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Abstract 

Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity 
of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management 
particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform 
those challenges into opportunities.

This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated “competing 
endogenous RNA network” (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs 
and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss 
how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression 
by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic 
resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS 
cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins 
and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regu-
latory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based 
therapies and new diagnostic tools, also in the perspective of precision oncology.
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Introduction
Osteosarcoma (OS) is the most severe and common 
primary malignant tumor of the bone, which shows a 
bimodal incidence with a first peak in children, as pri-
mary bone cancer, and another peak in adults, as sec-
ondary cancer related to radiative therapies or other 
pathologies [1–3]. It is mainly observed in lower long 
bones and has a high risk of distant metastasis and inva-
sion to the other bones and particularly to lung tissue; 

in fact, at the time of diagnosis, 20% of OS patients have 
already developed metastases, out of which 90% are 
lung metastases [1, 4]. Although OS represents only 5% 
of tumors in pediatric patients, its severity and ability 
to metastasize early are responsible for a high cancer-
related mortality rate [1, 5]. The five-year survival rate for 
patients with localized OS is about 60–70%, whereas it 
is less than 20% for patients with metastatic OS. Chem-
otherapy is responsible for the impairment of bone 
metabolism and for the onset of osteoporosis leading to a 
decrease of bone mineral density in OS patients and pre-
disposing OS long-term survivors to a high risk of bone 
fractures [6].

OS arises from primitive mesenchymal bone-forming 
cells within the osteoblastic lineage, undergoing aber-
rant alterations at any stage of differentiation; the bone 
niches and their microenvironment are strictly linked, 
and tumor microenvironment (TME) greatly contribute 
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to OS progression and metastasis [1, 7–9]. Vast genomic 
instability and multiple genomic aberrations character-
ize the majority of OS cases (58%), such as gain or loss 
of some portions or entire chromosomes [10]. Apart 
from these characteristic structural alterations, large-
scale sequencing analyses have also identified recurrently 
mutated genes, such as TP53 (lost in > 90% of OS), dele-
tion of RB (up to 30% of OS) and other drivers lesions 
such as MYC amplification, PTEN loss and deletion of 
ATRX [10]. Related to genetic mutations, alterations in 
many signaling pathways, such as Notch and Wnt, con-
tribute to osteosarcoma genesis. Most of OS cases are 
sporadic, however a considerable subset of cases occurs 
in the setting of established cancer predisposition syn-
dromes [3, 10].

In recent years, an increasing number of studies have 
been published on the possible role of non-coding RNAs 
contributing to pathophysiology of OS, firstly regarding 
microRNA (2065 results retrieved by PubMed search-
ing by keywords “osteosarcoma AND miRNA” by March 
2024), then lncRNA (1024 results retrieved by PubMed 
searching by keywords “osteosarcoma AND lncRNA” 
by March 2024), and more recently circular RNA (326 
results retrieved by PubMed searching by keywords 
“osteosarcoma AND circRNA” by March 2024).

microRNAs (miRNA) are short non-coding RNAs 
(approximately 20 nt long) that work by driving multi-
protein complexes on complementary sequences of tar-
get transcripts, thus affecting their translation and/or 
stability [11]. One miRNA can bind various transcripts, 
and vice versa one transcript can be targeted by differ-
ent miRNAs, giving rise to complex regulatory networks 
controlling more than 30% of protein-coding genes, 
thus playing key roles in almost all physiological path-
ways and in the pathogenesis of several diseases [12, 13]. 
Much evidence has shown that microRNAs can function 
as either oncogene by downregulating oncosuppressive 
proteins, or tumor suppressor by negatively regulating 
oncogenic targets, thus contributing to the onset and 
progression of osteosarcoma [14, 15]. As an example of 
oncomiR, miR-21 is able to down-regulate PTEN, TPM1, 
PDCD4, thus inducing OS cell growth, migration, inva-
sion and metastasis [16, 17]. miR-34a is an example of 
oncosuppressive miRNAs, whose expression restoration 
could rescue the abnormal cellular processes in preclini-
cal OS models [18]; several miR-34a oncotargets have 
been validated and a special link with TP53 has been 
also highlighted, since miR-34 is a direct transcriptional 
target of p53, with different feedback regulatory loops 
contributing to OS [19].

Long ncRNAs (lncRNAs), with a size longer than 
200nt and up to several kilobases (up to 100  kb), rep-
resent the largest class of ncRNAs in the mammalian 

genome, and further classified into subclasses, depend-
ing on their genomic locations, origins, and transcrip-
tion directions [20]. LncRNAs are structurally and 
functionally very versatile, so that they can interact 
with DNA, other RNA molecules, and proteins, thus 
regulating gene expression at epigenetic, transcrip-
tional, post-transcriptional, and translational level 
[21]. The number of lncRNAs involved in cancer initia-
tion and progression is continuously growing and can 
also be found in curated databases such as Lnc2Cancer 
or the Cancer LncRNA Census [22, 23]. Some lncR-
NAs have long been known, such as MALAT1, acting 
as oncogene in different tumors, including OS; many 
others have been more recently annotated due to the 
increasing advances of high-throughput RNA sequenc-
ing technologies [24].

Circular RNAs (circRNAs) are covalently closed con-
tinuous RNA loops, originated from the primary form 
of transcripts, mainly mRNAs; through their interaction 
with DNA, other coding or non-coding RNAs, and pro-
teins, circRNAs can control gene expression at different 
levels, from transcriptional to post-transcriptional level 
[25, 26]. The expression of many circRNAs is abnormal in 
different cancer types, and they have been demonstrated 
to play relevant roles in carcinogenesis [27].

It is becoming increasingly clear that beyond “conven-
tional” unidirectional regulation of a specific gene expres-
sion exerted by the molecules above described (e.g., one 
miRNA versus one target), the different RNA biotypes 
can engage in intricate regulatory networks, underlying 
physiological homeostasis and whose derailing has path-
ological consequences [28–30]. In fact, even unrelated 
and unexpected transcripts, coding or non-coding, can 
be functionally linked through miRNAs if they share their 
binding sites; in this scenario, different RNA species can 
regulate each other’s by competitively binding to shared 
miRNAs, thus titrating their availability and preventing 
their inhibitory binding to the other RNA targets. The 
binding miRNAs sites become “the letters” of an “RNA 
code” by which different RNA biotypes, independently 
from their coding potentiality, form large-scale regula-
tory networks across the transcriptome, reciprocally 
fine-tuning their expression levels and thus governing 
different biological pathways. The described functional 
relationships are denominated “competing endogenous 
RNA (ceRNA) networks”, abbreviated as “ceRNET”. In a 
physiological state, an optimal crosstalk among the RNA 
molecules occurs, so that the shared pool of miRNAs is 
sufficient to target repression and govern different bio-
logical pathways; however, the unbalancing of any net-
work component, such as an aberrant expression, can 
affect the entire regulatory circuit acting as a driving 
force for human diseases, including carcinogenesis.



Page 3 of 30Mosca et al. Journal of Biomedical Science           (2024) 31:59  

In recent years, literature concerning osteosarcoma 
is becoming dominated by association with non-coding 
RNA biology. Many studies profile microRNAs expres-
sion in different patient cohorts, finding differentially 
expressed miRNAs with a diagnostic/prognostic poten-
tial; some others go deeply into the mechanisms trying to 
piece together the molecular events and identify the gov-
erned biological pathways contributing to osteosarcoma 
genesis. This review aims to give a comprehensive view 
of RNA regulatory networks involving lncRNA-miRNA-
mRNA axes and circRNA-miRNA-mRNA axes in the 
ceRNET perspective. Literature on PubMed published 
before 31 March 2024 was screened by the following key-
words: “(osteosarcoma) AND (ceRNA),” retrieving 173 
results; “((osteosarcoma) AND (lncRNA)) AND (axis),” 
retrieving 233 results; “((osteosarcoma) AND (circRNA)) 
AND (axis),” retrieving 123 results. Then, we selected for 
this study only those articles reporting experimental vali-
dation of interaction between lncRNA or circRNA ver-
sus miRNA, and miRNA versus mRNA target by RNA 
immunoprecipitation (RIP) and/or luciferase and/or 
RNA pull-down assays; duplicate results from our screen-
ing were excluded. The ceRNETs were listed grouping 
together those involving lncRNAs, those involving circR-
NAs, in alphabetic order referred to lncRNAs or circR-
NAs, with the aim to put together the networks governed 
by the same lncRNA or circRNA; the lists were further 
processed by subgrouping those endowed with onco-
genic power, or tumor suppressor action, or involvement 
in chemoresistance. The described literature processing 
criteria led to the results presented in Tables 1, 2 and 3, 
discussed in the next sections.

CeRNETs involving lncRNAs
An increasing number of studies demonstrated that 
lncRNAs are key players in osteosarcomagenesis, trigger-
ing different molecular pathways involved in biological 
processes such as cell proliferation, migration, invasion, 
apoptosis, tumor growth and metastasis.

In this section, we discuss the role of lncRNAs as 
oncogenes and then as tumor suppressors through their 
ceRNA activity, as distilled from many studies (Fig.  1). 
The extensive list of lncRNAs, mechanisms and pheno-
typic effects is reported in Table 1.

Oncogenic ceRNA activity
Different biological processes and molecular pathways 
have been demonstrated to play a key role in OS onset 
and progression. Among them, the early metastatic 
potential is a feature of OS; ceRNA activity of many lncR-
NAs greatly contribute to cell invasiveness and metas-
tasis, a key to a poor prognosis (Table 1). They are also 
able to contribute to the “Warburg effect”, i.e. a metabolic 

switch from oxidative phosphorylation to aerobic glyco-
lysis that leads to the enhancement of cell proliferation, 
and the rapid growth of tumor. In fact, although aero-
bic glycolysis is less efficient in the generation of ATP, it 
increases proliferation, inhibits apoptosis, and generates 
signaling metabolites to enhance cancer cell survival 
under stressful conditions, such as hypoxia. Regard-
ing molecular pathways, different ceRNETs involving 
lncRNAs are consistently indicated to be able to trigger 
PI3K/AKT/mTOR and Wnt/beta-catenin signaling path-
ways, indeed promoting cell proliferation, invasion and 
metastasis and inhibiting apoptosis. Then, ceRNA activ-
ity can have an impact on the entire transcriptome of OS 
cells, when lncRNAs share miRNA binding sites with 
transcripts encoding transcription factors or chroma-
tin remodeling enzymes, that can result upregulated by 
an overexpression of the sponging lncRNA, with patho-
logical consequences. Among the 118 oncogenic lncR-
NAs reported in Table 1, below we discuss some of them 
consistently and more frequently reported (from 16 to 3 
papers per lncRNA) to be involved in ceRNETs prompt-
ing osteosarcomagenesis, also in relation to biological 
processes and molecular pathways cited above.

Different members of lncRNA SNHGs family (small 
nucleolar RNA host genes) have received increasing 
attention regarding their roles in multiple bone diseases, 
since their unique expression profile during osteoblast 
differentiation and involvement in relevant pathways 
for osteogenesis of mesenchymal stem cells [346]. Fur-
thermore, various lncRNAs SNHGs have been already 
demonstrated to be involved in different human cancers, 
including glioma, esophageal cancer, HCC, lung adeno-
carcinoma and gastric cancer [347–352]. Nine members 
of the family have been also reported to drive osteosarco-
magenesis through different ceRNETs (Table 1). Among 
them, SNHG1 is consistently reported to be upregulated 
in OS tissues and cells, correlated with tumor size, TNM 
stage and lymph node metastasis, predicting poor over-
all survival [162–165]. In particular, the lncRNA is able 
to promote proliferation, migration, tumor growth and 
metastasis, as demonstrated in vitro and in vivo experi-
ments through the ceRNA activity involving the miR-
326/NOB1, miR-493/S100A6 and miR-577/Wnt2B axes, 
with the last one also activating the Wnt/beta-catenin 
signal pathway, one of the most critical pathway relevant 
for both cell proliferation and metastasis [162–164]. 
SNH10 is also able to activate the Wnt/beta-catenin path-
way by promoting the beta-catenin transfer into nucleus 
to maintain the activation of the Wnt signaling by miR-
182-5p/FZD3 axis, as demonstrated by in  vitro and 
in vivo experiments [168]. The ability to promote tumor 
growth and metastasis in animal models by ceRNA activ-
ity has also been demonstrated for other members of 
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Table 1 Oncogenic and tumor suppressive ceRNETs involving lncRNAs

Competing Endogenous 
RNAs

lncRNA mRNA Shared miRNA Effect Role References

AC007207.2 SIRT7 miR-1306-5p oncogenic proliferation, metastasis [31]

ADIRF-AS1 IRS1 miR-761 oncogenic proliferation, apoptosis, migration, invasion, tumor 
growth

[32]

AFAP1-AS1 TCF4 miR-4695-5p oncogenic proliferation, invasion, tumor growth [33]

AFAP1-AS1 IGF1R miR-497 oncogenic proliferation, apoptosis, migration, invasion, tumor 
growth

[34]

AP003352.1 LPAR3 miR-141-3p oncogenic proliferation [35]

APTR YAP1 miR‐132‐3p oncogenic proliferation, apoptosis, invasion, migration [36]

ASMTL-AS1 ADAM9 miR-342-3p oncogenic proliferation, apoptosis, migration, invasion, tumor 
growth

[37]

AWPPH FZD7 miR-93-3p oncogenic proliferation, migration, invasion [38]

BCRT1 FGF7 miR-1303 oncogenic proliferation, EMT [39]

BLACAT1 SOX12 miR-608 oncogenic proliferation, migration [40]

BSN-AS2 SYTL2 miR-654-3p oncogenic proliferation, apoptosis, migration, invasion [41]

CASC9 SOX12 miR-874-3p oncogenic proliferation, invasion, tumor growth [42]

CASC15 RAB14 miR-338-3p oncogenic proliferation, migration, invasion, tumor growth, TME [43]

CCAL ANGPTL4 miR-29b oncogenic angiogenesis [44]

CDKN2B-AS1 CCNG1 miR-122-5p oncogenic proliferation, invasion [45]

CRNDE MRP9 miR-136-5p oncogenic proliferation, migration [46]

DANCR ROCK1 miR-335-5p, miR-1972 oncogenic proliferation, tumor growth, metastasis [47]

DANCR MSI2 miR-149 oncogenic migration, invasion [48]

DICER1-AS1 ATG5 miR-30b oncogenic proliferation, migration, invasion, autophagy, tumor 
growth

[49]

DLEU1 DDX5 miR-671-5p oncogenic proliferation, migration, invasion [50]

DLGAP1-AS2 HK2 miR-451a oncogenic Proliferation, migration, invasion, tumor growth; glyco-
lysis

[51]

DLX6-AS1 DLK1 miR-129-5p oncogenic stemness, tumor growth [52]

DLX6-AS1 HOXA9 miR-641 oncogenic proliferation, apoptosis, migration, invasion, tumor 
growth

[53]

DLX6-AS1 RAB10 miR-141-3p oncogenic proliferation, migration, invasion, tumor growth [54]

DSCAM-AS1 USP47 miR-101-3p oncogenic proliferation, migration, invasion, EMT [55]

DUXAP8 TOP2A miR-635 oncogenic proliferation, migration, invasion [56]

EBLN3P RAB10 miR-224-5p oncogenic proliferation, migration, invasion [57]

ERVK13-1 KLF5 miR-873-5p oncogenic proliferation, migration, invasion [58]

EWS SOX2 miR-199a-5p oncogenic proliferation, apoptosis [59]

FEZF1-AS1 NUPR1 miR-4443 oncogenic proliferation, migration, invasion, tumor growth [60]

FEZF1-AS1 CXCR4 miR-144 oncogenic proliferation, apoptosis, migration [61]

FGD5-AS1 RAB3D miR-506-3p oncogenic proliferation, migrasion [62]

FGD5-AS1 G3BP2 miR-124-3p oncogenic proliferation, invasion [63]

GAS6-AS2 BCAT1 miR-934 oncogenic proliferation, apoptosis, migration, invasion [64]

GSEC EIF5A2 miR-588 oncogenic proliferation, apoptosis, migration [65]

HCG11 MMP13 miR-579 oncogenic proliferation [66]

HCG11 PKP2 miR-1245b-5p oncogenic proliferation, invasion [67]

HCG18 FOXC1 miR-188-5p oncogenic proliferation, migration, invasion [68]

HCG18 PGK1 miR-365a-3p oncogenic proliferation [69]

HCP5 LOXL2 miR-29b-3p oncogenic proliferation, migration, invasion [70]

HNF1A-AS1 HMGB1 miR-32-5p oncogenic proliferation, apoptosis, migration, invasion [71]

HIF1A-AS2 SIRT6 miR-33b-5p oncogenic proliferation, apoptosis, migration, invasion, tumor 
growth

[72]
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Table 1 (continued)

Competing Endogenous 
RNAs

lncRNA mRNA Shared miRNA Effect Role References

HOTAIR ZEB1 miR-217 oncogenic proliferation, apoptosis, migration, invasion [73]

HOTAIR SYK miR-6888-3p oncogenic proliferation, migration [74]

HOTAIRM1 RHEB miR-664b-3p oncogenic proliferation, apoptosis [75]

HOXA-AS3 TEAD1 miR-1286 oncogenic migration, invasion, tumor growth [76]

HOXA11-AS ROCK1 miR-124-3p oncogenic proliferation, migration [77]

HULC HMGB1 miR-372-3p oncogenic proliferation, migration [78]

ILF3-AS1 SOX5 miR-212 oncogenic proliferation, apoptosis, migration, invasion [79]

KCNQ1OT1 CCND2 miR-4458 oncogenic proliferation, apoptosis, migration, invasion [80]

KCNQ1OT1 ALDOA miR-34c-5p oncogenic proliferation, apoptosis, tumor growth [81]

KCNQ1OT1 KLF12 miR-154-3p oncogenic proliferation, migration, invasion, tumor growth [82]

KCNQ1OT1 KLF7 miR-3666 oncogenic proliferation, migration, invasion, tumor growth [83]

KLF3-AS1 MEF2C miR-338-3p oncogenic proliferation, migration [84]

LAMTOR5-AS1 TP63 miR-23a-3p oncogenic pyroptosis [85]

LBX2-AS1 BRD4 miR-597-3p oncogenic proliferation, migration [86]

LEXIS CTNNB1 miR-199a oncogenic proliferation, apoptosis, migration, invasion [87]

LIFR-AS1 NFIA miR-29a oncogenic proliferation, apoptosis, migration, invasion, TME [88]

LINC00152 CDK14 miR-1182 oncogenic proliferation, migration, invasion [89]

LINC00265 SAT1, VAV3 miR-382-5p oncogenic proliferation, migration [90]

LINC00265 USP22 miR-485-5p oncogenic proliferation, migration [91]

LINC00313 FOSL2 miR-342-3p oncogenic proliferation, migration [92]

LINC00319 NFIB miR-455-3p oncogenic proliferation, migration [93]

LINC00460 FADS1 miR-1224-5p oncogenic proliferation, migration [94]

LINC00467 KPNA4 miR-217 oncogenic proliferation, apoptosis, migration, invasion [95]

LINC00511 MAEL miR-618 oncogenic proliferation, apoptosis, migration, invasion [96]

LINC00511 E2F1 miR-185-3p oncogenic proliferation, invasion [97]

LINC00588 TP53 miR-1972 oncogenic proliferation, apoptosis, migration, invasion [98]

LINC00612 SOX4 miR-214-5p oncogenic proliferation, migration [99]

LINC00662 NOTCH2 miR-15a-5p oncogenic proliferation, migration, invasion, tumor growth [100]

LINC00662 SIK2 miR-103a-3p oncogenic proliferation, migration, invasion [101]

LINC00662 ITPR1 miR-16-5p oncogenic proliferation, migration, invasion, stemness [102]

LINC00662 ELK1 miR-30b-3p oncogenic proliferation, migration, invasion [103]

LINC00665 WNT2B miR-1249-5p oncogenic proliferation, apoptosis, migration, invasion, EMT [104]

LINC00689 SOX18 miR-655 oncogenic proliferation, apoptosis, migration, invasion [105]

LINC00691 PTEN miR-9-5p oncogenic proliferation, migration [106]

LINC00707 AHSA1 miR-3383p oncogenic proliferation, migration, invasion [107]

LINC00881 MMP2 miR-29c-3p oncogenic metastasis [108]

LINC00909 HOXD9 miR-875-5p oncogenic proliferation, EMT, tumor growth [109]

LINC00958 CEMIP miR-4306 oncogenic proliferation, apoptosis, migration, invasion [110]

LINC00963 FN1 miR-204-3p oncogenic proliferation, migration [111]

LINC01123 GLI1 miR-516b-5p oncogenic proliferation, migration [112]

LINC01128 MMP2 miR-299-3p oncogenic proliferation, migration, invasion [113]

LINC01140 HOXA9 miR-139-5p oncogenic proliferation, migration [114]

LINC01278 PTHR1 miR-133a-3p oncogenic proliferation, migration [115]

LINC01278 KRAS miR-134-5p oncogenic proliferation, migration [116]

LINC01410 NDRG3 miR-122-5p oncogenic proliferation, migration [117]

LINC01410 HMGA2 miR-497-5p oncogenic proliferation, migration [118]

LINC01419 PDRG1 miR-519a-3p oncogenic proliferation, EMT, tumor growth [119]
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Table 1 (continued)

Competing Endogenous 
RNAs

lncRNA mRNA Shared miRNA Effect Role References

LINC01535 KCNC4 miR-214-3p oncogenic proliferation, migration [120]

LINC01614 SNX3 miR-520a-3p oncogenic proliferation, invasion [121]

LINC02381 CDCA4 miR-503-5p oncogenic proliferation, migration [122]

MALAT1 TGFA miR-376a oncogenic proliferation [123]

MALAT1 HMGB1 miR-142–3p/ miR-129–5p oncogenic proliferation, apoptosis [124]

MALAT1 ROCK1, ROCK2 miR-144-3p oncogenic proliferation, migration, invasion, tumor growth 
and metastasis

[125]

MALAT1 HDAC4 miR-140-5p oncogenic proliferation, apoptosis, tumor growth [126]

MALAT1 CDK9 miR‐206 oncogenic proliferation [127]

MALAT1 Rac1 miR-509 oncogenic proliferation [128]

MALAT1 c-Met, SOX4 miR-34a/c-5p, miR-449a/b oncogenic proliferation, migration [129]

MALAT1 CCND1 miR-34a oncogenic proliferation, migration, invasion, tumor growth [130]

MALAT1 NRSN2 miR-143 oncogenic proliferation, migration, tumor growth, TME [131]

MALAT1 ROCK1 miR-873-5p oncogenic proliferation, migration [132]

MIAT VEGFC miR-128-3p oncogenic proliferation, apoptosis, migration, invasion [133]

MIAT SIX1 miR-141-3p oncogenic proliferation, migration [134]

MIR205HG TWIST2 miR-2114-3p oncogenic invasion, metastasis [135]

MRPL23-AS1 MYH9 miR-30b oncogenic proliferation, invasion, tumor growth [136]

MRUL FUT4 miR-125a-5p oncogenic proliferation, migration [137]

MSC-AS1 CDK6 miR-142 oncogenic proliferation, apoptosis, migration, invasion [138]

MYOSLID RAB13 miR-1286 oncogenic proliferation, apoptosis, migration, invasion [139]

NBR2 FKBP11 miR-129-5p oncogenic metastasis [140]

NEAT1 HIF‐1α miR‐186‐5p oncogenic proliferation, invasion, EMT, tumor growth [141]

NEAT1 TGF‐β1 miR‐339‐5p oncogenic proliferation, apoptosi, migration, invasion [142]

NEAT1 HOXA13 miR-34a-5p oncogenic proliferation, apoptosis [143]

NEAT1 STAT3 miR-483 oncogenic migration, invasion, EMT, tumor growth, metastasis [144]

NORAD KLF10 miR-30c-5p oncogenic proliferation, migration, TME [145]

NR2F1-AS1 BIRC5 miR-485-5p/miR-218-5p oncogenic proliferation, apoptosis, migration, invasion [146]

NR2F2-AS1 HMGB2 miR-425-5p oncogenic proliferation, apoptosis [147]

ODRUL MMP2 miR-3182 oncogenic proliferation, migration, invasion, tumor growth [148]

OIP5-AS1 CDK14 miR-223 oncogenic proliferation, apoptosis, tumor growth [149]

OR3A4 G6PD miR-1207-5p oncogenic proliferation, migration [150]

PART 1 BAMBI miR-20b-5p oncogenic proliferation, migration [151]

PCAT-1 ZEB1 miR-508-3p oncogenic proliferation, migration [152]

PCAT6 TGFBR1/2 miR-185-5p oncogenic proliferation, migration, invasion [153]

PCAT6 ZEB1 miR-143-3p oncogenic proliferation, migration [154]

PURPL PDZD2 miR-363 oncogenic proliferation, apoptosis, migration, invasion, TME [155]

PVT1 HK2 miR-497 oncogenic proliferation, invasion [156]

RGMB-AS1 ANKRD1 miR-3614-5p oncogenic proliferation, invasion, apoptosis [157]

ROR YAP1 miR-185-3p oncogenic proliferation, migration [158]

RP11-361F15.2 CPEB4 miR-30c-5 oncogenic proliferation, migration [159]

RUSC1-AS1 NOTCH1 miR-101-3p oncogenic proliferation, EMT, metastasis [160]

SCAMP1 ZEB2 miR-26a-5p oncogenic proliferation, migration [161]

SNHG1 WNT2B miR-577 oncogenic proliferation, migration, EMT, tumor growth [162]

SNHG1 NOB1 miR-326 oncogenic proliferation, tumor growth, metastasis [163]

SNHG1 S100A6 miR-493-5p oncogenic proliferation, tumor growth [164]

SNHG1 FGF2 miR-424-5p oncogenic proliferation, migration, invasion [165]

SNHG3 RAB22A miRNA-151a-3p oncogenic migration, invasion [166]



Page 7 of 30Mosca et al. Journal of Biomedical Science           (2024) 31:59  

Table 1 (continued)

Competing Endogenous 
RNAs

lncRNA mRNA Shared miRNA Effect Role References

SNHG5 ROCK1 miR-26a oncogenic proliferation, migration, invasion [167]

SNHG10 FZD3 miR-182-5p oncogenic proliferation, migration and tumor growth [168]

SNHG10 WTAP miR-141-3p oncogenic proliferation, apoptosis, migration, invasion [169]

SNHG12 NOTCH2 miR-195-5p oncogenic proliferation, migration, invasion [170]

SNHG12 IGF1R miR-195-5p oncogenic proliferation, migration, tumor growth, metastasis [171]

SNHG14 FBXO22 miR-433–3p oncogenic proliferation, apoptosis, migration, invasion [172]

SNHG15 TRAF4 miR-346 oncogenic proliferation, apoptosis, invasion, tumor growth [173]

SNHG16 BCL9 miR-1301 oncogenic proliferation, migration, invasion [174]

SNHG16 ITGA6 miR-488 oncogenic migration, invasion, EMT, tumor growth, metastasis [175]

SNHG20 RUNX2 miR-139 oncogenic proliferation, apoptosis, invasion [176]

SNHG25 SOX4 miR-497-5p oncogenic proliferation, migration, invasion, apoptosis, tumor 
growth

[177]

SOX21-AS1 IRS2 miR-7-5p oncogenic proliferation, migration, invasion [178]

TMPO-AS1 E2F1 miR-329 oncogenic proliferation, apoptosis, migration, invasion [179]

TMPO-AS1 WNT7B miR-199a-5p oncogenic proliferation, migration [180]

TRPM2-AS PPM1D miR-15b-5p oncogenic proliferation, migration [181]

TTN-AS1 TFAP4 miR-16–1-3p oncogenic proliferation, apoptosis, migration, invasion [182]

TUG1 POU2F1 miR-9-5p oncogenic proliferation, apoptosis, tumor growth [183]

TUG1 EZH2 miR-144-3p oncogenic migration, EMT [184]

TUG1 ROCK1 miR-335-5p oncogenic migration, invasion [185]

TUG1 FOXA miR-212-3p oncogenic proliferation, apoptosis, tumor growth [186]

TUG1 SOX4 miR-132-3p oncogenic proliferation, apoptosis [187]

TUG1 HIF-1α miR-143-5p oncogenic proliferation, angiogenesis, tumor growth, metastasis [188]

TUG1 PFN2 miR-140-5p oncogenic proliferation, migration, invasion, tumor growth [189]

TYMSOS NETO2 miR-101-3p oncogenic proliferation, migration [190]

UCA1 CREB1 miR-582 oncogenic proliferation, apoptosis, migration, invasion [191]

UCA1 E2F5 miR-513b-5p oncogenic proliferation, migration [192]

WAC-AS1 SOX2 miR5047 oncogenic proliferation, migration, invasion, tumor growth [193]

XIST RSF1 miR-193a-3p oncogenic proliferation, invasion [194]

XIST RAP2B miR-320b oncogenic proliferation, invasion [195]

XIST SNAI1 miR-153 oncogenic migration, invation, EMT [196]

XIST RAB16 miR-758 oncogenic migration, invation, EMT [197]

XLOC_005950 PFKM miR-542-3p oncogenic proliferation, apoptosis [198]

ZFAS1 APEX1 miR-135a oncogenic proliferation, apoptosis, migration, invasion [199]

ZFAS1 NOB1 miR-646 oncogenic proliferation, apoptosis, migration, invasion [200]

GAS5 MYL9 miR-663a tumor suppressor proliferation, migration, apoptosis [201]

GAS5 RHOB miR-663a tumor suppressor proliferation, migration, invasion [202]

LINC00261 PTEN miR-620 tumor suppressor increasing apatinib effectivennes [203]

LINC00691 ST5 miR-1256 tumor suppressor proliferation, migration, invasion, EMT, tuomor growth [204]

LINC00891 TET1 miR-27a-3p tumor suppressor proliferation, migration, invasion [204]

MEG3 FoxM1 miR‐361‐5p tumor suppressor proliferation, migration, invasion, EMT, apoptosis [205]

MIR22HG TET3 miR-629-5p tumor suppressor proliferation, apoptosis [206]

NR_027471 TP53INP1 miR-8055 tumor suppressor proliferation, migration, invasion, EMT, apoptosis, 
tuomor growth

[207]

NR_136400 TUSC5 miR-8081 tumor suppressor proliferation, migration, invasion, EMT, apoptosis, 
tuomor growth

[208]

SNHG22 NKIRAS2 miR-4492 tumor suppressor proliferation, migration, invasion, EMT, tuomor growth [209]
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the SNHGs family, i.e. SNHG12, SNHG15 and SNHG16 
(Table 1). In addition, different members of the family are 
also involved in chemoresistance (Table 3).

MALAT1 (Metastasis associated lung adenocarci-
noma transcript 1) is a well-known oncogenic lncRNA 
that is upregulated in several types of tumors, including 
lung, breast, cervical, and nasopharyngeal cancers [353]. 
Other studies also support its upregulation in OS tissues 
and cells, correlation with a poor prognosis and an onco-
genic role in the initiation and progression of osteosar-
coma, mainly performed by sponging specific miRNAs, 
as detailed below. In 2016, Luo W. et  al. showed that 
knockdown of MALAT1 in osteosarcoma cells inhibited 
cell proliferation. This effect was attributed to the abil-
ity of MALAT1 to sponge miR-376a thus upregulating 
TGFA (Transforming Growth Factor Alpha). Since then, 
several reports confirmed the pro-proliferative activity 
of MALAT1 toward osteosarcoma cells and showed con-
comitant inhibition of apoptosis and induction of migra-
tion (Table 1). In particular, MALAT1 shares miR-144-3p 
binding sites with ROCK1 and ROCK2, two small G pro-
teins, belonging to the Rho family, regulating cytoskeletal 
activities and pericellular matrix degradation involved 
in cell movement, proliferation and migration/invasion; 
indeed, the ceRNET MALAT1/miR-144-3p/ROCK1/2 is 
a molecular mechanism contributing to the ability of the 
lncRNA to promote tumor growth and lung metastasis, 
as demonstrated in  vivo [125]. The oncogenic power of 
MALAT1 was also demonstrated in vivo by other ceRNA 
mechanisms involving the upregulation of histone dea-
cetylase HDAC4 and the cyclin D1 via miR-140-5p and 
miR-34a, respectively [126, 130]. Worth of note, in 2021 
Li F. et al. pointed out that MALAT1 may be released to 
osteosarcoma cells by surrounding cells. In particular, 
Bone Marrow Mesenchymal Stem Cells-Derived Extra-
cellular Vesicles (BMSC-EVs) were found able to promote 
proliferation, invasion and migration of osteosarcoma 
cells via the MALAT1/miR-143/NRSN2/Wnt/beta-
catenin axis both in vitro and in vivo, as detailed in a next 
section.

The lncRNA TUG1 (Taurine upregulated 1) is abnor-
mally expressed in many cancer types and reported as 

an oncogene promoting cell proliferation, glycolysis, 
metastasis, angiogenesis and chemoradioresistance 
[354]. Consistently, TUG1 has been found upregu-
lated in OS tissues and cells, and highly correlated with 
clinical stage, metastasis, and poor prognosis; through 
its ceRNA activity, it is able to increase the expression 
of different targets, thus promoting cell proliferation, 
migration, invasion, tumor growth and metastasis, as 
consistently demonstrated in  vitro and in  vivo [183–
185]. TUG1 is also a relevant mediator of crosstalk 
between cancer-associated fibroblasts and OS cells in 
TME to promote invasion and distant metastasis, as 
detailed in a next section [188]. Different molecular 
pathways are triggered by TUG1 via miRNAs-sponging, 
such as the Wnt/beta-catenin activation and chromatin 
remodeling by increasing the expression of miR-144-3p 
target, EZH2, an H3K27me3 methyltransferase able to 
epigenetically silence different tumor suppressor genes 
[184]. In addition, TUG1 increased expression is able 
to turn the transcriptome of OS cells, up-regulating the 
transcription factors POU2F1, FOXA1, and HIF-1alfa, 
by sponging their targeting miRNAs, i.e. miR-9-5p, miR-
212-3p, miR-143-5p, respectively, thus deeply contribut-
ing to OS progression [183, 186, 188].

KCNQ1OT1 (KCNQ1 Opposite Strand/Antisense 
Transcript 1) is a lncRNA transcribed in the antisense 
direction to the KCNQ1 gene, in the chromosomal 
region 11p15.5 containing two clusters of imprinted 
genes; KCNQ1OT1 is exclusively expressed from the 
paternal allele, however it is abnormally expressed from 
both chromosomes in most patients with the imprinting 
disorder of Beckwith-Wiedemann syndrome, and in mul-
tiple types of cancers (https:// www. genec ards. org) [355]. 
In particular, KCNQ1OT1 has been widely reported to 
be a cancer promoter in various types of tumors, such as 
non-small cell lung carcinoma, colorectal cancer, tongue 
cancer, and breast cancer [356–359]. Recently, it has been 
reported as a powerful oncogene also in OS, contribut-
ing to cell proliferation, migration, invasion, and tumor 
growth and correlating with a worse prognosis [80–83]. 
Its overexpression has a deep impact on the transcrip-
tome of OS cells, since it is able to sponge miR-3666 and 

Table 1 (continued)

Competing Endogenous 
RNAs

lncRNA mRNA Shared miRNA Effect Role References

TUSC7 RASSF6 miR-181a tumor suppressor proliferation, migration, invasion, apoptosis, tuomor 
growth

[210]

TUSC8 EHd2 miR-197-3p tumor suppressor proliferation, migration, invasion, EMT, apoptosis [211]

XIST PDCD4 miR-21-5p tumor suppressor proliferation, migration, invasion, apoptosis, tuomor 
growth

[212]

https://www.genecards.org
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Table 2 Oncogenic and tumor suppressive ceRNETs involving circRNAs

Competing Endogenous RNAs

circRNA mRNA Shared miRNA Effect Role References

circ_0000004 PLOD2 miR-1303 oncogenic migration, metastasis [213]

circ_0000073 FADS2 miR-1184 oncogenic lipid metabolism [214]

circ_0000253 SP1 miR-1236-3p oncogenic proliferation, apoptosis [215]

circ_0000282 XIAP miR-192 oncogenic proliferation, apoptosis [216]

circ_0000285 IGFBP3 miR-409-3p oncogenic proliferation, migration, invasion, apoptosis, 
tumor growth

[217]

circ_0000285 TGFB2 miRNA-599 oncogenic proliferation, migration [218]

circ_0000376 HK2/LDHA miR-577 oncogenic proliferation, invasion, apoptosis, tumor growth, 
glycolysis

[219]

circ_0000376 BCL2 miR-432-5p oncogenic proliferation, migration, invasion, tumor growth [220]

circ_0000527 ARL2 miR-646 oncogenic proliferation, cell cycle, inflammatory mediators’ 
secretion

[221]

circ_0001721 MAPK7 miR-372-3p oncogenic proliferation, migration, invasion, EMT; glycolysis [222]

circ_0001722 RUNX2 miR-204-5p oncogenic proliferation, invasion, tumor growth [223]

circ_0001785 HOXB2 miR-1200 oncogenic proliferation, apoptosis, tumor growth [224]

circ_0002052 STX6 miR-382 oncogenic proliferation, migration, invasion [225]

circ_0002137 IGF1R miR-433-3p oncogenic proliferation, invasion, metastasis, tumor growth [226]

circ_0003074 KPNA4 miR-516b-5p oncogenic proliferation, migration, invasion, apoptosis, 
tumor growth

[227]

circ_0003732 CCNA2 miR-545 oncogenic proliferation [228]

circ_0003732 CPEB1 miR-377-3p oncogenic cell proliferation, migration, invasion, tumor 
growth

[229]

circ_0003998 KLF10 miR-197-3p oncogenic proliferation, invasion [230]

circ_0005721 TEP1 miR-16-5p oncogenic proliferation, invasion, apoptosis [231]

circ_0005909 HGMA1 miR-338-3p oncogenic proliferation [232]

circ_0005909 HMGB1 miR-936 oncogenic colony formation, migration, invasion, EMT, 
tumor growth

[233]

circ_0007031 HOXB6 miR-196a-5p oncogenic proliferation, migration, tumor growth, cytokine 
modulation, stemness

[234]

circ_0007534 SOX5 miR-219a-5p oncogenic proliferation, colony formation, migration, inva-
sion, tumor growth

[235]

circ_0009910 IL6R miR-449a oncogenic proliferation, cell cycle, apoptosis [236]

circ_0010220 STX6 miR-198 oncogenic proliferation, migration, invasion, cell cycle, 
apoptosis, tumor growth

[237]

circ_0010220 CDCA4 miR-503-5p oncogenic proliferation, migration, invasion, cell cycle, 
apoptosis, tumor growth

[238]

circ_001350 CNOT7 miR-578 oncogenic proliferation, migration, invasion [239]

circ_001422 FGF2 miR-195-5p oncogenic proliferation, migration, invasion, tumor growth [240]

circ_0016347 KCNH1 miR-1225-3p oncogenic proliferation, migration, invasion; glycolysis [241]

circ_0016347 caspase-1 miR-214-3p oncogenic proliferation, invasion, metastasis, tumor growth [242]

circ_0020378 MAPK1 miR-556-5p oncogenic proliferation, migration, tumor growth [243]

circ_0028171 IKBKB miR-218-5p oncogenic proliferation, migration, invasion, tumor growth [244]

circ_0032463 LEF1 miR-498 oncogenic proliferation, migration, apoptosis [245]

circ_0032463 PNN miR-330-3p oncogenic proliferation, invasion, apoptosis [246]

circ_0051079 MAFB miR-1286 oncogenic proliferation, migration, invasion, tumor growth [247]

circ_0051079 TRIM66 miR-625-5p oncogenic proliferation, migration, invasion, angiogenesis, 
apoptosis

[248]

circ_0056285 TRIM44 miR-1244 oncogenic proliferation, apoptosis, tumor growth; glycolysis [249]

circ_0078767 CDK14 miR-330-3p oncogenic proliferation, migration, invasion, tumor growth [250]

circ_0084582 JAG1 miR-485-3p oncogenic proliferation, migration, invasion, angiogenesis [251]

circ_0096041 LIN28A miR-556-5p oncogenic proliferation, migration, invasion, tumor growth [252]
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Table 2 (continued)

Competing Endogenous RNAs

circRNA mRNA Shared miRNA Effect Role References

circ_0102049 MDM2 miR-1304-5p oncogenic proliferation, migration, invasion, apoptosis, 
tumor growth

[253]

circ_0136666 CEP55 miR-1244 oncogenic proliferation, migration, invasion, tumor growth; 
glycolysis

[254]

circ_03955 MTDH miR-3662 oncogenic proliferation, migration, apoptosis, EMT, tumor 
growth

[255]

circABCC1 HDAC4 miR-591 oncogenic proliferation, migration, invasion, autophagy, 
apoptosis, tumor growth

[256]

circANKIB1 PAX3 miR-217 oncogenic proliferation, migration, invasion, apoptosis, 
tumor growth

[257]

circATRNL1 LDHA miR-409-3p oncogenic apoptosis, tumor growth; glycolysis [258]

circBLNK GPX4 miR-188-3p oncogenic proliferation, apoptosis, tumor growth [259]

circCCDC66 PTP1B miR-338-3p oncogenic proliferation, migration, invasion [260]

circCDK14 GAB1 miR-520a-3p oncogenic proliferation, migration, invasion, tumor growth [261]

circCDK14 E2F2 miR-198 oncogenic proliferation, migration, invasion, apoptosis, 
tumor growth; glycolysis

[262]

circCNST LDHA/PDK1 miR-578 oncogenic proliferation, migration, invasion, apoptosis, 
tumor growth; glycolysis

[263]

circCYP51A1 KLF12 miR-490-3p oncogenic proliferation, migration, invasion, glycolysis, 
hypoxia, tumor growth

[264]

circDOCK1 LEF1 miR-936 oncogenic proliferation, migration, invasion, angiogenesis, 
tumor growth

[265]

circEMB EGFR miR-3184-5p oncogenic proliferation, migration, apoptosis, tumor growth, 
metastasis

[266]

circECE1 RAB3D miR-588 oncogenic proliferation, migration, invasion, apoptosis, 
tumor growth

[267]

circEPSTI1 MCL1 miR-892b oncogenic proliferation, migration, invasion [268]

circFAM120B PTBP1 miR-1205 oncogenic proliferation, invasion, tumor growth [269]

circFAT1(e2) HK2 miR-181b oncogenic proliferation, migration [270]

circHIPK3 HDAC4 miR-637 oncogenic proliferation, migration, invasion [271]

circHIPK3 STAT3 miR-637 oncogenic proliferation, migration, invasion [272]

circKIF4A SLC7A11 miR-515-5p oncogenic proliferation, ferroptosis, in vivo metastasis [273]

circLRP6 HDAC4 and HMGB1 miR-141-3p oncogenic proliferation, migration, invasion [274]

circMGEA5 ZEB1 and Snail miR-153‐3p, miR‐8084 oncogenic migration, invasion, EMT, in vivo metastasis [275]

circMMP9 CHI3L1 miR-1265 oncogenic proliferation, migration, invasion [276]

circMYO10 RUVBL1 miR-370-3p oncogenic proliferation, migration, EMT, tumor growth, 
in vivo metastasis

[277]

circNRIP1 AKT3 miR-532-3p oncogenic proliferation, migration, invasion, tumor growth [278]

circPIP5K1A YAP miR-515-5p oncogenic proliferation, migration, invasion, apoptosis, 
cancer cell stemness, tumor growth

[279]

circPVT1 c-FLIP miR-205-5p oncogenic proliferation, migration, invasion, EMT [280]

circPVT1 CCNB1 miR-26b-5p oncogenic proliferation, migration, invasion, apoptosis, 
tumor growth, in vivo metastasis

[281]

circPVT1 FOXC2 miR-526b oncogenic migration, invasion [282]

circPVT1 HAVCR2 miR490-5p oncogenic proliferation, migration, invasion [283]

circRAB3IP TWIST1 miR-580-3p oncogenic proliferation, migration, invasion, tumor growth [284]

circRBMS3 EIF4B and YRDC miR-424 oncogenic proliferation, migration, invasion, tumor growth [285]

circRNF220 Survivin miR-330-5p oncogenic proliferation, migration, invasion, tumor growth [286]

circSIPA1L1 MAP3K9 miR-379-5p oncogenic proliferation, invasion [287]

circSRSF4 RAC1 miR-224 oncogenic proliferation, migration, invasion, tumor growth [288]

circTADA2A CREB3 miR-203a-3p oncogenic proliferation, migration, invasion, tumor growth [289]

circTNPO1 WNT5A miR-578 oncogenic proliferation, invasion, tumor growth [290]
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miR-154-3p, thus upregulating two members of Kruppel-
like family of transcription factors, KLF7 and KLF12, 
respectively, and indeed activating the Wnt/beta-catenin 
signaling [82, 83]. In addition, KCNQ1OT1 contributed 
to the Warburg effect by sponging miR-34c-5p and thus 
acting as a ceRNA for the mRNA encoding the key gly-
colytic enzyme aldolase A (ALDOA), thereby increasing 
its expression and contributing to glucose metabolism 
reprogramming [81].

Another lncRNA indicated as an oncogene in OS 
is LINC00662; it was found upregulated in OS tis-
sues and cells, and correlated with poor prognosis; 
through its ceRNA activity, LINC00662 is able to pro-
mote cell proliferation, migration, invasion and tumor 
growth [100–103]. In particular, by miRNAs-sponging 
LINC00662 can enhance the expression of the mam-
malian Notch receptor NOTCH2 and IP receptor type 
1 (ITPR1), and of a member of ETS family ELK1, thus 
eliciting signaling pathways reported to be involved in 
OS progression [100, 102, 103].

The lncRNA NEAT1 (Nuclear enriched abundant tran-
script 1) has been recognized as an important regulator of 
the expression of different genes, including some involved 

in cancer progression and as an activator of Wnt/beta-
catenin pathway in OS, similarly to that reported for 
non-small-cell lung carcinoma (NSCLC) [141, 360]. It is 
upregulated in OS tissues and cell lines and high NEAT1 
expression was associated with advanced clinical stage, 
distant metastasis, and poor overall survival of patients, 
consistent with data reported for breast cancer [141–143, 
361]. In OS, its ceRNA activity greatly contribute to the 
promotion of cell proliferation, migration, invasion, 
tumor growth and metastasis; in particular, it is able to 
competitively bind to miR‐186‐5p, miR-339‐5p, miR-
34a-5p, and miR-483, thus upregulating HIF‐1alfa, the 
cytokine TGF‐β1, HOXA13, and STAT3, as indicated in 
Table 1.

Similarly to NEAT1, the lncRNA DLX6-AS1 works as 
an oncogene in OS by triggering the Wnt signaling and 
augmenting stemness of OS cells through miR-129-5p/
DLK1 axis, as demonstrated by in vitro and in vivo exper-
iments [52]. Other studies consistently confirmed that 
the lncRNA is upregulated in OS tissues and cells, corre-
lates with poor patient survival, and mechanistically con-
tributes to OS hallmarks by the other ceRNETs reported 
in Table 1 [53, 54].

Table 2 (continued)

Competing Endogenous RNAs

circRNA mRNA Shared miRNA Effect Role References

circUBAP2 HMGB2 miR-637 oncogenic proliferation, migration, invasion, apoptosis, 
tumor growth

[291]

circUBAP2 YAP1 miR-641 oncogenic proliferation, invasion, EMT [292]

circUBAP2 HMGA2 miR-204-3p oncogenic proliferation, migration, invasion, apoptosis [293]

circXPO1 XPO1 miR-23a-3p, miR-23b-3p, 
miR-23c, and miR-
130a-5p

oncogenic proliferation, invasion, apoptosis [294]

circXPR1 DDX5 miR-214-5p oncogenic proliferation [295]

circ_0000658 IRF2 miR-1227 tumor suppressor proliferation, invasion, apoptosis, tumor growth, 
in vivo metastasis

[296]

circ_0002052 APC2 miR-1205 tumor suppressor proliferation, migration, invasion, apoptosis, 
tumor growth

[297]

circ_0008259 PDCD4 miR-21-5p tumor suppressor proliferation, migration, invasion, apoptosis [298]

circ_0008792 ZFP1 miR-711 tumor suppressor proliferation, migration, invasion, apoptosis, 
tumor growth

[299]

circ_0046264 SFRP1 miR-940 tumor suppressor proliferation, migration, invasion [300]

circ_0069117 PF4V1 miR-875-3p tumor suppressor proliferation, migration [301]

circ_0088212 APOA1 miR-520 tumor suppressor proliferation, migration, invasion, tumor growth [302]

circ_0102049 PLK2 miR-520 g-3p tumor suppressor proliferation, migration, invasion, apoptosis, 
tumor growth

[303]

circMTO1 KLF6 miR-630 oncogenic proliferation, migration, invasion, apoptosis [304]

circROCK1-E3/E4 PTEN miR-532-5p tumor suppressor proliferation, migration, tumor growth, in vivo 
metastasis

[305]

circVRK1 ZNF652 miR-337-3p tumor suppressor proliferation, migration, invasion, tumor growth [306]

circWWC3 PDE7B miR-421 tumor suppressor proliferation, migration, invasion, apoptosis, 
tumor growth

[307]
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Tumor suppressive ceRNA activity
A minority of lncRNAs involved in OS are reported as 
tumor suppressors through their ceRNA activity. One 
example is represented by GAS5, reported to play a 
tumor suppressive role in several cancers, associated 
with clinic-pathological traits and patient survival, and 

functionally involved in in cell proliferation, apoptosis, 
invasion, epithelial–mesenchymal transition (EMT), 
metastasis, and drug resistance, via multiple molecular 
mechanisms [362]. In OS tissues and cells GAS5 expres-
sion level was found significantly decreased in com-
parison to normal tissues and cells, as expected for a 

Table 3 ceRNETs contributing to drug response

Competing Endogenous RNAs Shared miRNA Drug resistance References

lncRNA mRNA

FGD5-AS1 WNT5A miR-154-5p doxorubicin [308]

GAS5 TP53INP1 miR- 26b-5p cisplatin [309]

HOTAIR STAT3 miR-106a-5p cisplatin [310]

IGF2-AS MSH6 miR-579-3p cisplatin [311]

LINC00161 IFIT2 miR-645 cisplatin [312]

LINC00210 GFRA1 miR-342-3p radiosensitivity [313]

LINC00641 MCL1 miR-320d cisplatin [314]

LINC01116 HMGA2 miR-424-5p doxorubicin [315]

MEG3 AKT2 miR-200b-3p Multi-drug [316]

MIR17HG SP1 miR-130a-3p cisplatin [317]

LUCAT1 ABCB1 miR-200c methotrexate [318]

OIP5-AS1 FOSL2 miR-377-3p cisplatin [319]

OIP5-AS1 PTN miR-137-3p doxorubicin [320]

OIP5‐AS1 FN1 miR‐200b‐3p doxorubicin [321]

PVT1 CCND1 miR-15a-5p/miR-15b-5p doxorubicin [322]

ROR ABCB1 miR-153-3p cisplatin [323]

SARCC Hexokinase 2 miR-143 cisplatin [324]

SNHG12 MCL1 miR-320a doxorubicin [325]

SNHG14 SLC7A11 miR-206 nutlin-3a [326]

SNHG15 GFRA1 miR-381-3p doxorubicin [327]

SNHG15 ZNF32 miR-335-3p cisplatin [328]

SNHG16 ATG4B miR-16 cisplatin [329]

Sox2OT-V7 ULK1, ATG4A, ATG5/ULK1 miR-142/miR-22 doxorubicin [330]

TTN-AS1 MBTD1 miR-134-5p cisplatin [331]

circ_0000006 BDNF miR-646 doxorubicin [332]

circ_0001258 GSTM2 miR-744-3p multi-drug [316]

circ_0003496 KLF12 miR-370 doxorubicin [333]

circ_0004674 FBN1 miR-342-3p doxorubicin [334]

circ_0004674 MCL1 miR-142-5p doxorubicin [335]

circ_0010220 IL-6 miR-574-3p doxorubicin [336]

circ_0081001 TGM2 miR-494-3p methotrexate [337]

circCHI3L1.2 LPAATβ miR-340-5p cisplatin [338]

circDOCK1 IGF1R miR-339-3p cisplatin [339]

circEMB GFR miR-3184-5p, methotrexate [266]

circITCH RASSF6 miR-524 doxorubicin [340]

circPRKAR1B FZD4 miR-361-3p cisplatin [341]

circPRDM2 EZH2 miR-760 doxorubicin [342]

circPVT1 KLF8 miR-24-3p multi-drug [343]

circPVT1 TRIAP1 miR-137 doxorubicin [344]

circSAMD4A KLF8 miR-218-5p doxorubicin [345]
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tumor suppressor gene. Furthermore, its overexpression 
suppresses OS cell proliferation, migration, and inva-
sion in vitro; vice versa, miR-663a is highly expressed in 
osteosarcoma and promotes cell proliferation and migra-
tion by down-regulating its targets, MYL9 and RHOB 
[201, 202]. Gas5 and miR-663 are functionally linked, 
since Gas5 is able to sponge the miRNA: when Gas5 is 
down-regulated, the entire ceRNET is derailed due to the 
increased level of the miRNA [201, 202, 362].

Another lncRNA downregulated in OS tissues and cell 
lines compared with the normal ones is TUSC7. Consist-
ently, its experimental overexpression was able to inhibit 
OS cell proliferation, migration and invasion, and inhibit 

tumor growth in  vivo. Mechanistically, TUSC7 exert its 
role by sponging miR-181a, resulting in an increased 
level of the miRNA target RASSF6 [210]. Similar results 
have been reported for another lncRNA, TUSC8, acting 
through miR-197-3p/EHD2 axis, overall pointing to pos-
sible new therapeutic approaches based on the enhance-
ment of the tumor suppressive lncRNAs [211].

In this regard, the tumor suppressive lncRNA 
LINC00261 has been found to potentiate the aptanib 
drug effectiveness [203]. Apatinib has been recently 
identified as a potential treatment option for OS; its 
mechanism of action is well characterized, since it is a 
high-affinity selective inhibitor of VEGFR2; however, it is 

Fig. 1 Competing endogenous RNA networks (ceRNET) relying on lncRNAs, circRNAs, miRNAs and mRNAs in osteosarcoma. Coding 
and non-coding RNAs can compete for binding to a shared pool of miRNAs. Optimal ceRNA crosstalk occurs in a physiological homeostasis 
condition; however, an aberrant expression of any circuit component can derail the network, thus contributing to the OS onset and progression 
by repressing tumor suppressive activities (left side) or prompting oncogenic activities (right side). The up and down arrows indicate increased 
or decreased expression, respectively. Some representative examples discussed in the text are reported in the figure. Figure created with BioRender.
com
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also known that different drugs can even engage ncRNAs 
contributing to their effectiveness [363, 364]. This is the 
case of apatinib, since it was demonstrated that the drug 
is able to increase the expression of LINC00261, that in 
turn can sponge miR-620, thus up-regulating the miRNA 
target PTEN, a well-known oncosuppressor; importantly, 
the activation of LINC00261/miR-620/PTEN ceRNET by 
Apatinib has been demonstrated also in vivo, suggesting 
LINC00261 as a promising target to improve the efficacy 
of Apatinib.

CeRNETs involving circRNAs
CircRNAs are aberrantly expressed in almost all types 
of cancer [365, 366], including OS [367]. In this section, 
we discuss how different oncogenic circRNAs contrib-
ute to the OS onset and progression through the ceRNA 
mechanism, focusing the attention on those involved in 
cell invasiveness, Warburg effect, PI3K/AKT/mTOR and 
Wnt/beta-catenin signaling pathways, and chromatin 
remodeling, the same biological process and molecular 
pathways highlighted in the previous section. Then, we 
examine ceRNETs involving circRNAs functioning as 
tumor suppressors to hinder malignant growth (Fig.  1). 
The extensive list, their molecular mechanisms and phe-
notypic effect is reported in Table 2.

Oncogenic ceRNA activity
As described above, cell invasiveness plays a pivotal 
role in OS progression. Interestingly, several circRNAs 
have been found to be involved in the modulation of 
OS invasiveness. For instance, Yan and colleagues found 
that circPVT1 is upregulated in OS tissues and is more 
commonly overexpressed in samples with lung metasta-
sis. Moreover, they demonstrated that downregulation 
of circPVT1 can reduce cell migration and invasion via 
regulating of miR-526b/FOXC2 axis. Likewise, another 
study demonstrated that circPVT1 facilitates OS invasion 
and metastasis via enhancing cell epithelial–mesenchy-
mal transition (EMT). At the molecular level, circPVT1 
may enhance the invasion and metastasis by releas-
ing c-FLIP through the interaction with miR-205-5p, 
highlighting a new ceRNA network [280]. Furthermore, 
knockdown of circPVT1 can notably inhibit the severity 
of tumor metastasis in lung tissues of mice modulating 
the 26b-5p/CCNB1 axis [281]. Consistently, circPVT1 
was also found upregulated in several cancers, such as 
bladder cancer, oral squamous cell carcinoma, and small 
cell lung cancer, highlighting its relevance in cancer pro-
gression. [368–370]. Another circRNA involved in the 
regulation of metastasis in different tumor types, includ-
ing OS, is circUBAP2 [371–374]. Upregulation of circU-
BAP2 is found in OS tissues and is associated with short 
survival of patients, TNM stage and distant metastasis. 

In addition, circUBAP2 knockdown can significantly 
inhibit OS cell proliferation, migration and invasion 
in vitro by sponging miR-204 -3p to upregulate HMGA2. 
Additionally, circUBAP2 can regulate cell invasion and 
tumor growth in vivo by regulating the miR-637/HMGB2 
axis [291]. Also, CircUBAP2 knockdown increased the 
expression of E-cadherin while it downregulated Vimen-
tin, two markers of EMT, thus inhibiting cell invasion. 
Wu and colleagues demonstrated that circUBAP2 can 
exert that effect through upregulating the expression 
of YAP1 by targeting miR-641 in OS cells [292]. Yap1 is a 
key element in the Hippo signaling pathway that plays an 
important role in the control of cell proliferation, EMT 
and metastasis [375]. In this regard, the circPIP5K1A 
can contribute to cancer cell stemness by targeting 
miR-515-5p/YAP axis. Shi and colleagues demonstrated 
that circPIP5K1A knockdown, or miR-515-5p mimic, 
repressed the protein levels of ALDH1 and Nanog, while 
miR-515-5p inhibitor or YAP overexpression can reverse 
this effect [279]. A similar role in promoting cancer pro-
gression and metastasis has been found for other tumor 
types. For instance, circPIP5K1A may function as a miR-
600 sponge to facilitate non-small cell lung cancer pro-
liferation and metastasis by promoting HIF-1α [376]. 
Moreover, circPIP5K1A can regulate glioma progression 
by modulating the miR-515-5p/TCF12/PI3K/AKT axis 
[377]. In gastric cancer, circPIP5K1A can regulate PI3K/
AKT pathway through miR-671-5p/KRT80 axis [378]. 
Those cross-cancer insights highlight the strong and gen-
eral involvement of ncRNA function in cancer.

As discussed in the previous section, cancer cells can 
enhance their metabolism for rapid growth, and one of 
the most common metabolic changes is enhanced glyco-
lysis, the “Warburg effect”. Several studies indicated that 
hyperactive glycolysis is the main metabolic alteration in 
OS and it is involved in cell growth, invasion, and treat-
ment effectiveness [379]. Interestingly, circRNAs have 
been also described to be involved in the regulation of 
glucose metabolism in OS through the ceRNA mecha-
nism, as well as lncRNAs. For instance, it has been dem-
onstrated that circATRNL1 overexpression promoted 
glucose uptake and lactate production thus accelerat-
ing the Warburg effect. Mechanistically, circATRNL1 
can sponge mir-409-3p to upregulate the expression 
level of LDHA, a key enzyme in the glycolytic pathway 
[258]. Likewise, Hu and colleagues demonstrated that 
circCNST knockdown can decrease glucose consump-
tion, lactate production, and ATP/ADP ratio downregu-
lating LDHA through the circCNST-miR578-LDHA/
PDK1 ceRNA regulatory network [263]. Another cir-
cRNA involved in glucose metabolism is circ_0056285 
which can regulate the expression of TRIM44 by spong-
ing miR-1244, which in turn can regulate the expression 
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of key enzymes such as HK2 and LDHA [249]. Moreover, 
the circCYP51A1, that was upregulated under hypoxia 
conditions, can markedly induce the lactate production 
and glucose consumption by sponging miR-490-3p and 
regulating KLF12. Interestingly, the knockdown of circ-
CYP51A1 in xenograft mice models can reduce tumor 
growth by downregulating KLF12 and consequently 
reducing glycolysis associated markers, such as GLUT1, 
HK2 and LDHA [264].

Alteration of different molecular pathways is known 
to be involved in OS onset and progression. Among 
them, the PI3K/AKT/mTOR signaling pathway has 
been demonstrated to have the ability to enhance the 
cell cycle, inhibit apoptosis, and promote cellular pro-
liferation, invasion, and metastasis in OS [380]. Inter-
estingly, several studies indicate that circRNAs may 
play an important role in the regulation of the PI3K/
AKT/mTOR pathway. In this regard, circ_001422, that 
is found to be upregulated in OS tissues and correlated 
with clinical features, can promote proliferation and 
metastasis, in  vitro and in  vivo, via the miR-195-5p/
FGF2/PI3K/Akt axis [240]. Shi and colleagues demon-
strated that circNRIP1 derived from BMSC-EVs can 
upregulate AKT3 expression by competitively binding 
to miR-532-3p, thus promoting proliferation and tumor 
growth activating the PI3K/AKT/mTOR pathway. This 
pathway is also triggered by circNRIP1 to promote gas-
tric cancer progression via miR-149-5p sponging [381]. 
Moreover, circ_0005909 may increase viability and inva-
sion of OS upregulating expression of HGMA1 through 
sponging miR-338-3p, which activated PI3K-Akt signal-
ing pathway [232].

Another pathway playing a crucial role in OS develop-
ment is the Wnt/β-catenin signaling pathway. The Wnt/
β-catenin pathway is a well-known oncogenic pathway 
responsible for cell fate determination, stem cell replica-
tion, survival, differentiation, cell polarity, and osteogenic 
differentiation [380, 382]. In this regard, circ_001350, 
that is upregulated in OS tissues, is able to activate the 
Wnt pathway by inducing the β-catenin protein expres-
sion and its downstream effector cyclin D1, and c-myc. 
Xu and colleagues demonstrated that circ_001350 can 
regulate the Wnt pathway and the malignant progression 
by regulating the miR-578/CNOT7 axis [239]. Moreo-
ver, circMYO10 was found to regulate the Wnt signal-
ing to induce proliferation and EMT in OS cells. At the 
molecular level, circMYO10 can sponge miR-370-3p and 
upregulate RUVBL1 expression to promote the interac-
tion between RUVBL1 and β-catenin/LEF1 complex and 
thus promoting Wnt/β-catenin signaling. Interestingly, 
the authors demonstrated that circMYO10/miR-370-3p/
RUVBL1 axis enhanced the transcription activity of 
β-catenin/LEF1 via histone H4K16 acetylation [277].

Histone modification is a dynamic process that alters 
the structure of chromatin, leading to the expression or 
repression of local genes. In cancer, the normal balance 
between active and repressive histone modification mod-
ifies the expression of oncogenes and tumor suppressor 
genes, leading to tumorigenesis. Recently, some evidence 
highlighted that deregulation of genes involved in these 
processes has been associated with OS tumorigenesis, 
progression and chemoresistance [383]. circLRP6, that 
is upregulated in OS and is associated with poor prog-
nosis, was found to enhance the expression of histone 
deacetylase 4 (HDAC4) in OS cells via sponging miR-
141-3p promoting cell proliferation, invasion [274]. The 
relevance of histone modification in OS was also demon-
strated by Wang and colleagues showing that circABCC1 
knockdown can stop the malignant progression of OS by 
attenuating HDAC4 expression through sponging miR-
591, highlighting a new ceRNA network [256].

Tumor suppressive ceRNA activity
Although most of the annotated circRNAs are reported 
to be oncogenic, different circRNAs have been found to 
act as tumor suppressors in OS.

For instance, circ_0046264 may exert a tumor-sup-
pressive role in OS. Low expression of circ_0046264 was 
found in OS tissues and correlated with larger tumor. At 
cellular level, circ_0046264 can inhibit the proliferation, 
migration and invasion of OS cells. Du and colleagues, 
demonstrated that SFRP1, that is known to inhibit the 
proliferation, migration and invasion of OS cells by 
inhibiting Wnt/β-catenin signaling [384], is upregulated 
in OS cells overexpressing circ_0046264. Mechanisti-
cally, circ_0046264 can upregulate SFRP1 expression by 
sponging miR-940 [300]. The tumor-suppressive role 
of circ_0046264 was also demonstrated in lung cancer 
where it can inhibit viability, invasion, and induce apop-
tosis by upregulating BRCA2 expression through down-
regulating miR-1245 [385].

It is well recognized that abnormal activation of the 
AKT/mTOR signaling pathway is one pivotal cause 
of OS development and progression [380]. PF4V1 is a 
negative regulator of the AKT signaling pathway and 
negatively regulates OS progression [386]. Interest-
ingly, circ_0069117 might promote the expression of 
PF4V1 by sponging miR-875-3p, thus regulating the 
progress of OS [301].

Also, circ_0000658 was found to inhibit cell prolif-
eration and invasion in vitro and impede tumor growth 
in vivo. At the molecular level, circ_0000658 can exert a 
tumor suppressive effect by targeting the miR-1227/IRF2 
axis in OS cells [296].

Moreover, circ_0088212, which is poorly expressed in 
osteosarcoma tissues and cells, may function as a tumor 
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suppressor by inhibiting cell proliferation and invasion 
and limiting tumorigenesis in  vivo through miR-520  h/
APOA1 axis [302]. Likewise, circ_0102049 could sup-
press the progression of OS by activating PLK2 by target-
ing miR-520 g-3e [303].

CircROCK1-E3/E4, a circular RNA derived from exons 
3 and 4 of the ROCK1 gene, was found downregulated 
in OS patients with lymph node metastasis and distant 
metastasis. Liu and colleagues demonstrated that expres-
sion of circROCK1-E3/E4 was partially regulated by 
QKI, a well-known RNA Binding Protein (RBP) belong-
ing to the STAR family of KH domain-containing RBPs. 
Moreover, they demonstrated that overexpression of 
circROCK1-E3/E4 may inhibit cell proliferation and lung 
metastasis in  vivo by regulating miR-532-5p/PTEN axis 
in osteosarcoma [305].

Mir-21 is a well-known oncomiR also for OS [16, 17]. 
Interestingly, circ_0008259, which is downregulated 
in OS, can increase PDCD4 expression via adsorb-
ing miR-21 and repressing the OS progression, thus 
depicting a new ceRNET involved in tumor suppres-
sive activity [298].

CeRNETs in chemoresistance
Osteosarcoma treatment typically involves surgery and 
chemotherapy; radiation therapy might be an option 
in certain situations. In the 1970s, amputation or limb-
sparing surgery represented the standard OS treat-
ment, yielding a 5-year survival rate of only 20%; then, 
chemotherapy agents elevated the post-treatment 5-year 
OS survival rate. The current treatment strategy usu-
ally consists of several weeks of neoadjuvant preopera-
tive chemotherapy followed by the surgical removal of 
primary tumor, and also several weeks of postoperative 
adjuvant chemotherapy [387]. Indeed, the 5-year sur-
vival rate has increased to 70%-80% by the wide resection 
surgery combined with adjuvant chemotherapy. How-
ever, long-term chemotherapy poses the risk that the 
patient’s cells develop resistance to the chemotherapeutic 
drug, even to combinations of different ones, culminat-
ing in OS recurrence, distant metastasis, and treatment 
failure. In fact, the 5-year survival rate of patients who 
experience chemoresistance decreased to less than 20%. 
The present standard treatment chemotherapy mainly 
consists in the combined administration of high dose 
methotrexate, doxorubicin and cisplatin (MAP) [1, 387, 
388]. Methotrexate is a folate analogue designed to 
inhibit dihydrofolate reductase; reduced folate (tetrahy-
drofolate) is the proximal single carbon donor in several 
reactions involved in the de novo synthetic pathway for 
purines and pyrimidines, formation of polyamines, and 
transmethylation of phospholipids and proteins; as con-
sequence of methotrexate treatment, the malignant cells 

become starved for the purine and pyrimidine precur-
sors of DNA and RNA and unable to synthesize DNA 
and RNA and proliferate [389]. Doxorubicin acts in the 
cancer cell according to two proposed mechanisms: 
by intercalating into DNA and disrupting topoisomerase-
II-mediated DNA repair and by generating free radicals 
with consequent damage to cellular membranes, DNA 
and proteins [390]. Cisplatin mode of action has been 
linked to its ability to crosslink with the purine bases on 
the DNA, thus interfering with DNA repair mechanisms, 
causing DNA damage, and subsequently inducing apop-
tosis in cancer cells [391].

The effectiveness of chemotherapy in OS is mark-
edly impacted by chemoresistance. Presently, there exist 
no conventional methods to overcome chemotherapy 
resistance in malignancies without inducing adverse 
side effects. The knowledge of molecular mechanisms 
underlying drug and multidrugs resistance is essential to 
investigate potential strategies for reversing this process 
and avoid the high doses with severe side effects [392]. 
Numerous studies have linked OS chemotherapy resist-
ance to abnormal expression of different ncRNA biotypes 
(lncRNA, circRNA and miRNA) and it is now increas-
ingly clear that they can mechanistically contribute to 
OS chemoresistance. Also considering that single mecha-
nisms don’t fully explain chemotherapeutic resistance, 
but many factors can be responsible for drug resistance, 
the study of large-scale RNA regulatory networks can 
be useful to explore innovative RNA-based and RNA-
targeted therapy that surmount and/or prevent chemo-
therapy resistance, even in a perspective of personalized 
treatment. Table 3 reports validated networks contribut-
ing to chemoresistance.

Most of ceRNETs involving lncRNAs contribute to 
cisplatin resistance, whereas most of ceRNETs involving 
circRNAs contribute to doxorubicin resistance; indeed, 
there are also some examples of ceRNETs responsible for 
multidrug resistance.

An example of lncRNAs enhancing cisplatin resist-
ance is HOTAIR: in different OS cell lines it promoted 
the cisplatin resistance by regulating cell proliferation, 
invasion, and apoptosis via miR-106a-5p/STAT3 Axis 
[310]. HOTAIR seems to be particularly linked to cispl-
atin resistance, since it can induce that drug resistance 
also in other tumors, such as non-small cell lung can-
cer and nasopharyngeal carcinoma [393, 394]. OIP5-
AS1 contributes to cisplatin resistance via miR-377-3p/
FOSL2 axis [319], but also to doxorubicin resistance by 
different molecular axis, i.e. miR-137-3p/PTN [320] 
and miR-200b-3p/fibronect-1 axis [321]; the lncRNA 
is significantly upregulated in OS  chemo-resistant tis-
sues and cell lines and its knock-down reduced doxoru-
bicin  resistance  in vitro  and  in vivo [320]. In particular, 
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fibronectin-1, a glycoprotein related to cellular adhesion 
and migration processes, was demonstrated to be func-
tionally related to the oncogenic OIP5-AS1, because the 
lncRNA is able to sponge the shared miR-200b-3p; this 
mechanism could explain fibronectin-1 upregulation in 
the chemo-resistant OS cell lines and tissues and its rela-
tion to unfavorable prognosis [321]. Different members 
of lncRNA SNHGs family can drive osteosarcomagenesis 
through various ceRNETs, as shown in Table 1 and dis-
cussed in a previous section; they can also contribute to 
chemoresistance (Table 3). As an example, SNHG15 can 
contribute to both cisplatin and doxorubicin resistance 
through miR-335-3p/ZNF32 and miR-381-3p/GFRA1 
axes, respectively [327, 328]. Intriguingly, p53, very fre-
quently lost in OS, is able to transcriptionally repress 
SNHG15, thus depicting regulatory pathways wherein 
p53 dysfunction substantially increased SNHG15 expres-
sion, that in turn sponges specific miRNAs, thus down-
regulating their oncogenic targets [328]. Aberrant 
expression of SNHG15 can also contribute to the resist-
ance of lung adenocarcinoma and breast cancer cells to 
gefitinib and cisplatin, respectively, highlighting its gen-
eral relevance in drug resistance [395, 396].

Whole-transcriptome sequencing of three paired multi-
drug chemoresistant and chemosensitive OS cell lines 
and exploitation of different interaction predictive tools 
have highlighted how extensive and relevant such regu-
latory networks are, placing in functional relation unex-
pected lncRNAs or circRNAs with mRNAs via miRNAs 
[316]. Then, luciferase, RIP and RNA-pull down assays 
were used to validate different ceRNETs, such as that 
involving circ_0001258 through miR-744-3p/GSTM2 
axis or another one involving circ_0004674 through miR-
142-5p/MCL1 axis [316, 335]. Circ_0004674 promoted 
the DXR resistance also through Wnt/β-catenin pathway 
via regulating the miR-342-3p/FBN1 axis [334]. Among 
circRNAs, circPVT1 also contributed to doxorubicin 
resistance, as demonstrated in  vitro and in  vivo; it con-
tributes to tumor growth; its silencing increased the drug 
sensitivity of osteosarcoma  in vivo; it has an increased 
expression in DXR-resistant osteosarcoma tissues and 
cells. TP53-regulated inhibitor of apoptosis 1 (TRIAP1), 
an apoptosis inhibitor, paralleled circPVT1 increased 
expression in OS and in fact, they are functionally linked 
through miR-137, since circPVT1 is able to sponge miR-
137, thus de-repressing TRIAP1 [344]. The role of PVT1 
in chemoresistance was also extended to cisplatin and 
methotrexate other than doxorubicin by demonstrating 
its ability to sponge miR-24-3p and thus up-regulating 
KLF8 [343].

Overall, those studies turn the spotlight on intricate 
RNA regulatory networks underlying chemotherapeu-
tic drug resistance mechanisms, inspiring new strategies 

based on management of such networks, e.g. by down-
regulating or overexpressing any network component 
functionally linked in the ceRNET, and possibly over-
come, revert and even prevent chemoresistance, pro-
spectively also in terms of precision medicine.

ceRNETs contributing to TME relevance
The tumor microenvironment (TME) plays a key role 
in OS onset and progression. TME is a mixture of can-
cer and non-cancer cells and their stroma, that can be 
categorized in two major categories of components: cel-
lular components, including different cell types, such as 
osteoblasts, osteoclasts, mesenchymal stem cells, can-
cer-associated fibroblasts (CAFs), endothelial cells, adi-
pocytes and immune cells, especially tumor-associated 
macrophages (TAMs); acellular components, such as the 
extracellular matrix (ECM), cytokines, growth factors 
and extracellular vesicles (EVs), with their bioactive cargo 
of proteins and different RNA biotypes [397].

Cells in the TME are in constant autocrine and parac-
rine communication, which contributes to tumor devel-
opment, progression, drug resistance and metastasis. 
The local microenvironment provides a fertile niche 
for tumor growth, wherein interaction between cancer 
and bone cells leads to an increase in OS cell prolifera-
tion and altered bone remodeling. In particular, a crucial 
role is played by TAMs which represent the most abun-
dant cells of TME and are involved in tumor growth and 
progression [398]. Macrophages exist in two different 
phenotypes: the classically activated macrophages M1 
and the alternatively activated macrophages M2 [7]. M1 
macrophages exhibit pro-inflammatory and anti-cancer 
effects by releasing pro-inflammatory cytokines and 
inducible factors against pathogens; instead, M2 ones 
have anti-inflammatory, pro-tumoral and pro-angiogenic 
properties [7]. It has been reported that the prevalence 
of M2 phenotype in TME is generally associated with 
a poorer 5-year event free survival in patients. Surpris-
ingly, the presence of M2 macrophages in OS counteracts 
metastasis formation and increases the survival rate of 
high-grade OS patients [7, 399].

In addition, OS cells can produce EVs containing TGF-
beta that activate local mesenchymal stem cells, which in 
turn release EVs containing IL-6, facilitating tumor pro-
gression. Furthermore, cytokine-containing EVs prepare 
the lung metastatic niche to receive OS circulating tumor 
cells and, acting as the main messenger between OS cells 
and the pulmonary parenchyma, contributing to the local 
tumor development [3]. Exosomes, nano-sized extracel-
lular vesicles up to 100  nm in diameter, have a relevant 
cargo of miRNAs involved in cells crosstalk for physi-
ological homeostasis maintenance, but also contributing 
to progression of different cancer types [400]. By releasing 
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exosomes, tumor cells can reprogram their surroundings 
and shaping the TME into a tumor-permissive or tumor-
promoting environment [401]. As an example specifi-
cally for OS, OS-derived exosomal miR-21 regulates the 
tumor microenvironment by targeting specific molecules 
in tumor cells, endothelial cells, cancer-associated fibro-
blasts and immune cells [17]. Indeed, exosomal miRNAs, 
secreted in different body fluids, on one hand represent 
a gold mine for identifying new diagnostic biomarkers, 
on the other hand represent a therapeutic opportunity by 
engineering them to deliver beneficial molecules [402]. In 
fact, cell–cell communication mediated by extracellular 
RNA is becoming increasingly appreciated, so much so 
that a data repository, the exRNA Atlas, has been created 
by the NIH Extracellular RNA Communication Consor-
tium (https:// exrna- atlas. org/), representing a resource for 
translational studies for diagnostics and therapeutics [403].

In particular, normalizing the TME may have thera-
peutic relevance, however, the high genetic heterogeneity 
of OS makes the TME much more complex than that of 
other tumors, and thus, potential TME normalizing drugs 
should have multiple targets. In this regard, exploring the 
RNA networks may pave the way for innovative thera-
peutic strategies. In fact, different studies highlighted the 
role of miRNAs in the crosstalk between OS cells and the 
TME; taking into consideration that the miRNA binding 
sites can be envisioned as the letters of an “RNA code”, 
the knowledge of ceRNETs involved in the communica-
tion between OS cells and the surrounding TME may 
offer the opportunity to manipulate them for normaliz-
ing TME. The combination of TME-normalizing drugs, 
including those RNA-based, and chemotherapy may offer 
promise for innovative therapeutic approaches.

Recent evidence revealed that also lncRNAs can be 
abundant and stable in EVs [404]. The lncRNA CASC15 
was significantly upregulated in OS plasma exosomes 
as well as in OS tissues and cell lines (Table  1). Inter-
estingly, CASC15 knockdown can restrain the prolif-
eration, migration, and invasion of OS cells, and inhibit 
the growth of OS in xenograft models. Mechanistically, 
CASC15 is able to sponge miR-338-3p, thus up-regu-
lating its oncogenic target RAB14; rescue experiments 
verified that CASC15 can promote OS cell growth and 
metastasis by upregulating RAB14 expression [43].

The role of macrophages-derived exosomal lncR-
NAs in osteosarcoma development has been studied 
in  vitro by differentiating the human mononuclear cells 
THP-1 in tumor associated macrophages (TAMs) and 
then performing a high-throughput microarray assay 
to analyze the dysregulated lncRNAs and miRNAs in 
osteosarcoma cells co-cultured with macrophages-
derived exosomes. Then, functional analyses revealed 

that macrophages-derived exosomal lncRNA LIFR-AS1 
can be delivered to OS cells, and there its increased 
expression unbalance the ceRNET LIFR-AS1/miR-29a/
NFIA, with the consequent promotion of cell prolif-
eration, migration, invasion, and apoptosis inhibition 
[88] (Table  1). TAMs were also obtained by inducing 
CD14 + peripheral blood mononuclear cells (PBMCs); 
then, it was demonstrated that TAMs increased the 
lncRNA PURPL expression in OS cells, promoting cell 
proliferation, migration, invasion by miR-363/PDZD2 
axis; this same axis can also modulate TAM migration, 
highlighting a possible feedback crosstalk between TAMs 
and OS cells [155] (Table 1).

As a critical component of TME, bone marrow-
derived mesenchymal stem cells (BMSCs) have been 
demonstrated to modulate the cancer hallmarks. Li 
et al. demonstrated that BMSC-EVs facilitated prolifera-
tion, invasion and migration of osteosarcoma cells and 
promoted tumor growth in nude mice. In particular, 
BMSC can load MALAT-1 in EVs and deliver it to OS 
cells, potentially unbalancing all the ceRNETs mediated 
by the lncRNA. In particular, it has been demonstrated 
that BMSC-EVs-treated osteosarcoma cells showed 
increased MALAT1 and NRSN2 expressions, and acti-
vated Wnt/β-catenin pathway due to MALAT-1 spong-
ing activity versus miR-143 [131]. BMSCs are also able 
to deliver the lncRNA NORAD through EVs to OS cells; 
there, NORAD promoted OS cell proliferation and inva-
sion by sponging miR-30c-5p and thus increasing KLF10. 
Very importantly, these results were confirmed in  vivo, 
where BMSC-EV-NORAD was also able to promote lung 
metastasis of osteosarcoma [145]. Intriguingly, KLF10 
was also involved in another ceRNET, Circ-0003998/
miR-197-3p/KLF10, promoting OS cell proliferative and 
invasiveness [230].

Finally, cytokines produced by different cell types in 
TME can increase the expression of oncogenic ncRNAs, 
derailing their governed network. One example is repre-
sented by cancer-associated fibroblasts (CAFs)-derived 
TGF-beta, that is able to upregulate the expression of 
TUG1 in OS cells [188]. There, up-regulated TUG1 is 
able to sponge different miRNAs, thus increasing the 
expression of their oncogenic targets prompting cell pro-
liferation, migration, angiogenesis, tumor growth, and 
metastasis (Table 1).

Overall, molecular mechanisms underlying the cross-
talk among OS cells each other and the other compo-
nents of TME are much more complex than expected 
and relying also on RNA regulatory networks that can be 
unbalanced in each cell type component by the surround-
ings (Fig. 2). These features are challenging for the com-
prehension of OS progression and patients’ management, 

https://exrna-atlas.org/
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but can offer innovative therapeutic opportunities, also 
in the direction of precision oncology.

Conclusion and next challenges
OS is a very complex cancer: mesenchymal bone-form-
ing cells can undergo aberrant alterations at any stage 
of differentiation; vast genomic instability and multiple 
genomic aberrations characterize the majority of OS 
cases; different mutated genes have been identified. The 
heterogeneity of genetic drivers and of cell types contri-
bution to OS onset and progression, especially in TME, 
makes therapy and patients management particularly 
challenging. The deep understanding of OS biology and 
a unifying picture of molecular mechanisms could help 
to transform those challenges into opportunities. The 
ceRNET perspective may be a key to understand how 
different transcripts, coding and non-coding, are func-
tionally linked and talk each other using the microRNA 
binding sites as the letters of an “RNA language”; indeed, 
the unbalancing of the networks can drive OS onset, pro-
gression and even chemotherapeutic resistance.

The knowledge of those mechanisms could inspire 
innovative therapeutic approaches based on restoring 
the optimal ceRNA crosstalk for the homeostasis equilib-
rium, with a view to achieving drugs for multiple targets, 
required by OS heterogeneity. It is becoming increasingly 
clear that RNA molecules as therapeutic agents are more 
cost-effective and easier to develop than traditional ther-
apeutics based on small molecule chemicals or proteins, 
due to their structural/functional versatility allowing 
them to interact with DNA, other RNA biotypes and pro-
teins and thus broadening the range of druggable targets. 
Different FDA and EMA drugs approved in clinical care 
or in clinical development cover the five different catego-
ries of RNA therapeutics, i.e.: mRNAs, RNA encoding for 
proteins; antisense oligonucleotides (ASOs), small single-
stranded nucleic acids binding target RNA with perfect 
complementarity and thus inducing post-transcriptional 
gene silencing; small interfering RNAs (siRNAs), dou-
ble-stranded RNA causing degradation or translational 
block of target RNAs; miRNA mimic or inhibitor, respec-
tively small double-stranded RNA molecules boosting 

Fig. 2 ceRNETs contributing to tumor microenvironment. A continuous crosstalk occurs among osteosarcoma cells (OS cells), bone mesenchymal 
cells (BMCs), immune cells, especially tumor-associated macrophages (TAFs), cancer-associated fibroblasts (CAFs) through cytokines and vesicles, 
with their cargo of proteins and RNAs, that can unbalance the RNA regulatory networks in the recipient cells, thus contributing to OS progression. 
Examples discussed in the text are reported. Figure created with BioRender.com
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the miRNA level or small single-stranded RNA binding 
and suppressing the miRNA silencing activity; aptamers, 
RNA, DNA, or RNA/DNA hybrids that form second-
ary or tertiary structures binding to a target molecule, 
either suppressing or enhancing the pathway relying 
on that target [405, 406]. Even more RNA-targeted and 
RNA-based strategies have been found to have possible 
therapeutic potential, such as circRNA molecules car-
rying multiple binding sites for sponging oncomiRs and 
thus preventing their activity [407]. The basic concept is 
to restore the expression of beneficial molecules (such 
as a tumor suppressive miRNA) or silence the onco-
genic molecules. Intriguingly, among the RNA thera-
peutics developed for other diseases, some strategies 
useful for OS can be found. One example is represented 
by MRX34, a miRNA mimic for miR-34a, that gained the 
Phase I of clinical trial for melanoma and other cancer 
types (NCT01829971), but that could be useful also for 
OS, due to its oncosuppressive activity [408]. Although 
the FDA halted the clinical trial for immune-related 
adverse events, it could be worth to develop other miR-
34a mimic-based strategies, since its effectiveness has 
been also demonstrated by another miR-34a prodrug 
(chimeric recombinant tRNA fusion pre-miR-34a) that 
has anti-tumor activity just for OS, in a canine model 
[409]. Vice versa, RG-012 is a miR-21 inhibitor developed 
for Alport Syndrome (NCT03373786, Phase II), but that 
could be useful also for OS due to its oncogenic activity 
[410]. Other interesting approaches targeting lncRNAs, 
even for unrelated diseases and that could be inspir-
ing and beneficial also for OS, have been found for the 
oncogenic lncRNA MALAT1 and the tumor suppressor 
lncRNA GAS5 (Table 1); in the first case, multiple struc-
tural element lockers are being developed for disrupting 
a stabilizing triple helix structure at its 3’ end, resulting in 
MALAT1 destabilization and downregulation; in the sec-
ond case, the interaction element blocker, NP-C86 mol-
ecule, blocks the interaction with UPF1, which normally 
results in nonsense-mediated decay, thus increasing the 
stability and half-life of GAS5 [406, 411]. The next over-
coming challenges for successful RNA therapy are prob-
ably represented by stable and possibly specific delivery 
of the molecule through the extracellular and intracellu-
lar barriers; for those obstacles, various chemical modi-
fications and the engineering of delivery formulations 
have been explored to improve pharmacodynamics and 
pharmacokinetics. In particular, five nanocarriers deliv-
ery strategies have been developed, i.e. lipid nanoparti-
cles, cationic polymers, engineered exosomes, spherical 
nucleic acid nanoparticles, self-assembled DNA cage tet-
rahedron nanostructures, and they can keep the prom-
ise to deliver RNA molecules through binding to the cell 
membrane, endocytosis, endosome escape and release 

RNAs in the cytoplasm for translation or incorporation 
into appropriate ribonucleoproteins complexes [407].

Indeed, the combination of RNA-targeted and RNA-
based therapies with lower doses of current treatments 
could be exploited, also in an attempt to normalize TME, 
inhibit metastasis, prevent or overcome the chemore-
sistance, in the perspective of personalized therapeutic 
plans.

Finally, many RNAs discussed here and listed in the 
Tables are consistently reported as up-regulated or 
down-regulated in OS tissues and cells, and related to 
tumor stage, progression, prognosis and survival. It 
would be worth setting-up PCR arrays for simultane-
ously and systematically measuring, in large cohorts, 
the different candidates to find those ones useful as 
biomarkers for an early diagnosis, prognosis and moni-
toring therapy response. Different diagnostic panels are 
now commercially available for various diseases, includ-
ing cancer, and more than 150 clinical studies are regis-
tered at clinicaltrials.gov, wherein the value of a miRNA 
or miRNA signature is being investigated for a variety of 
clinical applications from early disease detection to treat-
ment response [412–414]. A clear trend in the recent lit-
erature and on-going clinical trials can be envisaged, that 
is the development of miRNA-based noninvasive detec-
tion assays using liquid biopsies (mainly blood or serum 
samples) as starting material to inform clinical decisions, 
whereas initial diagnostic/prognostic studies used tis-
sues from diagnostic biopsies or surgical procedures. 
Some challenges with circulating RNA-based diagnostic 
applications are related to their specificity, since certain 
miRNAs can be altered in other physiological (e.g., preg-
nancy) and pathological conditions and their diagnostic 
performance could be lower compared to other investi-
gational and clinically established biomarkers; however, 
combining the detection of different RNA molecules, 
for example involved in various ceRNETs consistently 
reported to be related to tumor stage, progression, prog-
nosis, survival and therapy response, may be the linchpin 
to overcome the problems. Those approaches will be use-
ful in the near future for defining new diagnostic tools 
and supporting precision oncology.

Overall, a multidisciplinary approach, based on deep 
knowledge crossing the field of both RNA and cancer 
biology, is increasingly required, especially when the sub-
ject of study is so complex and heterogenous such as OS 
and patients care.
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