncRNAs
Advancements in research have unveiled that beyond 
lncRNA and circRNA, there exist other particular cat-
egories of ncRNAs that also encode peptides. One such 
example is MiPEP133, a microprotein composed of 133 
amino acids, encoded by the open reading frame (ORF) 
within the primary miRNA of miR-34a. The expression 
of MiPEP133 is especially elevated in several human 
tissues including the colon, ovaries, stomach, uterus, 
and pharynx. Predominantly located within the mito-
chondria, its expression within the cytoplasm remains 
relatively low [169]. When miPEP-8 is overexpressed 
or knocked down, it affects Drosophila development. 
Combining genetic and molecular approaches and 
genome-wide transcriptome analysis, we found that 
miR-8 expression is independent of miPEP-8 activity, 
and that miPEP-8 and miR-8 regulate the expression of 
hundreds of genes in parallel [170]. Peptide encoded by 
pri-miRNA-31 suppresses autoimmunity by promot-
ing Treg differentiation [171]. The polypeptides pro-
duced by pri-miR171b in Arabidopsis and pri-miR165a 
in Arabidopsis (which we refer to as miPEP171b and 
miPEP165a, respectively) enhance the accumulation of 
the corresponding mature miRNAs, which leads to the 
down-regulation of target genes involved in root devel-
opment [144].

Regardless of which ncRNA encode peptides, more 
and more research confirm that these peptides play an 
important role in living organisms, especially in tumor 
(Tables 1 and 2).

Functions and Mechanisms of ncRNA‑Encoded Peptides/
Proteins in Cancers
Influence on cancer proliferation
In the process of tumor formation and development, dif-
ferent phenotypes will appear at different stages, among 
which the most common phenotype is the uncontrolled 
proliferation of tumor cells. It is now confirmed that the 
peptides encoded by ncRNA can play an inhibitory role 
in the process of tumor proliferation. MAPK1-109 aa is 
a 109-amino acid peptide encoded by circMAPK1 in the 
cytoplasm via sORFs containing IRES. The research-
ers found that the peptide could reduce the phospho-
rylation level of MAPK1 and inhibit MAPK1 and its 
downstream factors by competing with MEK1, thus 
inhibiting tumor proliferation [165]. The proliferation of 
highly differentiated colorectal cancer has always been 
a focus of research. LncFORCP, an ncRNA regulated by 
the transcription factor FOXA1, encodes the 79-amino 
acid FORCP peptide. Further studies have shown that 
FORCP can promote the proliferation and tumorogen-
esis of highly differentiated colorectal cancer cells under 
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endoplasmic reticulum stress by inhibiting the function 
of BRI3BP protein, and inducing cancer cell apoptosis, 
which is expected to become a new therapeutic target 
[158]. The birth of bioinformatics has greatly increased 
the ability of researchers to predict and screen ncRNA. 
Using bioinformatics and CRISPR-Cas9 technology, we 
screened hundreds of lncRNA with coding potential in 
HepG2 cells. TP53LC04 was the most obvious. Further 
experiments demonstrated that the peptide TP53LC04 
induced by tp53 could inhibit the proliferation and regu-
late the cell cycle of human cancer cells, but did not affect 

its lncRNA, suggesting that this peptide may play an 
important role in the tumor inhibition regulated by tp53, 
especially in the DNA damage response [172]. MIAC is 
a peptide that inhibits actin cytoskeleton and is encoded 
by lncRNA AC025154.2. Overexpression of MIAC sig-
nificantly inhibited tumor growth in head and neck squa-
mous cell carcinoma (HNSCC) and produced fewer lung 
metastatic nodules. Experiments have shown that when 
MIAC directly interacts with aquaporin 2(AQP2). MIAC 
directly binds to the Y221, L217 and E232 amino acid 
sites on AQP2 protein to play a biological role. AQP2 

Table 1  Tumor suppressing effects

Phenotype Category Peptide Cancer Function

Tumor  suppress-
ing effects

circRNA MAPK1-109aa Gastric cancer Inhibits the progression of gastric cancer 
by inhibiting the activation of MAPK signaling

lncRNA FORCP Colorectal cancer Regulates apoptosis and tumorigenicity in well-
differentiated CRC cells

lncRNA TP53LC04 Cancer Inhibits cell proliferation by regulating the cell 
cycle in response to DNA damage

lncRNA MIAC Head and neck squamous cell carcinoma Regulates SEPT2 (Septin 2)/ITGB4 (integrin Beta 
4) to directly interact with AQP2 (Aquaporin 2), 
thereby inhibiting actin cytoskeleton and ulti-
mately inhibiting tumor growth and metastasis 
in HNSCC

pri-miRNA miPEP133 Cancer Interacts with mitochondrial heat shock protein 
70kD (HSPA9) and prevents HSPA9 from inter-
acting with its binding partner, resulting 
in a decrease in mitochondrial membrane 
potential and mitochondrial mass

lncRNA CIP2A-BP Triple-negative breast cancer Inhibition of PI3K/AKT/NF-κB pathway 
by CIP2A-BP micropeptide leads to decreased 
expression of MMP-2, MMP-9, and Snail, 
which significantly reduces lung metastasis 
and improves overall survival

circRNA DIDO1-529aa Gastric cancer It directly interacts with poly ADP-ribose poly-
merase 1 (PARP1), specifically binds peroxidase-
reducing protein 2 (PRDX2), and promotes 
RBX1-mediated ubiquitination and degradation 
of PRDX2

circRNA CORO1C-47aa Endometrium tumor Plays a negative regulatory role in endometrial 
tumor angiogenesis

lncRNA ASRPS Triple-negative breast cancer Binds STAT3 and downregulates STAT3 
phosphorylation, resulting in decreased VEGF 
expression

lncRNA HBVPTPAP Hepatocellular carcinoma The apoptosis of hepatocellular carcinoma cells 
was induced by regulating JAK/STAT signaling 
pathway

lncRNA PEP-AP Colorectal cancer Attenuated the pentose phosphate pathway 
and sensitized colorectal cancer cells to oxali-
platin

lncRNA KRASIM Hepatocellular carcinoma Decreased KRAS protein levels, resulting in inhi-
bition of ERK signaling activity in HCC cells

long intergenic 
noncoding RNAs 
(lincRNAs)

MP31 Glioblastoma Restriction of lactate-pyruvate conversion 
in mitochondria by competition with mito-
chondrial lactate dehydrogenase (mLDH)

circRNA SEMA4B-211aa Breast Cancer Inhibits the production of PIP3 and thus 
the phosphorylation of AKT (Thr308)
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regulates Integrin Beta 4(ITGB4) and Septin 2(SEPT2), 
ultimately regulating SEPT2/ITGB4 signaling, affecting 
actin cytoskeleton, inhibiting proliferation and ultimately 
achieving antitumor effects [159, 160]. Ribosome analy-
sis of HuH-7 cells, followed by RiboCode analysis of the 
HuH7 Ribo-seq dataset, revealed that lncRNA NCBP2-
AS2 had a highly preserved novel translation. KRASIM 
specifically binds to KRAS protein, and overexpression of 
KRASIM reduces the level of KRAS protein, leading to 
inhibition of ERK signaling pathway activity in hepatoma 
cells. Finally, it was found that KRASIM overexpression 
inhibited HCC cell proliferation by inhibiting the KRAS/
ERK pathway [173].

Some peptides inhibit tumor cell proliferation, and 
naturally, there are peptides encoded by ncRNA that pro-
mote tumor cell proliferation. The ORF1 of LINC00467 
encodes a small 94-amino acid peptide ASAP, which is 
associated with the inner mitochondrial membrane. It 
was confirmed that ASAP formed a complex with ATP5A 

and ATP5C, and D65 residues of ASAP increased ATP 
synthase activity and mitochondrial oxygen consump-
tion rate by enhancing the interaction between ATP5A 
and ATP5C. Finally, ASAP promotes tumor growth 
by regulating mitochondrial ATP [174]. The Wnt/β-
catenin signaling pathway is a classic signaling path-
way. Researchers have recently found that CircAXIN1 
encodes a 295-amino acid peptide AXIN1295aa that 
interacts competitively with APC to occupy AXIN1’s 
position in the destruction complex. Thus, the Wnt/β-
catenin signaling pathway is activated to promote the 
occurrence and development of GC and enhance the pro-
liferation of GC cells [175]. circHNRNPU_603aa encoded 
by circHNRNPU could significantly improve the growth 
rate of tumor cells, while cell proliferation was signifi-
cantly inhibited after circHNRNPU_603aa was silenced. 
circHNRNPU-603aa up-regulates the splicing isomers of 
circHNRNPU603aa and SKP2-NM_001243120 by medi-
ating SKP2 selective splicing. Thus, circHNRNPU-603aa 

Table 2  Tumor promoting effects

Phenotype Category Peptide Cancer Function

Tumor promoting 
effects

lncRNA ASAP Colorectal cancer Enhanced ATP synthase construction, increased 
ATP synthase activity and mitochondrial oxygen 
consumption rate, promoting the proliferation 
of colorectal cancer cells

circRNA AXIN1-295aa Gastric cancer Activation of Wnt/β-catenin signaling pathway 
promotes gastric cancer progression

circRNA circHNRNPU_603aa Multiple myeloma The proliferation of MM cells was promoted

circRNA circCHEK1_246aa Multiple myeloma Causes chromosomal instability and induces bone 
degeneration in multiple myeloma

lncRNA Linc013026-68AA Hepatocellular carcinoma In some HCC cells and plays a role in cell prolifera-
tion

circRNA Hsa_circ_0006401 Colorectal cancer Promotes the stability of host gene COL6A3 mRNA, 
thereby promoting CRC proliferation and metas-
tasis

circRNA EIF6-224aa Triple-negative breast cancer TNBC progression was promoted by stabilizing 
MYH9 and activating Wnt/β-catenin pathway

lncRNA sPEP1 Neuroblastoma Inhibited serum deprivation induced senescence 
and promoted spherogenesis, growth or metastasis 
of NB stem cells

lncRNA MPM Hepatocellular carcinoma Promote hepatocellular carcinoma metastasis 
by enhancing mitochondrial complex I activity

circRNA circCOL6A3_030_198aa Gastric cancer Functions as a tumor promoting factor

circRNA cGGNBP2-184aa Intrahepatic cholangiocarcinoma Directly interacts with STAT3, phosphorylates 
STAT3Tyr705, and plays a positive regulatory role 
in regulating IL-6/STAT3 signaling

circRNA circMRPS35-168aa Hepatocellular carcinoma Promotes cisplatin resistance in HCC

lncRNA PACMP Cancer Regulate cancer progression and drug resistance 
by modulating DDR

lncRNA XBP1SBM Triple-negative breast cancer The XBP1s pathway promotes TNBC angiogenesis 
and metastasis

lncRNA APPLE Hematopoietic malignancy Promotes PABPC1-EIF4G interaction and promotes 
mRNA cyclization and eIF4F initiation complex 
assembly to support specific cancer-promoting 
translation programs
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competitively inhibits c-Myc ubiquitination [176]. 
Linc013026-68AA contains a peptide segment of 68 
amino acids, which is mainly located in the perinuclear 
region after Myc specific staining. Researchers have dem-
onstrated that Linc01302668AA overexpressed HeLa 
cells have a growth rate approximately 1.7 times higher 
than that of control vector transfection. Reduction of 
Linc013026-68AA in HepG2 cells resulted in a reduction 
in the cell proliferation rate of about 2 times that of con-
trol vector transfection within 3 days [177] (Fig. 1).

Influence on cancer metastasis
Another characteristic of tumors is the wide range 
of metastasis and spread, and it has been found that 
ncRNA-encoded peptides can effectively inhibit this 

phenotype. miPEP133, a microprotein encoded by ORF 
in pri-miRNA of miR-34a, is highly expressed in the 
human colon, ovary, stomach, uterus, and pharynx tis-
sues. MiPEP133 binds HSPA9 in mitochondria, pre-
vents HSPA9 from interacting with HSP60, TIM44, and 
VDAC1, and inhibits the normal function of HSPA9 as 
a mitochondrial companion, eventually leading to mito-
chondrial mass loss, reduced mitochondrial membrane 
potential and ATP production [169].In the ncRNA study 
for breast cancer, LINC00665 has four sORFs, in which 
ORF1 encodes the CIP2A binding peptide CIP2A-BP. It 
binds to CIP2A, inhibits PI3K/AKT/NFjB pathway and 
downstream target protein (MMP2, MMP9, and Snail) 
expression through CIP2A-mediated PP2A, and inhibits 
TNBC migration and invasion. CIP2A-BP can be used as 

Fig. 1  The mechanism of peptides in the process of tumor proliferation. A TP53-induced peptide TP53LC04 inhibited the proliferation. B FORCP 
peptide inhibited basal cell proliferation and induced cell apoptosis by inhibiting BRI3BP protein function in well-differentiated colorectal cancer 
cells under ER stress. C MAPK1–109aa inhibited MAPK1 phosphorylation through competitive binding, and inhibiting the activation of MAPK1 
and its downstream factors in the MAPK pathway. D MIAC interacts with AQP2 (Aquaporin 2) to inhibit the actin cytoskeleton by regulating 
SEPT2 (Septin 2)/ITGB4 (Integrin Beta 4) and ultimately suppressing the tumor growth and metastasis of HNSCC. E KRASIM decreases the KRAS, 
leading to the inhibition of ERK signaling activity. F ASAP enhanced the ATP synthase construction by interacting with the subunits α and γ (ATP5A 
and ATP5C), increasing ATP synthase activity and mitochondrial oxygen consumption rate. G CircAXIN1 encodes AXIN1-295aa, which competitively 
binds to APC, leading to the release and nuclear translocation of β-catenin. H MM cells secrete circHNRNPU into the BM microenvironment 
to regulate SKP2 exon skipping and inhibit c-Myc ubiquitin. I Linc013026-68AA is expressed in HCC cells and plays a role in cell proliferation
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a potential therapeutic target to effectively inhibit breast 
cancer metastasis through inhibition of the PI3K/AKT/
NFjB pathway. New mice MMTV-PyMT that can reduce 
lung metastasis were generated by introducing CIP2A-BP 
into C57BL/6 mice and then mating with MMTV-PyMT 
mice; CIP2A-BP + / + . To further investigate the metas-
tasis inhibitory effect of CIP2A-BP, injection of CIP2A-
BP through the mammary pad significantly reduced the 
number of lung metastatic sites, as well as significantly 
reduced the p-AKT level of the primary tumor. In addi-
tion, CIP2A-BP injection through the tail vein revealed 
that mice injected with CIP2A-BP had a significantly 
higher survival rate and fewer lung metastatic sites 
compared with control mice. These results suggest that 
CIP2A-BP can effectively inhibit the metastasis and inva-
sion of breast cancer, thus improving the overall survival 
rate [161].CircDIDO1 is mainly distributed in the nucleus 
and cytoplasm of gastric cancer (GC) cells. CircDIDO1 
has IRES, ORF, and m6A modifications, and is capable of 
encoding the peptide DIDO1-529aa. DIDO1-529aa could 
interacted with both 1–372 aa and 525–1014 aa domains 
of PARP1 protein, which not only inhibits the binding 
of PARP1 to damaged DNA and the enzymatic activity 
of PARP1, but also increased levels of cleaved caspase 3 
and cleaved PARP1 in GC cells, and finally inhibits the 
apoptosis and transfer of GC cells [166]. Micropeptide in 
Mitochondria (MPM) is significantly down-regulated in 
human HCC tissues and inhibits mitochondrial complex 
I activity, mitochondrial respiration, and ATP produc-
tion. When MPM is highly expressed, MPM works with 
NDUFA7 to inhibit the level of NAD + /NADH, thereby 
inhibiting the metastasis of tumor cells. Further studies 
showed that miR-17-5p could directly bind to mRNA 
3 ’-UTR to inhibit the expression of MPM, and the up-
regulation of miR-17-5p was significantly correlated with 
the down-regulation of MPM in HCC tissues [178].Circ-
SEMA4B and peptide SEMA4B-211aa were expressed 
at low levels in breast cancer(BC) and exerted as tumor 
suppressors in  vivo and in  vitro. Co-IP assay proved 
that SEMA4B-211aa inhibits the formation of the p85/
p110 complex by forming a complex with free p85. This 
results in decreased p110 protein and decreased PI3K 
signal. The reduction of the p85/p110 complex inhibits 
the production of PIP3 and thus the phosphorylation of 
AKT (Thr308). Finally, the metastasis of BC was inhib-
ited [167].

And then some peptides promote tumor metas-
tasis. Hsa_circ_0006401-198aa is encoded by Hsa_
circ_0006401, which regulates the growth, migration, 
and metastasis of colorectal cancer. By means of immu-
noprecipitation-combined mass spectrometry, gene body 
analysis, and mRNA decay analysis, hsa_circ_0006401-
198aa promoted the stability of host gene COL6A3 

mRNA, thus promoting the metastasis of colorectal can-
cer [179]. circ-EIF6 (hsa_circ_0060055) encodes a 224-aa 
peptide (EIF6-224aa) in a study to determine the role of 
the Wnt/ β-catenin pathway in tumor metastasis. EIF6-
224aa can up-regulate target genes in the Wnt/ β-catenin 
pathway, and it interacts with MYH9 to activate the 
Wnt/ β-catenin pathway and further promote TNBC cell 
metastasis [180]. HNF4A-AS1 encodes a small 51-amino 
acid peptide called sPEP1, which directly interacts with 
eukaryotic translation extension factor 1α-1 (eEF1A1) 
to promote its binding to SMAD family member 4 
(SMAD4) and subsequently upregulates stem cell genes 
associated with tumor progression and promotes tumor 
metastasis [181]. Experiments showed that cGGNBP2-
184aa directly interacts with signal transducers and 
activators of transduction3 (STAT3) to phosphorylate 
STAT3. This peptide plays a positive regulatory role in 
IL-6 /STAT3 signaling, forming a positive feedback loop 
signaling pathway. Finally activate the JAK-STAT sig-
nal and promote cell metastasis [182]. circCOL6A3_030 
promoted GC cell migration by encoding a small peptide 
called circCOL6A3_030_198aa [183] (Fig. 2).

Influence on cancer angiogenesis
Angiogenesis, not only allows tumor cells to metastasize 
rapidly in a large range but also provides nutrients for 
tumor cells to meet their proliferation needs. Similarly, 
peptides encoded by ncRNA have been found to play an 
important role in promoting tumor angiogenesis. hsa-
circ-0000437 has a 144nt ORF that encodes a peptide 
called CORO1C-47aa via IRES. CORO1C-47aa binds to 
transforming acidic coiled coil 3 (TACC3) through its 
PAS-B domain to compete with ARNT to inhibit VEGF 
expression, while TACC3 promotes the recruitment of 
ARNT protein to the HRE site and promotes VEGF gene 
transcription. In conclusion, CORO1C-47aa can promote 
endothelial cell proliferation and migration by up-regu-
lating and down-regulating VEGFA and VEGFR2 pro-
tein expression [168]. The ORF of LINC00908 encodes 
60-aa peptide (6.62KD) ASRPS. Through the detection of 
TNBC tissue samples, it was found that ASRPS was nega-
tively correlated with p-STAT3 expression. Experiments 
have confirmed that ASRPS directly bind to STAT3, 
inhibit STAT3 phosphorylation and its transcriptional 
activity, and regulate the expression of VEGF through 
STAT3 phosphorylation. In the mouse xenograft model, 
the expression of ASRPS was negatively correlated with 
the expression of vascular endothelial cell marker CD31 
and microangiogenesis, confirming that ASRPS inhibited 
tumor angiogenesis [184].

Researchers have also found peptides that promote 
tumor angiogenesis. Gln-hungry TNBC cells up-reg-
ulated XBP1s by activating the UPR/IRE1α-XBP1s 



Page 8 of 17Wen et al. Journal of Biomedical Science           (2024) 31:63 

pathway, thereby promoting MLLT4-AS1 transcription 
and XBP1SBM expression, and then XBP1SBM inter-
acted with XBP1s in trans. The activation domain (TAD) 
blocks the interaction between XBP1u and XBP1s, inhib-
its the nuclear output of XBP1s, and thus regulates the 
transcription of VEGF [185] (Fig. 3).

Other functions and mechanisms of peptides
The peptides encoded by ncRNA have several other func-
tions in addition to those described above. Signaling 
pathways are critical in cancer research, and researchers 
have found that HBVPTPAP, a peptide encoded by the 
lncRNA HBVPTPAP, plays an important role in the JAK/

STAT pathway. Further studies showed that when the 
HBVPTPAP gene was overexpressed, apoptosis-related 
protein Bax was up-regulated, Bcl2 was down-regulated, 
cytochrome C expression was increased, and p-STAT3 
expression was decreased. Moreover, it was confirmed 
that HBVPTPAP interacts with PILRA intracellular 
domain to activate JAK/STAT pathway and initiate mito-
chondrial pathway to induce apoptosis [186]. Oxaliplatin 
is used as a tumor chemotherapy drug, and drug resist-
ance will inevitably occur with the extension of the use 
time. In the process of drug resistance study on oxalipl-
atin, researchers found that lncRNA AP encoded 37-aa 
peptide, namely PEP-AP. Experiments have confirmed 

Fig. 2  The mechanism of peptides in the process of tumor metastasis. A MPM acted with NDUFA7 to inhibit the level of NAD + /NADH, thus 
inhibiting the metastasis of tumor cells. B circDIDO1 encoded a novel 529aa protein that directly interacted with poly ADP-ribose polymerase 1 
(PARP1) and inhibited its activity. C miPEP133 prevent HSPA9 from interacting with its binding partners, leading to the decrease of mitochondrial 
membrane potential and mitochondrial mass. D CIP2A-BP binds CIP2A, thus releasing PP2A activity, resulting in decreased expression levels 
of MMP-2, MMP-9, and Snail. E SEMA4B-211aa inhibits the formation of p85/p110 complex then decreased p110 protein and decreased PI3K signal, 
finally inhibiting the metastasis. F sPEP1 directly binds to eEF1A1 to promote its interaction with SMAD4, upregulation of downstream target genes, 
and promotion of self-renewal and tumor metastasis. G EIF6-224aa directly interacted with MYH9, and decreased MYH9 degradation by inhibiting 
the ubiquitin–proteasome pathway and subsequently activating the Wnt/β-catenin pathway. H cGGNBP2- 184aa interacts with the STAT3, 
phosphorylates its Thy705 site and initiates the transcription of downstream target genes of STAT3. I Hsa_circ_0006401 peptides decreased 
the mRNA and protein level of the host gene col6a3 by promoting col6a3 mRNA stabilization. J circCOL6A3_030 promoted GC cell migration 
by encoding a small peptide called circCOL6A3_030_198aa
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that pep-AP can inhibit the pentose phosphate pathway 
(PPP) by inhibiting the expression of TALDO1 protein, 
increasing ROS accumulation and mitochondrial dys-
function, and finally inducing apoptosis and sensitiza-
tion to CRC [187]. MP31 is an upstream phosphatase 
peptide encoded by ORF and tensin congeners (PTEN). 
It restricts lactate-pyruvate conversion in mitochon-
dria by competing with mitochondrial lactate dehydro-
genase (mLDH) for nicotinamide adenine dinucleotide 
(NAD +). Conditional knockout of MP31 homologues 
in mouse astrocytes induces glioma formation, short-
ens overall animal survival, and establishes the tumor 

suppressive effect of MP31 [188]. The oncogenic pep-
tide APPLE is encoded by noncoding RNA transcripts 
in acute myeloid leukemia (AML). The peptide is rich 
in ribosomes, can regulate the translation initiation step 
to enhance translation, and can maintain a high transla-
tion rate for oncoprotein synthesis. APPLE promotes 
PABPC1-eIF4G interaction and promotes mRNA circu-
larization and eIF4F initiation complex assembly to sup-
port specific cancer-promoting translational programs 
[189]. circCHEK1_246aa interacts with CEP170, which 
induces MM Chromosomal instability (CIN) and Periph-
eral blood mononuclear cells (PBMCs) by upregulation of 

Fig. 3  Mechanism of action of peptides in other characteristic phenotypic processes of tumors. A CORO1C-47aa via blocking the association 
between ARNT and TACC3 and then reduces the expression of VEGFA. B ASRPS directly bound to STAT3 and down-regulated STAT3 
phosphorylation, which led to reduced expression of VEGF. C Gln starvation induces ER stress and UPR to activate XBP1 pathway, then XBP1s 
upregulates transcription of MLLT4-AS1 and expression of XBP1SBM, inhibiting the interaction of XBP1u and XBP1s to enhance the nuclear 
localization of XBP1s, thereby promoting the transcription and expression of VEGF, and finally drives the metastasis of TNBC. D MP31 limits 
lactate-pyruvate conversion in mitochondria by competing with mitochondrial lactate dehydrogenase (mLDH) for nicotinamide adenine 
dinucleotide (NAD +) and then inhibited glioblastoma xenografts. E APPLE promotes PABPC1-eIF4G interaction and facilitates mRNA circularization 
and eIF4F initiation complex assembly to support a specific pro-cancer translation program. F circCHEK1_ 246aa increased MM CIN and osteoclast 
differentiation. G Interaction between the HBVPTPAP and the PILRA endo-domain activated by the negative regulation of the downstream 
JAK/STAT pathway, which initiated the mitochondrial pathway to induce apoptosis. H pep-AP inhibits PPP, increasing the accumulation of ROS 
and mitochondrial dysfunction. I circMRPS35-168aa suppressed the cisplatin-induced apoptosis via inhibiting the cleavage of caspase-3. J PACMP 
not only prevents CtIP from ubiquitination by inhibiting the CtIP-KLHL15 association but also directly binds DNA damage-induced poly (ADP-ribose) 
chains
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NFATc1 expression, and finally induces MM cell prolifer-
ation, drug resistance, and bone disease formation [190]. 
Tumor drug resistance has always been a key problem in 
clinical chemotherapy. Studies have found that peptides 
encoded by ncRNA can promote the development of 
drug resistance in tumor cells. For example, circMRPS35 
can inhibit cisplatin-induced apoptosis by encoding circ-
MRPS35-168aa to inhibit cleavage of caspase-3 [191], 
Following DNA damage, PACMP binds PAR to promote 
PARP1-dependent PAR acylation through its electro-
static stabilization of the PAR-acylated PARP1-DNA 
complex during PAR elongation. Targeting PACMP can 
inhibit tumor growth, and confer sensitivity to PARP/
ATR/CDK4/6 inhibitors, ionizing radiation, epirubicin, 
and camptothecin. Finally, inhibition of peptides action 
could be used to enhance existing anticancer therapeutic 
strategies [192] (Fig. 3).

Application prospect
The recent surge in life sciences research has cast a spot-
light on the translatable noncoding RNAs (ncRNAs) 
and their profound implications in oncology. This text 
encapsulates the fundamental translation mechanisms 
employed by these ncRNAs to encode peptides/proteins 
and underscores their regulatory influence on cancer 
dynamics. These peptides/proteins have demonstrated 
potent functionalities both in the physiological milieu 
and in controlled laboratory conditions. However, our 
understanding of these ncRNA-derived peptides/pro-
teins is still in its infancy, with a plethora of them await-
ing discovery. The landscape of technologies anchored 
on translational mechanisms is in constant flux, signal-
ing an ongoing evolution. Concurrently, the real-world 
clinical implications of these peptides in tumor man-
agement warrant further exploration. Over the recent 
years, the advent of a plethora of anticancer therapeutics, 
including pathway-specific small molecule inhibitors, 
antiangiogenic agents, ubiquitin–proteasome inhibitors, 
monoclonal antibodies, and gene therapies, has reshaped 
the therapeutic realm. Considering the versatility of the 
aforementioned peptides/proteins in modulating a broad 
range of pathways, they hold substantial promise as 
potential therapeutic targets in cancer treatment.

Distinct peptides have been discovered to exert anti-
tumor effects by impeding the vascularization of can-
cer cells, consequently obstructing their proliferation 
rather than triggering direct cellular apoptosis. These 
peptides can effectively inhibit the signaling of vascu-
lar endothelial growth factor (VEGF), a fundamental 
process that incites new blood vessel formation within 
tumors. The peptides can curb tumor growth and metas-
tasis via VEGF inhibition while sparing normal cells with 
low neovascularization demands. Another intriguing 

approach in cancer therapeutics involves leveraging pep-
tides to incite a tumor-specific immune response. This 
strategy was recently illustrated in a study that linked 
a cell-penetrating peptide, termed cytosol localizing 
internalization peptide 6 (CLIP6), with a model antigen, 
ovalbumin (OVA) [193]. Unique to CLIP6 is its ability 
to translocate directly through cell membranes, bypass-
ing the common endocytosis pathway often resulting in 
endosomal entrapment. In the study, researchers found 
that the CLIP6-OVA complex facilitated efficient cellular 
entry and enhanced antigen uptake by antigen-present-
ing cells, particularly dendritic cells. Furthermore, when 
administered in vivo with an immune adjuvant, CpG, the 
CLIP6-OVA complex prompted a potent antigen-spe-
cific immune response in mice. Employing the B16/OVA 
mouse model, a melanoma cancer model that expresses 
OVA on its cell surface, the researchers assessed the 
effectiveness of CLIP6-OVA/CpG immunization. The 
study revealed that two out of six mice receiving this 
novel immunization regimen became tumor-free, indi-
cating its potential therapeutic efficacy [194].

Cancer vaccines have increasingly garnered atten-
tion due to their ability to generate long-lasting immune 
memory, offering durable anti-tumor effects. Clinically 
utilized cancer vaccines include Melacine for melanoma 
and Cima Vax EGF for lung cancer [195–197]. A promis-
ing focus for immunotherapy is tumor-specific antigens 
(TSAs), 90% of which have been identified in human pri-
mary tumors and originate from the translation of non-
coding regions. Moreover, most of these TSAs derived 
from nonmutated yet aberrantly expressed transcripts. 
The efficacy of TSA-based vaccination, as indicated by 
studies in mice (the strength of antitumor responses 
after TSA vaccination was influenced by TSA expres-
sion and the frequency of TSA-responsive T cells in the 
preimmune repertoire), demonstrates that individual 
TSA immunization provides varied degrees of protection 
against EL4 cells—a protection that is enduring. Conse-
quently, TSAs derived from noncoding regions repre-
sent a promising avenue in cancer immunotherapy [198]. 
Ongoing research continues to uncover a growing num-
ber of proteins/peptides encoded by noncoding RNAs 
(ncRNAs). We anticipate these findings to provide a sig-
nificant impetus for further clinical exploration, poten-
tially translating into innovative and effective therapeutic 
strategies.

Conclusions and future perspectives
In a swirl of scientific fascination, ncRNA-encoded pro-
teins have captured considerable attention. Research 
has substantiated the existence and underscored the 
significance of ncRNA-encoded functional peptides. 
Nonetheless, gauging ncRNA coding potential presents 
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a formidable challenge [199]. Databases employed for 
predicting interspecies conservation of ORFs, IRES, and 
m6A in ncRNAs remain incomplete, while experimen-
tal validation procedures are still in their infancy [39]. A 
vast majority of circRNAs stem from protein-encoded 
exons, potentially overlapping with related mRNAs and 
complicating the discernment of translation product ori-
gins. High-throughput analysis and detection techniques, 
such as ribosome profiling, face technical hurdles [200, 
201]. Pinpointing small peptides necessitates specialized 
biochemical and bioinformatics approaches infrequently 
utilized in genome-wide characterization. Furthermore, 
cell- and tissue-specific expressions add complexity to 
these assays. Consequently, the true count of translatable 
sORFs and their biological roles remain enshrouded in 
mystery.

In this analysis, we delved into recent breakthroughs 
concerning ncRNA-encoded diminutive peptides govern-
ing human cancer behavior. This exploration furnished 
fresh insights into ncRNA functions and mechanisms. 
As a result, it prompts the prospect of conducting 
more in-depth research on ncRNA in several domains, 
such as the existence of additional functional peptides 
or proteins encoded by ncRNA; whether past ncRNA 
studies scrutinized RNA or assessed potential coding 
functions; the mechanism driving the dynamic transla-
tion of ncRNAs encoding functional peptides; whether 
ncRNAs encoding small peptides undergo posttransla-
tional modification akin to mRNA; and the factors and 
conditions influencing ncRNA translation. As we peer 
into the future, functional peptides encoded by ncRNAs 
could become commonplace in cancer research, therapy, 
diagnostics, and prognostics, given their developmental 
potential and clinical applicability. NcRNAs can encode 
cancer-suppressive peptides/proteins that could be used 
alongside conventional anti-cancer drugs, or in tandem 
with traditional radiotherapy and chemotherapy, to bol-
ster the efficacy of cancer treatments. These functionally 
encoded peptides, entwined with tumorigenesis, present 
as promising new drug development targets. Researchers 
are exploring the restoration or enhancement of tumor 
suppressor peptide/protein functions using vaccinations 
with synthetic peptides or viral vector vaccines encod-
ing relevant peptide sequences for cancer therapy [202]. 
The therapeutic potential of these cryptic peptides/pro-
teins, encoded by ncRNAs, is increasingly evident. Fur-
thermore, ncRNA itself can execute biological functions, 
serving as a molecular marker or potential target. Both 
functional peptides and ncRNAs can be employed as 
cancer biomarkers for clinical applications at dual levels 
of transcription and translation, augmenting the accu-
racy and specificity of diagnosis and treatment. At this 
stage, research on ncRNA-encoded peptides is more 

focused on ncRNAs, and there is still not much research 
on the peptides themselves. We suggest that research on 
peptides can be more diversified and more focused on 
the functions of the peptides, which will allow for a more 
comprehensive study of the functions of the peptides. For 
example, CIP2A-BP was introduced into C57BL/6 mice, 
and then mated with MMTV-PyMT mice to produce 
new mice that could reduce lung metastasis. A series of 
in vivo experiments on peptides in animals were carried 
out by the experimenters, which directly explored that 
peptides could inhibit the metastasis of breast cancer 
in vivo experiments, and enriched the content and results 
of the study. Therefore, we suggest that more diversified 
peptides experiments can be conducted. Moving forward, 
the differential expression and prognostic correlation of 
these peptides/proteins in cancer may be ascertained via 
further experimental analyses and clinical examinations, 
such as immunohistochemical analysis of tumor tissue 
paraffin sections and body fluid assessments.

In this discourse, we explored the notion that genetic 
information could be transferred from ncRNAs to pro-
teins, potentially playing a significant role in the modula-
tion of specific biological and oncological processes. This 
insight may aid in elucidating the underpinnings of bio-
logical mechanisms and patterns. Given that the realm of 
functional peptides encoded by ncRNAs remains a rela-
tively nascent field of experimentation and research, the 
intricacies of its mechanisms, functions, regulatory fac-
tors, and prospective clinical and scientific applications 
warrant and demand continued investigation.
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