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Abstract 

Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have 
illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), 
and hepatitis E (HEV). While previous investigations have uncovered these viruses’ ability to exploit cellular EV path‑
ways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved 
understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, 
have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in compre‑
hensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic 
viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance 
for the future research direction in this field. By comprehending the diverse range of hepatotropic virus‑associated 
EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights 
for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated 
incidence of liver cancer.
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Introduction
In the 1980s, scientific exploration of extracellular 
vesicles (EVs) began, initially focusing on reticulocyte 
maturation, which revealed EVs containing transferrin 

receptors were crucial for modulating reticulocyte mat-
uration [1]. Subsequently, these EVs were identified as 
“exosomes”, originating from fusion of multivesicular 
bodies (MVBs), displaying phospholipid-bilayer-enclosed 
spherical structures and carrying diverse cargos [2, 3].

Current understanding of EVs encompasses various 
subtypes released into body fluids like blood, urine, and 
cerebrospinal fluid, serving as rich reservoirs. These 
subtypes include exosomes (40–100 nm), microvesicles 
(MVs, 100–1000 nm), apoptotic bodies (ApoBDs, 50–500 
nm), and large oncosomes (1–10 μm) [4]. These particles 
mediate cell-to-cell communication, delivering func-
tional biomolecules critical for physiological functions 
and influencing recipient cells’ composition and func-
tion [5]. They also serve as markers for diagnosis, disease 
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progression, and therapeutic targeting, especially in liver 
diseases [6, 7].

Analyzing EVs poses challenges due to their size and 
heterogeneity [8, 9]. Specific methodologies and func-
tional/physical analyses like electron microscopy (EM) 
and nanoparticle tracking analysis (NTA) are recom-
mended. Size exclusion chromatography and ultracen-
trifugation remain vital tools in EV research.

Recent research on EVs has uncovered the exploita-
tion of cellular EV pathways by viruses, including Her-
pesviruses [10], as well as hepatotropic viruses [11–13], 
for replication and transmission. However, a gap exists 
in comprehensive reviews summarizing these latest find-
ings and outlining future perspectives. This review aims 
to consolidate insights into EV pathways used by hepato-
tropic viruses, prospecting future research.

Diverse biogenesis of EV subtypes
EVs are classified based on distinct biogenesis pathways 
[4] (Fig.  1). Four main types, including exosomes, MVs, 
large oncosomes, and ApoBDs, are identified. Among 
these, MVs and large oncosomes belong to the category 
of ectosomes. The formation of exosomes and ectosomes 
relies on local microdomains assembled in endocytic 
membranes for exosomes and in the plasma membrane 
for ectosomes [14]. These microdomains govern the 
accumulation of proteins and RNAs associated with their 
cytosolic surface, leading to membrane budding inward 
for exosome precursors, known as intraluminal vesicles 
(ILVs), and outward for ectosomes. These two types of 
vesicles differ in size, with exosomes typically ranging 
from 40 to 100 nm and ectosomes ranging from 100 to 
10,000 nm, as well as in the mechanisms of assembly, 
composition, and regulation of release, although there 
are some partially overlapped mechanisms [14]. Fur-
ther details of these vesicles are described in the section 
below.

Exosome biogenesis
Exosomes, the first discovered EV subtype [1], undergo 
a series of steps during biogenesis. The initiation step 
involves the formation of early endosomes, which occurs 
after the endocytosis or uptake of extracellular fluids, 
particles, and viruses through receptor- and Clathrin-
dependent or independent routes [15]. Importantly, if 
there are any plasma membrane receptors or membrane-
integrated proteins located within the region of the endo-
cytic membrane, their orientation changes from facing 
the outside of the cells to facing the endosomal lumen 
after endocytosis-mediated internalization (Fig. 1). These 
receptors can then either be recycled to the plasma 
membrane or retained within the endosome. Subse-
quently, ILVs are formed through inward budding of the 

endosomal membrane [16]. As ILVs form, the orientation 
of plasma membrane receptors or membrane-integrated 
proteins within the endosome undergoes another change, 
transitioning from facing the endosomal lumen to facing 
the outside of the ILV (Fig. 1).

The process of ILV formation is facilitated by endoso-
mal sorting complexes required for transport (ESCRT) 
complexes (ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-
III) and the ALG-interacting protein X (ALIX)-Syntenin 
complex (ESCRT-dependent pathway) [16]. In this 
pathway, ESCRT-0, along with disassembly and deubiq-
uitinating enzymes, as well as the ESCRT accessory pro-
tein Vacuolar Protein Sorting 4 (VPS4), cluster on the 
endosomal membrane at the cytoplasmic side to sort 
cargos [17]. The Hepatocyte Growth Factor-Regulated 
Tyrosine Kinase Substrate (HRS) subunit of ESCRT-0 
coordinates early steps in ILV biogenesis by binding to 
cargoes and recruiting clathrin to the early endosome 
[18]. Subsequently, ESCRT-I, ESCRT-II, and ESCRT-III 
are sequentially recruited to maturing endosomes [17]. 
ESCRT-II induces the formation of ESCRT-III filaments, 
which sever the nascent ILVs from the endosome mem-
brane [19]. Alternatively, the ESCRT-III complex can be 
recruited by ALIX, binding to lysobisphosphatidic acid 
on the endosomal membrane [20]. ESCRT-III may sense 
negative membrane curvature or promote membrane 
bending to drive fission [21, 22]. Notably, studies have 
shown that silencing ESCRT-0 proteins HRS or Signal 
Transducing Adaptor Molecule 1 (STAM1), or ESCRT-
I subunit Tumor Susceptibility 101 (TSG101), reduces 
small EV secretion, suggesting redundancy in ESCRT-
II and ESCRT-III components [23]. Variations on the 
ESCRT pathway, such as the syndecan–syntenin–ALIX 
pathway, are specifically compromised by knockdown of 
genes encoding ESCRT-I protein TSG101, ESCRT-II sub-
unit Vacuolar Protein Sorting 22 (VPS22), or ESCRT-III 
filament protein Charged Multivesicular Body Protein 4A 
(CHMP4) [24]. Syndecan-1 interacts with syntenin and 
ALIX on endosomes, thereby facilitating cargo sorting 
[24–26]. Thus, syndecan-1, syntenin, and ALIX play roles 
in cargo sorting during this process.

Currently, it is recognized that ILV production can 
also occur via ESCRT-independent processes involv-
ing lipid rafts [27, 28]. These lipid rafts, rich in choles-
terol and sphingolipids, are subject to the activity of the 
neutral sphingomyelinase (nSMase) family, membrane-
bound enzymes that convert sphingolipids, specifically 
sphingomyelin, to ceramide, a cone-shaped rigid lipid 
[29, 30]. Once converted, ceramide can form lipid raft 
microdomains, such as ceramide-enriched membrane 
domains, and initiate the formation and inward bud-
ding of ILVs into the endosome. Due to their unique 
cone-shaped structure, ceramides induce spontaneous 
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membrane invagination, facilitating ILV formation within 
endosomes and maintaining vesicle shape and structure 
[29–31].

Both ESCRT-dependent and nSMase/ceramide-trig-
gered exosomes can be inhibited by blockers such as 
Manumycin A, GW4869 and Altenusin [32]. Manumycin 

A functions as an inhibitor for both ESCRT and nSMase/
ceramide-dependent pathways [33, 34]. In the ESCRT-
dependent pathway, Manumycin A targets ESCRT-0 
proteins HRS, ALIX, and Rab27a, leading to the inhibi-
tion of exosome biogenesis and secretion. This inhibi-
tion primarily occurs through targeted suppression of 

Fig. 1 Biogenesis pathways of main extracellular vesicles. The four primary types of extracellular vesicles, exosomes (40–100 nm), microvesicles 
(100–1000 nm), large oncosomes (1–10 μm), and apoptotic bodies (50–500 nm), are illustrated. The initiation step of exosome formation 
involves the creation of early endosomes, which happens subsequent to the endocytosis or uptake of extracellular fluids, particles, and viruses 
through receptor‑ and Clathrin‑dependent or independent routes. Notably, if there are any plasma membrane receptors or membrane‑integrated 
proteins located within the region of the endocytic membrane, their orientation changes from facing the outside of the cells to facing 
the endosomal lumen after endocytosis‑mediated internalization. These receptors can then either be recycled to the plasma membrane 
or retained within the endosome. Exosomes are then formed through endosomal membrane inward budding to generate intraluminal vesicles 
(ILVs) via endosomal sorting complexes required for transport (ESCRT) complexes or an ESCRT‑independent route through lipid rafts, such 
as the membrane‑associated neutral sphingomyelinase (nSMase) and the ceramide‑triggered pathway. As ILVs form, the orientation of plasma 
membrane receptors or membrane‑integrated proteins within the endosome undergoes another change, transitioning from facing the endosomal 
lumen to facing the outside of the ILV. Both ESCRT‑dependent and nSMase/ceramide‑triggered exosomes can be inhibited by blockers such 
as Manumycin A, GW4869, and Altenusin. As ILVs accumulate within a single endosome during endosome maturation, the early endosome 
progresses into the late endosome, also referred to as the multivesicular bodies (MVBs). MVBs can proceed through two pathways: fusion 
with lysosomes for degradation, which involves the small GTPase Rab7, or secretion into the extracellular space as exosomes after MVB‑plasma 
membrane fusion, a process regulated by small GTPases such as Rab11, Rab27 and Rab35. Microvesicles and large oncosomes are categorized 
as ectosomes, originating as outward buds from the plasma membrane. Apoptotic bodies result from the orderly fragmentation of apoptotic cells, 
and the formation of apoptotic bodies involves key roles played by caspase‑3 substrates, including ROCK1, PANX1, and PLEXB2
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the Ras/Raf/ERK1/2 signaling pathway [34]. Addition-
ally, Manumycin A irreversibly inhibits nSMase, fur-
ther reducing exosome biogenesis and secretion [33]. 
GW4869 selectively inhibits nSMase2, while Altenusin 
selectively inhibits a broad range of nSMases [35, 36]. 
These inhibitors serve as valuable tools for investigating 
the physiological and pathological roles of exosomes.

As ILVs accumulate within a single endosome during 
endosome maturation, the early endosome progresses 
into the late endosome, also referred to as the MVB [37, 
38]. MVBs can proceed through two pathways: fusion 
with lysosomes for degradation, which involves the small 
GTPase Rab7 [39], or secretion into the extracellular 
space as exosomes following fusion of the MVB with the 
plasma membrane, a process regulated by small GTPases 
such as Rab11, Rab27 and Rab35 [37, 38].

Ectosome biogenesis
MVs and large oncosomes fall under ectosomes, dis-
tinct from exosomes, originating as outward buds from 
the plasma membrane. Small ectosomes like MVs share 
machinery with exosomes, involving tetraspanin pro-
teins, such as CD9, CD63, and CD81, which interacts 
with Ezrin, Radixin, Moesin (ERM) and Glu-Trp-Ile 
EWI Motif-Containing Protein (EWI) proteins connect-
ing to the actin cytoskeleton and impact plasma mem-
brane organization, signaling, cargo sorting, and vesicle 
budding [40]. For example, CD82 recruits the ERM pro-
tein ezrin to membrane blebs for release in ectosomes 
[41–43]. Protrusions like filopodia, cilia, and microvilli 
promote MV shedding after the formation of ectosomal 
blebs [44–46], e.g., Human immunodeficiency virus 1 
(HIV-1) particles assembling at filopodia tips, suggesting 
potential contributions to both retrovirion and ectosome 
biogenesis [47].

Large ectosome formation, on the other hand, is less 
understood than exosomes and small ectosomes. It 
remains uncertain whether early ESCRT machinery or 
features of exosome or small ectosome biogenesis are 
involved. Actin cytoskeleton rearrangements underlie 
plasma membrane blebbing and scission to release large 
EVs, with molecular reorganizations and alterations 
in proteins, lipids, and electrolyte levels implicated in 
the process [48]. Local disassembly of the cortical actin 
cytoskeleton, combined with actomyosin contractility, 
can promote plasma membrane blebbing and the subse-
quent formation of large ectosomes, especially in non-
apoptotic cancer cells transitioning to a more migratory 
and metastatic phenotype [49].

Both large and small EVs contain the lipid raft marker 
caveolin-1 (CAV1) [50], suggesting an association with or 
derivation from lipid raft-associated membrane domains. 
CAV1, known for regulating small EV biogenesis through 

cholesterol binding [51], may apply to ectosomes. How-
ever, systematic studies on cholesterol and lipid rafts in 
EV biogenesis are lacking, leaving the possibility that the 
ectosomal membrane is derived from the plasma mem-
brane and associated lipid rafts.

Apoptotic bodies (ApoBDs) biogenesis
The biogenesis of ApoBDs differs significantly from other 
EV subtypes, arising from the ordered fragmentation of 
apoptotic cells during programmed cell death. This pro-
cess progresses through several stages, including nuclear 
chromatin condensation, nuclear splitting, micronuclei 
appearance, membrane blebbing, and cellular content 
splitting into ApoBDs [52, 53]. Caspase-3 substrates, 
including Rho Associated Coiled-Coil Containing Pro-
tein Kinase 1 (ROCK1), Pannexin 1 (PANX1), and Plexin 
B2 (PLEXB2), play key roles in the formation of ApoBDs 
[52, 53]. ApoBDs can also form from protrusions known 
as apoptopodia [52, 53]. For instance, ROCK1 activates 
actomyosin contractility, leading to blebbing either 
directly from the plasma membrane or from the tips of 
surface protrusions called apoptopodia [52, 53]. Existing 
data suggest that membrane blebbing is, at least in part, 
mediated by actin-myosin interaction [54, 55]. In normal 
development, most ApoBDs are phagocytosed by mac-
rophages and cleared locally [56]. However, it has been 
reported that the process of apoptotic cell disassembly 
and the removal of apoptotic material by phagocytes are 
rapid, limiting the presence of ApoBDs in vivo [57, 58].

EVs mediate the transmission of hepatotropic viruses
A multitude of hepatotropic viruses has been identified 
and extensively scrutinized for their role in precipitat-
ing liver diseases, encompassing both acute and chronic 
hepatitis, as well as hepatocellular carcinoma (HCC) 
[59]. Currently, hepatotropic virus infections persist as 
a formidable public health challenge, contributing sig-
nificantly to morbidity and an annual global mortality 
of approximately 1.5 million deaths [60]. Five prevalent 
viruses, namely hepatitis A (HAV), hepatitis B (HBV), 
hepatitis C (HCV), hepatitis D (HDV), and hepatitis E 
(HEV), emerge as major contributors to various liver dis-
eases, each displaying distinct geographical localizations 
[61]. Notably, HBV and HCV impose the most substan-
tial socioeconomic burdens, particularly in developing 
regions like Africa and Asia [61]. These viruses adeptly 
co-opt host materials for replication, establishing pro-
longed persistence through varying strategies. Their life 
cycle commences with attachment and entry into hepat-
ocytes, relying on unique cell surface receptors, such as 
sodium taurocholate cotransporting polypeptide (NTCP) 
for HBV and CD81 for HCV [62, 63]. Subsequently, 
hepatotropic viruses manipulate host transcriptional 
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machinery and cellular resources for replication, lead-
ing to uncontrolled viral proliferation, massive hepato-
cyte necrosis, inflammatory infiltration, and the onset of 
severe conditions like cirrhosis, HCC, or other critical ill-
nesses [59].

Growing evidence indicates that EVs can function as 
carriers for these viruses, directly contributing to viral 
replication, transmission, or pathogenesis [64, 65]. The 
involvement of ESCRT components in viral capsid pack-
aging and the maturation of enveloped viruses represents 
the initial evidence supporting this idea [66]. Recent 
studies have further illuminated the presence of viral 
components within EVs, particularly in exosomes and 
MVs, revealing that hepatotropic viruses exploit EVs to 
replicate, transmit their genome, and establish persistent 
infections. These viruses can conceal within EVs through 
ESCRT-dependent or independent viral budding modes, 
evading immune detection [67, 68].

Canonical HAV life cycle
HAV, a small RNA virus classified within the Picorna-
viridae family, exhibits typical features characteristic 
of a classic non-enveloped virus. With a 7500-nucleo-
tide positive-strand RNA genome and a diameter rang-
ing from 27 to 32 nm, it encodes a sizable polyprotein. 
Upon binding to receptors such as HAV cellular receptor 
1 (HAVCR1) with assistance from integrin β1, the virion 
enters cells [69]. Translation is initiated upon uncoating 
and is regulated by an internal ribosome entrance site 
(IRES) in the cytoplasm [70] (Fig. 2A). For translation ini-
tiation, HAV relies on intact eukaryotic initiation factor 
4G (eIF4G) [71]. The translated polyprotein then under-
goes proteolysis, resulting in four capsid proteins (VP1, 
VP2, VP3, VP4) and seven nonstructural polypeptides 
(2A, 2B, 2C, 3A, 3B, 3C, 3D) [72]. Notably, 2A is subse-
quently considered a misidentification and is re-named 
as pX [70].

Genome replication follows the standard positive-
stranded RNA virus model. Capsid assembly, guided 
by VP0 (containing VP4 and VP2), VP3, and VP1pX, 
involves cleavage of VP1pX by a cellular protease, leading 
to the removal of pX from HAV particles [73]. Despite 
the availability of vaccines [74], specific treatment for 
HAV infection is lacking, and supportive measures 
remain the primary approach.

Role of EVs in HAV replication and transmission
Current knowledge of EVs in HAV replication and trans-
mission extends beyond the traditional non-enveloped 
transmission route (Fig.  2B). HAV released from cells 
acquires a protective cloak of host-derived membranes, 
forming quasi-enveloped “eHAV” [75]. These envel-
oped viruses, similar to exosomes, maintain infectivity, 

sensitivity to chloroform extraction, and circulation 
in the blood. The proposed eHAV biogenesis involves 
host proteins linked to the ESCRT, specifically VPS4B 
and ALIX. Membrane hijacking by HAV assists in evad-
ing neutralizing antibodies, potentially enhancing virus 
spread within the liver [75].

Quantitative proteomics analysis of eHAV reveals 
specific sorting of HAV capsid proteins into vesicles 
enriched with endolysosomal system components and 
common exosome-associated proteins like CD9, Dipep-
tidyl peptidase 4 (DPP4), and ESCRT-III proteins like 
CHMP2A [76]. Rab5C and Rab7A are implicated as 
crucial for eHAV biogenesis, although their underlying 
mechanisms and roles are unclear [76]. Clathrin- and 
dynamin-dependent endocytosis, facilitated by inte-
grin β1, coordinates the entry of both non-enveloped 
and eHAV into cells, each employing distinct uncoat-
ing mechanisms and release pathways [77]. The viral 
protein pX, located on the surface of eHAV and absent 
in non-enveloped virions, plays a crucial role in its bio-
genesis, potentially through interaction with ALIX via its 
C-terminal portion on the endosomal membrane [78]. 
Interaction of HAV capsids with host ESCRT compo-
nents, particularly ALIX and its paralog Protein Tyrosine 
Phosphatase Non-Receptor Type 23 (PTPN23), is also 
reported crucial for eHAV release by promoting the entry 
of HAV capsids into MVBs [79]. A conserved export sig-
nal within the pX extension of VP1 regulates ESCRT-
dependent release, resembling late domains of enveloped 
viruses [79]. Additionally, the NEDD4 family E3 ubiquitin 
ligase ITCH interacts with pX and plays a crucial role in 
eHAV release [80]. These findings challenge traditional 
virus classification, contributing to our understanding of 
viral pathogenesis and therapeutic targets in HAV-medi-
ated hepatitis.

In the context of eHAV entry, a genome-wide screen 
identifies components of the ganglioside synthetic path-
way, including glucosylceramide synthase, as crucial 
host factors for cellular entry and the infection process. 
Specifically, gangliosides, such as disialogangliosides, 
serve as crucial endolysosome receptors for both non-
enveloped and quasi-enveloped HAV virions, under-
going uncoating and accumulating within Lysosomal 
Associated Membrane Protein 1 (LAMP1)-positive 
endolysomes, thereby influencing cellular infectivity [81]. 
Additionally, the phosphatidylserine receptor HAVCR1 
and cholesterol transporter NPC1 have been implicated 
in cargo delivery from exosomes of HAV-infected cells 
through Clathrin-mediated endocytosis pathway [82]. 
These receptors interact with MVBs, facilitating mem-
brane fusion between endocytic endosomes and MVBs 
to delieve cargos into the cytoplasm, revealing an entry 
pathway independent of envelope glycoproteins [82]. 
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These studies challenge conventional understanding by 
highlighting envelope-glycoprotein-independent fusion 
mechanisms shared by exosomes and viruses.

Future perspectives on HAV and EVs research
Despite the evidence supporting eHAV production 
through the exosomal pathway and its capability to infect 

Fig. 2 The crosstalk of canonical and extracellular vesicle‑mediated HAV life cycle. A The schematic illustrates the genome structure of HAV, 
consisting of four capsid proteins (VP1, VP2, VP3, VP4) and seven nonstructural polypeptides (2A, 2B, 2C, 3A, 3B, 3C, 3D). Note that 2A is functionally 
equivalent to pX. B Non‑enveloped HAV (neHAV) enters host cells by binding to receptors such as HAV cellular receptor 1 (HAVCR1) and Integrin 
β1, followed by endocytosis. Although the mechanisms and players involved in this process are currently unknown, upon uncoating, HAV RNA 
is released into the cytoplasm and utilizes host translation machinery to produce polyprotein. After proteolytic processing, the product of 3D 
(RNA‑dependent RNA polymerase) is employed to replicate the HAV genome, which is then assembled into pre‑assembled capsids and released. 
The mechanisms of neHAV release remain unclear. For quasi‑enveloped exosomal HAV (eHAV), it is currently considered that following HAVCR1 
binding to phosphatidylserine, Clathrin/dynamin‑dependent endocytosis, facilitated by integrin β1, coordinates the entry of eHAV into cells 
and forms endosome, regulated by Rab5C. The endocytic endosome can then fuse with other endosomes or undergo maturation to form 
multivesicular bodies (MVBs), which can further fuse with lysosomes, facilitated by Rab7A, to release the eHAV genome and facilitate replication, 
or fuse with the plasma membrane to release eHAV as exosomes, although the Rabs participating in this process remain unknown. The current 
understanding of eHAV biogenesis from packaged neHAV involves host proteins associated with the ESCRT, specifically VPS4B and ALIX. The viral 
protein pX, present on the surface of eHAV but absent in non‑enveloped virions, plays a crucial role in its biogenesis, potentially through interaction 
with ALIX via the C‑terminal portion of pX, facilitating the conversion of neHAV into intraluminal vesicles (ILVs) within an MVB. Subsequently, 
these ILVs are secreted as eHAV after fusion of the MVB with the plasma membrane. The question mark denotes an unknown or unclear process 
and molecular mechanism



Page 7 of 21Chu et al. Journal of Biomedical Science           (2024) 31:97  

hepatic cells, numerous unanswered questions persist. 
These inquiries extend to the potential involvement of 
other EV subtypes, given the notable variations in their 
production. Moreover, the uncertainty regarding the con-
tribution of an ESCRT-independent exosomal biogen-
esis pathway, particularly the ceramide-triggered route, 
adds to the existing gaps in knowledge. Additionally, the 
involvement of Rab GTPases and their roles in the eHAV 
vesicular trafficking, biogenesis and release still await-
ing futher exploration, albeit Rab5 and Rab7 have been 
implicated in the biogenesis, but with unclear mecha-
nisms [76].

Further exploration is essential to uncover additional 
characteristics, such as proteins or lipids, in the compo-
sition of the eHAV envelope, surpassing the known ele-
ments of CD9, phosphatidylserine, DPP4, as well as the 
ESCRT-III components like CHMP2A [76, 82]. A spe-
cific emphasis should be placed on identifying distinct 
proteins, including viral proteins in the EVs. Addition-
ally, a comprehensive examination of the entry specific-
ity of eHEV into hepatic cells and the potential regulators 
involved is warranted, taking into account the expression 
of HAVCR1 not only in the liver but also in other organs 
[83]. These areas remain open for future studies, repre-
senting unresolved subjects. Addressing these lingering 
questions can significantly advance our understanding 
of the mechanisms governing eHAV production and 
infection.

Canonical HBV life cycle
HBV, a member of the Hepadnaviridae family, possesses 
a unique relaxed, circular, partially double-stranded 
DNA structure (rcDNA). Three types of HBV particles 

are found in infected patients’ serum: Dane particles (42 
nm), 22 nm spherical particles, and variable-length fila-
ment structures, all enclosing surface antigens (HBsAg). 
Dane particles, the infectious virions, consist of a host-
derived lipid membrane surrounding viral core proteins 
(HBc) and a nucleocapsid with viral genome DNA. The 
more abundant 22 nm particles include non-infectious 
subviral particles (SVPs), while other non-infectious par-
ticles lack a viral genome or contain viral RNA [84].

The HBV genome encodes four overlapping open read-
ing frames (ORFs), generating crucial components such 
as HBsAg, nucleocapsid with HBeAg and core antigens 
(HBcAg), polymerase with reverse transcriptase, DNA 
polymerase, and RNase activities, and the potentially 
hepatocarcinogenic X protein (HBx) [85, 86] (Fig. 3A).

Currently, HBV entry has been considered to be NTCP 
receptor dependent, followed by Clathrin- and Dynamin-
dependent endocytosis after virions attached [87]. In 
infected cells, rcDNA converts into covalently closed cir-
cular DNA (cccDNA), producing HBV RNAs transcribed 
from different promoters, yielding protein products like 
LHBs, MHBs, SHBs, and HBx. The HBc protein forms an 
icosahedral capsid incorporating 3.5 kb viral pregenomic 
RNA (pgRNA) associated with Pol. HBe is produced 
through translation of the 3.5 kb preC mRNA. Pol, the 
largest HBV protein, has four domains: terminal protein 
(TP), spacer, reverse transcriptase (RT), and ribonucle-
ase H (RNaseH). The three HBs proteins share a common 
C-terminal S region, with MHBs carrying an extended 
preS2 region at the N-terminus. LHBs include a preS1 
region at the N-terminus of preS2 and S regions, crucial 
for receptor binding during virus entry. HBs proteins 
undergo translation and post-translational modification 

(See figure on next page.)
Fig. 3 The interplay between canonical and extracellular vesicle‑mediated HBV life cycle. A The schematic depicts the genome structure 
of HBV, encompassing four overlapping open reading frames (ORFs) that give rise to crucial components such as HBsAg (LHBs, MHBs, and SHBs), 
the nucleocapsid containing HBeAg (precore) and core antigens (HBcAg), polymerase (Pol) with reverse transcriptase and DNA polymerase 
activities, RNase activities, and the potentially hepatocarcinogenic X protein (HBx). B Canonically, in HBV‑infected cells, the process begins 
with the binding of the virus to the NTCP receptor, followed by Rab5‑medaited endocytosis and Rab7‑dependent membrane fusion to facilitate 
virus uncoating. The relaxed circular HBV DNA (rcDNA) is then transported into the nucleus, where it undergoes conversion into covalently closed 
circular DNA (cccDNA). The cccDNA serves as a template for the generation of various HBV RNAs, including pregenomic RNA (pgRNA), precore/
core mRNA, preS1/preS2/S mRNA, and HBx mRNA, transcribed from different promoters. These transcripts yield protein products such as precore/
core, polymerase (Pol), LHBs, MHBs, SHBs, and HBx. The core protein assembles into an icosahedral capsid that encapsulates pgRNA associated 
with Pol. LHBs, MHBs, and SHBs are translated in the ER lumen and anchored into the ER membrane. These anchored membranes can form vesicles, 
fusing with endosomes or MVBs, enriching their membranes with LHBs, MHBs, and SHBs. The assembled HBV capsid can enter MVBs via ESCRT 
proteins like ALIX, VPS4B, and Rab33, overlapping with the ESCRT‑dependent exosomal pathway. Host MVB functions are crucial for efficient 
HBV virion release after fusion with the plasma membrane. Exosomal HBV, a double‑layer membrane structure, reportedly contains CD63, CD81, 
and HBsAg (LHBs, MHBs, and SHBs) on its surface. HBsAg is implicated in binding to the NTCP receptor, potentially facilitating entry via Clathrin/
dynamin‑mediated endocytosis. Exosomal HBV‑containing endosomes may fuse with other endosomes to form MVBs. These MVBs then faces 
two possible fates: fusion with the lysosome to release the viral genome or re‑secretion into the extracellular space as an exosome. The crosstalk 
between canonical and exosomal HBV replication and transmission involves neutral sphingomyelinase (nSMase), specifically membrane‑associated 
nSMase 2, catalyzing the conversion of sphingomyelin to ceramide, leading to ceramide enrichment on the membrane composition of exosomal 
HBV. The question mark denotes an unknown or unclear process and molecular mechanism
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in the endoplasmic reticulum (ER) lumen before being 
anchored on the ER membrane, facing the lumen side. 
ER-derived vesicles containing anchored HBs proteins 
are subsequently transported to and fused with host 
MVBs, resulting in MVBs with anchored HBs proteins 
facing the MVB lumen [88]. Host MVB functions are cru-
cial for efficient budding and release of enveloped HBV 
virions in an ESCRT component (ALIX, and VPS4B)-
dependent manner, overlapping with the biogenic 
machinery of the ESCRT-dependent exosomal pathway 
[89, 90]. Additionally, HBe-mediated Rab7 activation and 
subsequent Rab7-mediated alteration of trafficking to the 

degradative lysosome reveal a suppressive role of Rab7 in 
HBV replication and secretion [91]. Additionally, Rab5 
has been shown to be important for HBs trafficking from 
the ER to MVBs [88]. Rab33B is implicated in controlling 
HBV assembly by regulating HBc levels without affecting 
viral transcription and inhibiting core/nucleocapsid sort-
ing to envelope-positive intracellular compartments [92].

Anti-HBV therapy is recommended for patients with 
chronic HBV infection, characterized by active viral 
replication markers (including HBeAg and HBV-DNA 
positivity) and evidence of hepatic damage (elevated liver 
enzymes and active necroinflammatory lesions on liver 

Fig. 3 (See legend on previous page.)
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biopsy). Notably, occult HBV infection (OBI), a specific 
form of chronic HBV infection, involves replication-com-
petent viral DNA in the liver (with detectable or unde-
tectable HBV-DNA in the serum) among individuals 
testing negative for HBsAg [93].

Current insights on EVs in HBV replication 
and transmission
In addition to the classical HBV life cycle, a seminal 
study uncovered the intricate interplay between EVs 
and HBV infection, unveiling novel facets [94] (Fig. 3B). 
Using a sophisticated HBV infectious culture system 
with primary human hepatocytes, Sanada et  al. demon-
strated that CD63 and CD81-positive exosomes, but not 
those containing CD9, from HBV-infected cells carry 
HBV-DNA, transmitting this genetic cargo to naive cells 
through a ceramide-triggered exosome production path-
way, independent of the ESCRT pathway, as evidenced by 
the use of the nSMase2 specific inhibitor GW4869 [94]. 
These HBV-DNA-transmitting exosomes resist anti-
body neutralization, adding an antibody-neutralization-
resistant dimension to HBV infection [94]. Subsequent 
research by Yang et  al. confirmed this phenomenon in 
a clinical setting, revealing that exosomes from sera of 
chronic HBV (CHB) infected patients contain HBV-DNA 
and proteins, actively transferring HBV to hepatocytes 
[95]. This study confirmed the presence of CD81 and 
CD63 in the isolated exosomes, demonstrating detect-
able HBV-DNA in nature killer (NK) cells after exposure 
to HBV-positive exosomes. The entry of HBV-positive 
exosomes into NK cells impairs their functions, suggest-
ing an unexplored route in HBV transmission and the 
induction of NK-cell dysfunction during CHB infection 
[95]. Ninomiya et al. subsequently addressed hepatic traf-
ficking pathways used by HBV, revealing that while CD63 
is required for HBV particles, it may not be indispensa-
ble for HBV-containing exosomes [96]. They showed that 
CD63 depletion led to intracellular accumulation of LHBs 
protein and a reduction in the infectivity of released HBV 
particles, but did not alter the levels of either intracellular 
or extracellular HBV-DNA, nor pregenomic RNA, estab-
lishing CD63 as a marker and essential component in the 
intricate process of highly infective HBV particle forma-
tion and release [96].

Recently, Wu et al. demonstrated that intact virions can 
be released wrapped in exosomes [97]. Using advanced 
exosome isolation and characterization techniques, they 
efficiently separated exosomes from free virions, and 
limited detergent treatment of exosomes facilitated the 
stepwise release of intact HBV virions and naked capsids. 
Contrary to previous studies reporting the absence of 
HBsAg on the exosome surface [94] and the NTCP-inde-
pendent entry of HBV-containing exosomes into NK cells 

[95], Wu et  al. showed the presence of intact virions in 
exosomes with LHBs observed on their surface. Moreo-
ver, they demonstrated that the entry of HBV-containing 
exosomes into cells occurs in an LHBs/NTCP-dependent 
manner, although uptake of exosomal HBV with low effi-
ciency was also observed in non-permissive cells, unveil-
ing a previously undescribed entry/release pathway for 
HBV-containing exosomes [97].

Future perspectives on HBV and EVs research
While shedding light on various facets of EV-mediated 
HBV transmission, these findings challenge traditional 
perspectives and offer insights into therapeutic tar-
gets and viral pathogenesis in HBV infection [98]. Sev-
eral questions persist, including uncertainties about the 
presence of HBsAg on the surface of HBV-containing 
exosomes and its necessity for exosomal HBV entry. 
Additionally, the potential dispensability of a specific 
receptor like NTCP for HBV-containing exosomes 
requires clarification. Despite the understanding that the 
canonical HBV life cycle involves the ESCRT pathway 
and Rab GTPases [89–91], their involvement in exoso-
mal HBV biogenesis and release remains unclear. With 
advancements in EV subtype isolation approaches, inves-
tigating the participation of other EV subtypes in HBV 
transmission becomes crucial. Lastly, considering the 
possibility of OBI transmission through EVs, exhibiting 
HBsAg negativity and HBV-DNA positivity, exploring 
potential differences in EV composition and the presence 
of HBV within exosomes and other EV subtypes could 
provide valuable insights. Remarkably, in the absence of 
CD63 expression, intracellular HBsAg accumulated with-
out affecting the levels of either intracellular or extracel-
lular HBV-DNA, nor pregenomic RNA, resembling the 
characteristics of OBI, albeit with a observed reduction 
in the infectivity of released HBV particles [96]. This 
observation suggests that CD63 may be implicated in the 
development of OBI. These aspects remain subjects for 
further in-depth investigations.

Canonical HCV life cycle
Belonging to the Flaviviridae family, HCV is a single-
stranded RNA virus transmitted parenterally [99]. Its 
9.6 kb RNA genome encodes ten viral proteins, includ-
ing core (C), E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, 
and NS5B, expressed through a polyprotein via an IRES 
(Fig.  4A). The HCV life cycle commences with the 
binding to cells, facilitated by factors such as proteins, 
lipids, and glycans, resulting in entry into hepatocytes 
through Clathrin-mediated endocytosis [100–102]. Ini-
tial attachment occurs to surface proteoglycans, includ-
ing Scavenger Receptor Class B Member 1 (SCARB1) 
and CD81, followed by claudin-1 and Occludin-mediated 
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Fig. 4 The interconnection of canonical and extracellular vesicle‑mediated HCV life cycle. A The schematic outlines the genome structure 
of HCV, encompassing ten viral proteins expressed through a polyprotein via an internal ribosome entry site (IRES). B The canonical HCV life 
cycle initiates with binding and attachment to receptors such as LDLR, CD81, and SCARB1 on cells, facilitating entry into hepatocytes. Following 
initial attachment, claudin‑1 (CLDN1) and Occludin (OCLN) mediate translocation to tight junctions and promote Clathrin/dynamin‑mediated 
endocytosis, with the involvement of Rab5. After Rab7‑mediated uncoating, viral genomic RNA is released for translation and RNA replication, 
facilitated by Rab9. Polyprotein translation begins in the endoplasmic reticulum (ER), where ribosomal subunits bind to HCV‑RNA. After proteolysis, 
mature viral proteins induce the rearrangement of host cell membranes, forming double‑membrane vesicles within the membranous web. The 
NS5B RNA‑dependent RNA polymerase catalyzes negative‑sense RNA synthesis, producing positive‑sense progeny HCV‑RNA. Newly synthesized 
HCV‑RNAs are utilized for translation and replication, assembling near cytosolic lipid droplets. Assembly involves fusion with luminal lipid 
droplets in the ER. Subsequent transportation and maturation occur through the Golgi‑mediated very‑low‑density lipoproteins (VLDLs) pathway 
before packaging and release. In exosomal HCV, the exosome surface reportedly contains CD81, CD63, and HCV E2 protein, while ESCRT‑related 
proteins such as HRS, TSG101, VPS4B, and ALIX are localized within exosomal HCV. Although the entry process for exosomal HCV remains unclear, it 
may occur through fusogenic or endocytic pathways. Exosomal HCV can be released into cells either by direct fusion with the plasma membrane 
or through early endosomes from the endocytic pathway, which may fuse with multivesicular bodies (MVBs). MVBs subsequently face two possible 
fates: fusion with lysosomes for the release of the viral genome or re‑secretion into the extracellular space as an exosome via a Rab9A‑dependent 
route after fusion with the plasma membrane. The crosstalk between canonical and exosomal HCV replication and transmission may involve 
Annexin A2 and ESCRT machineries like HRS, ALIX, TSG101, VPS4B, and syntenin, although detailed mechanisms remain unclear. The question mark 
denotes an unknown or unclear process and molecular mechanism
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translocation to tight junctions. Subsequent clathrin-
mediated endocytosis and low-pH fusion with endosomal 
membranes release viral genomic RNA for translation 
and RNA replication, with regulation by Rab5 and Rab7 
thought to govern these early entry processes [103, 104]. 
Polyprotein translation initiates in the ER when riboso-
mal subunits bind to HCV-RNA [105].

Viral proteolytic processing within the ER involves 
cleavage by cellular proteases and the NS2 cysteine pro-
tease. NS3, assisted by NS4A, forms a protease com-
plex, resulting in 10 mature HCV proteins [106]. HCV 
proteins induce rearrangement of host cell membranes, 
forming double-membrane vesicles in the membranous 
web. The NS5B RNA-dependent RNA polymerase cata-
lyzes negative-sense RNA synthesis, generating positive-
sense progeny HCV-RNA [107]. Interestingly, Rab27A 
is involved in the control of HCV-RNA replication in a 
miR-122-dependent manner [108].

Newly synthesized HCV-RNAs are employed for 
translation and replication, assembling near cytosolic 
lipid droplets. Core proteins, along with host diacylglyc-
erol acetyltransferase-1 (DGAT1), form the nucleocap-
sid [109]. Assembly involves fusion with luminal lipid 
droplets loaded with Apolipoprotein E (ApoE) proteins, 
creating a high-density HCV precursor. In the Golgi, 
pre-very-low-density lipoproteins (VLDLs) and the high-
density HCV precursor mature before packaging and 
release. The low-density HCV lipoviral particle, formed 
by coupling with VLDLs, is transported to the cell surface 
and released via the cellular VLDL pathway, dependent 
on Rab9 [110, 111].

Approved direct-acting antivirals (DAAs) can poten-
tially cure most chronic HCV infections, impeding cir-
rhosis progression if administered early [112]. Achieving 
a cure reduces liver inflammation, halts fibrosis, and low-
ers the risk of complications [113]. Occult HCV infec-
tion (OCI), characterized by HCV-RNA in hepatocytes 
or peripheral blood mononuclear cells (PBMCs) without 
detectable serum HCV-RNA, represents a specific form 
of chronic HCV infection [114].

Current understanding of EVs in HCV replication 
and transmission
The utilization of the EV secretion pathway, specifically 
employing exosomes for HCV transmission, was pro-
posed in the early 2000s, preceding advancements in 
other hepatotropic viruses (Fig.  4B). Masciopinto et  al. 
initially suggested that in the absence of CD81, HCV 
envelope proteins were predominantly confined to the 
ER [115]. Conversely, in the presence of CD81, these pro-
teins traversed the Golgi, underwent post-translational 
modifications, and were subsequently located within 
EVs, specifically exosomes with a diameter of 60–100 

nm, larger than HCV particle diameter ranging from 
40–80 nm, enriched with CD81. These exosomes circu-
lated, utilizing their fusogenic capabilities to infect cells, 
even in the presence of neutralizing antibodies. The study 
also presented clinical evidence from HCV patient sera, 
supporting the presence of the HCV genome within 
CD81-positive exosomes, although with a relatively small 
number of cases.

However, despite this discovery, significant progress in 
understanding the relationship between EVs and HCV 
did not occur until 2012—an era characterized by bur-
geoning advancements. Tamai et  al. demonstrated that 
HCV secretion from host cells necessitates the ESCRT-
dependent exosomal pathway, specifically through the 
HRS-dependent ESCRT-0 pathway, potentially enriched 
in CD63-positive exosomes [116]. This study also showed 
that both the HCV core protein and E2 envelope protein 
were detected in the ILVs of MVBs.

In the same year, Dreux et  al. illustrated the entry of 
HCV-RNA-containing exosomes into non-permissive 
dendritic cells, indicating the existence of an alternative, 
canonical HCV receptor dispensable entry route [117]. 
This study not only affirmed HCV’s reliance on hijack-
ing the ESCRT pathway for exosome secretion but also 
showcased the utilization of ceramide/nSMase2 pathway, 
as well as the dependence on Annexin A2, an RNA-bind-
ing protein involved in membrane vesicle trafficking, for 
the secretion of HCV-containing exosomes. These find-
ings suggested that the vesicular sequestration and exo-
somal export of HCV-RNA may function both as a viral 
strategy to evade pathogen sensing within infected cells 
and as a host strategy to induce an unopposed innate 
response in HCV replication-nonpermissive cells.

A subsequent confirming study by Ramakrishnaiah 
et  al. demonstrated that exosomes isolated from HCV-
infected hepatoma cells could exhibit the presence of the 
HCV core protein and transmit HCV to naive cells [118]. 
Even with subgenomic replicons lacking structural viral 
proteins, exosome-mediated transmission of HCV-RNA 
was observed, highlighting the potential of HCV trans-
mission by exosomes resistant to neutralizing antibodies 
as an immune evasion mechanism. Although Mascio-
pinto et  al. had demonstrated the presence of the HCV 
genome within patient sera-derived exosomes as early 
as the 2000s [115], the infectivity of these patient sera-
derived HCV-containing exosomes remained unknown 
until Bukong et al. demonstrated that the isolated HCV-
containing exosomes were infectious and transmissible, 
thereby confirming the existence of transmissible HCV-
containing exosomes in clinical settings using sera from 
chronic HCV-infected patients [119].

Not only has the ESCRT protein HRS been reported 
to play a crucial role in the entry into MVBs and the 
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biogenesis of HCV component-containing exosomes, as 
demonstrated in previous studies [116, 117], but also the 
syntenin-ALIX complex has been implicated in medi-
ating entry into MVBs, possibly in conjunction with 
TSG101 [120]. This study revealed that increased syn-
tenin expression led to a reduction in intracellular HCV 
E2 protein abundance while simultaneously increasing 
the secretion of E2-coated exosomes. However, these 
exosomes were found to lack infectivity. Interestingly, 
the presence of the nSMase2 specific inhibitor GW4869 
significantly reduced the production of E2-coated 
exosomes. These findings suggest that although HCV 
E2 may assist in the biogenesis of HCV component-
containing exosomes, this specific type of exosome is 
not responsible for HCV transmission. The biogenesis 
pathways may involve both the ESCRT/syntenin-ALIX 
complex and the ceramide/nSMase pathways. Similarly, 
another study also demonstrated that the HCV repli-
cation intermediate, specifically the innate immunity 
inducible double stranded HCV-RNA, could be packaged 
within exosomes, generated through ceramide/nSMase2 
and Rab27-dependent pathway, thereby representing a 
mechanism to avoid excessive activation of cell intrinsic 
innate immunity [121].

Future perspectives on HCV and EVs research
While the exploration of the intricate interplay between 
EVs, specifically exosomes, and HCV transmission and 
replication appears comprehensive, several unanswered 
questions persist. These uncertainties include investiga-
tions into whether other EV subtypes play a role in HCV 
transmission and replication, the potential specificities 
in the exosomal surface proteins of HCV-containing 
EVs crucial for the entry of HCV into non-permissive 
cells like PBMC, besides the E2 protein, as E2-coated 
exosomes lack infectivity [120]. Additionally, although 
Rab27A has been implicated in exosomal HCV release, 
the involvement of Rab GTPases and other molecules in 
the entry or trafficking of exosomal HCV also remains 
unclear.

Furthermore, despite achieving a virological cure fol-
lowing DAA treatments, a subset of patients with fibrosis 
and cirrhosis remains susceptible to liver disease pro-
gression or complications [122]. The connection of this 
phenomenon to OCI and whether it is mediated through 
EVs remains unknown, necessitating further comprehen-
sive investigations.

Notably, the expression of Acireductone Dioxygenase 
1 (ADI1) has been demonstrated to facilitate HCV infec-
tion in non-permissive cells when co-expressing CD81 
[123, 124]. This phenomenon may be attributed to the 
potential function of CD81 expression as a viral receptor 

and the regulation of the lipid raft marker CAV1 level by 
ADI1 [125], thereby facilitating HCV entry and trans-
mission, although the underlying mechanisms remain 
unclear.

Canonical HDV life cycle
HDV, belonging to the Deltaviridae family, is a defec-
tive RNA-containing passenger virus with a ~ 1.7 kb RNA 
genome that encodes a single antigen (HDAg) crucial for 
replication and virion assembly. Operating as a satellite 
virus, HDV relies on the helper functions of HBV, includ-
ing the provision of the HBsAg coat, for virion assem-
bly and penetration into hepatocytes [126]. HDV-RNA 
can be amplified through the expansion (regeneration) 
of hepatocytes in the absence of HBV [127]. The global 
prevalence of HDV correlates with that of HBV, and 
declines due to decreased HBV infection rates after uni-
versal hepatitis B vaccination [128]. HDV infection can 
occur through simultaneous infection with both HBV 
and HDV (co-infection) or acquiring HDV after an ini-
tial HBV infection (super-infection). The combination of 
HBV and HDV, particularly for specific sub-genotypes, 
represents the most severe form of chronic viral hepa-
titis, characterized by a faster progression toward liver-
related death and HCC [129].

The life cycle of HDV begins with binding to heparan 
sulfate proteoglycans (HSPGs) on the hepatocyte mem-
brane, an essential step for the specific interaction of the 
preS1 domain of the HBV LHBs with the hepatocyte-spe-
cific receptor NTCP [130]. Following membrane fusion 
by an as-yet-unknown mechanism, the HDV genome-
containing ribonucleoprotein (RNP) complex is trans-
ported to the nuclear pore complex and released into 
the nucleoplasm. Replication occurs via a double rolling 
circle amplification mechanism, generating linear multi-
meric anti-genomic (-) and genomic ( +) RNAs cleaved 
to monomers by two intrinsic ribozymes. Monomers 
self-ligate to form sense and antisense single-stranded 
RNA circles [131]. Genomic RNA serves as the template 
for mRNAs encoding the two forms of HDAg. During 
replication, host adenosine deaminase acting on RNA 1 
(ADAR1) edits anti-genomic RNA, introducing an A/G 
mutation in the amber stop codon of the SHDAg ORF, 
resulting in a Trp codon [132]. Consequently, a second 
mRNA is produced, coding for the elongated LHDAg 
with a C-terminal ORF extension of 19 or 20 (genotype-
dependent) amino acids. LHDAg becomes prenylated 
by cellular farnesyl transferase at a conserved C-termi-
nal Cys residue within the extension. Progeny HDV-
RNAs assemble to RNPs containing SHDAg, as well as 
prenylated and non-prenylated LHDAg [133]. These 
RNPs bud into the host ER where HBs proteins localize. 
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Prenylated Cys-residues of the LHDAg interact with the 
cytoplasmic domain of SHBs for the acquisition of the 
HBV envelope, leading to virion release.

Despite HDV infection being preventable through 
HBV immunization, treatment success rates for chronic 
infection remain low [134]. Pegylated interferon-alpha 
is generally recommended for HDV infection despite 
a relatively low response rate, as it is associated with a 
reduced likelihood of disease progression [130]. How-
ever, significant side effects are linked to this therapy, 
making it unsuitable for patients with decompensated 
cirrhosis, active psychiatric conditions, or autoimmune 
diseases [135]. Bulevirtide, Lonafarnib, and REP2139 

thus emerge as promising new treatments for HDV 
[130]. Nevertheless, efforts to alleviate the global bur-
den of CHB and develop safe, effective, and affordable 
medicines for HDV, especially for those most in need, 
remain crucial.

Current understanding of EVs in the replication 
and transmission of HDV
The current understanding of the relationship between 
HDV and the utilization of EVs remains limited (Fig. 5). 
In 2020, Jung et  al. demonstrated that EVs derived 
from HDV-infected cells could trigger an inflamma-
tory response in non-permissive cells like PBMCs and 

Fig. 5 The interplay between canonical and extracellular vesicle‑mediated HDV life cycle. The canonical life cycle of HDV initiates with the binding 
of the virus to the hepatocyte membrane receptor NTCP through the HBV surface proteins (HBsAg). Following membrane fusion, facilitated 
by an as‑yet‑unknown mechanism likely similar to that of HBV, the ribonucleoprotein (RNP) complex containing the HDV genome is released 
and transported to the nucleus. Genomic ( +) RNA serves as the template for mRNAs encoding HDAg, specifically SHDAg. Genome replication 
occurs through a double rolling circle amplification mechanism, generating anti‑genomic (‑) and genomic ( +) RNAs. During replication, 
host adenosine deaminase acting on RNA 1 (ADAR1) edits anti‑genomic RNA, generating a second mRNA coding for the elongated LHDAg. 
Progeny HDV‑RNAs assemble into RNPs containing SHDAg and LHDAg in the nucleus and then bud into the host endoplasmic reticulum (ER) 
where HBsAg proteins localize. LHDAg interacts with the HBsAg proteins for the acquisition of the HBV envelope, leading to virion release. Details 
regarding the exosomal HDV life cycle remain unclear. However, reports indicate the presence of HDV‑RNA in exosomes enriched with CD63 
and CD81 surface markers, as well as the ESCRT machinery component TSG101. Although the proposed interconnection between the canonical 
and exosomal HDV life cycle is depicted, further investigations are warranted for solidification. The question mark denotes an unknown or unclear 
process and molecular mechanism
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macrophages [136], suggesting potential transmissibil-
ity through hijacking the EVs pathway. However, details 
regarding the presence of the HDV genome, the contents 
of these EVs, as well as the isolated EV subtypes remain 
unclear.

Building on this, in 2021, Cunha et al. made progress in 
elucidating the involvement of EVs in HDV transmission 
[137]. They established an HDV-expressing cell line, iso-
lated EVs from the culture media, examined the presence 
of HDV-RNA in the EVs, and identified enriched CD63, 
TSG101, and CD81 EV markers in HDV-containing EVs. 
Intriguingly, they also revealed the enrichment of small 
nuclear ribonucleoproteins (snRNPs) and RNA-binding 
proteins in HDV-containing EVs, possibly due to the 
nature of the RNA genome. Despite these findings, the 
transmission of HDV through EVs remains inconclu-
sive due to methodological limitations, such as the lack 
of direct visualization under electron microscopy and 
concerns about the EV isolation process. Consequently, 
this research area is less explored compared to other 
hepatotropic viruses and awaits further comprehensive 
investigations.

On the other hand, interestingly, Yao et al. introduced 
an innovative approach to inducing an immune response 
against HDV replication in  vivo by utilizing engineered 
MVs loaded with ubiquitinated HDAg [138], thereby pro-
viding a promising avenue for future therapeutic strate-
gies targeting HDV.

Canonical HEV life cycle
HEV is a small, non-enveloped, icosahedral virus with 
a diameter ranging from 27 to 34 nm, belonging to 
Hepeviridae family. It carries a 7.2 kb single-stranded, 
positive-sense RNA genome featuring an m7G cap 
at its 5′ end and a poly-A tail at its 3′ end [139]. The 
HEV genome encompasses three ORFs: one for the 
viral replicase (ORF1), another for the capsid (ORF2), 
and a third for a small protein involved in virion secre-
tion (ORF3), potentially through its ion channel activity 
[140] (Fig. 6A). The HEV life cycle commences with the 
initial contact between HEV and host cells, mediated 
by interactions with receptors that are not fully charac-
terized. These receptors include HSPGs, Asialoglyco-
protein Receptor 1/2 (ASGPR1/2), Integrin α3 (ITGA3), 
ATP Synthase Subunit 5β (ATP5B), Glucose-Regulated 
Protein 78 (GRP78), Heat Shock Cognate Protein 70 
(HSC70), T Cell Immunoglobulin Mucin Domain 1 
(TIM-1 or HAVCR1), and Epithelial Growth Factor 
Receptor (EGFR) [139, 141].

After endocytosis, the viral genome is released into 
the cytoplasm, where the host translational machin-
ery generates the ORF1 replicase, facilitating viral RNA 

replication (Fig. 6B). During this stage, two RNA species 
emerge from a negative-strand RNA intermediate: a full-
length genomic RNA and a subgenomic RNA of 2.2 kb. 
The translation of the subgenomic RNA results in the 
synthesis of the ORF2 and ORF3 proteins. Subsequent 
phases of the HEV life cycle involve viral assembly and 
the release of newly produced virions. It is worth not-
ing that, similar to HAV, HEV appears in two forms: the 
naked form, predominantly found in bile and feces, and 
the “quasi-enveloped” virion (eHEV), primarily present in 
blood [139].

Current understanding of EVs in the replication 
and transmission of HEV
The correlation between the presence of eHEV and the 
utilization of the EV pathway, specifically the exosomal 
pathway, was demonstrated as early as in 2000s to 2010s, 
scientists found that although HEV particles present in 
faeces and bile are non-enveloped, those in circulating 
blood and culture supernatant have been found to be 
covered with a cellular membrane, similar to enveloped 
viruses, and suggest that the important viral factor ORF3 
responsible for release, at least its C-terminal portion, is 
present on the surface of eHEV [142, 143] (Fig. 6B). Viri-
ons of eHEV obtained from patient sera can be trans-
mitted in both permissive and non-permissive cell lines, 
regardless of the coexistence of HEV antibodies [144]. 
This type of HEV was found to utilize the ESCRT and 
MVB pathways to release eHEV particles, as evidenced 
by silencing or loss-of-function of TSG101, VPS4A and 
VPS4B [145]. Additionally, it was subsequently found 
that a significant reduction in extracellular eHEV upon 
treatment with nSMase2 inhibitor GW4869 for the cer-
amide-triggered exosomal pathway and HRS silencing 
for ESCRT-dependent exosome secretion. Additionally, 
Rab27A was shown to be crucial in the release of eHEV. 
This finding confirmed that the production of eHEV can 
utilize both ESCRT-dependent and further suggested 
the utilization of independent exosomal pathways [146]. 
Subsequent studies addressed the transmissibility of 
exosome-mediated eHEV secretion and concurrently 
explored the membrane lipid compositions utilized by 
eHEV, the endosomal trafficking machinery like Rab5 
and Rab7 required for cellular entry, and the immune-
evading potential of eHEV [147–149].

While the quasi-envelope of eHEV serves as an ele-
gant strategy for evading antibody-mediated immune 
responses [147, 149], it also introduces additional steps 
during cellular entry before genome uncoating. Initially 
considered to be purely mediated through clathrin- and 
dynamin-dependent endocytosis pathways with speci-
ficity to hepatic cells [148, 150], the entry of eHEV was 
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later elucidated through demonstrating that the phos-
phatidylserine-enriched membrane of eHEV is crucial 
for TIM-1 (HAVCR1)-mediated cell entry [151]. Moreo-
ver, a recent study revealed new aspects of the HEV life 

cycle, suggesting that replication and release could be 
coupled at the endosomal interface, as evidenced by the 
localization of HEV replicase within MVB and released 
exosomes [152].

Fig. 6 The crosstalk between canonical and extracellular vesicle‑mediated HEV life cycle. A The schematic illustrates the genome structure of HEV, 
featuring three open reading frames (ORFs): one for the viral replicase (ORF1), another for the capsid (ORF2), and a third (ORF3) encoding a small 
protein involved in virion secretion. B The HEV life cycle initiates with the initial contact between HEV and host cells, mediated by interactions 
with receptors such as HSPGs and HAVCR1, which are not fully characterized. After endocytosis and uncoating, the viral genome is released 
into the cytoplasm, where the host translational machinery promotes translation and generates the ORF1 replicase. The ORF1 replicase facilitates 
viral RNA replication and generates a negative‑strand RNA intermediate serving as a template for two mRNAs, one for ORF2 and another for ORF3. 
ORF2 is utilized for capsidation, leading to subsequent virion assembly and release, although the mechanism of non‑enveloped HEV (neHEV) 
release is currently unknown. In exosomal HEV (or quasi‑enveloped HEV, eHEV), the exosome surface reportedly contains phosphatidylserine 
but lacks known surface protein markers. However, ESCRT‑related proteins such as TSG101, HRS, VPS4A, and VPS4B are localized within eHEV. 
Additionally, HEV ORF3 is also found within eHEV. The entry of eHEV is reported to involve Clathrin/Dynamin‑dependent endocytosis, facilitated 
by Rab5. The endosome containing eHEV enters multivesicular bodies (MVBs), perhaps through membrane fusion, and then faces two possible 
fates: fusion with the lysosome to release the viral genome or re‑secretion into the extracellular space as an exosome, facilitated by Rab27A. 
The crosstalk between canonical and eHEV replication and transmission involves ORF3‑mediated entry of the MVBs thorugh direct interaction 
with ESCRT machinery such as TSG101 and VPS4B. Additionally, it is reported that neutral sphingomyelinase 2 (nSMase 2) contributes an important 
role in regulating eHEV biogenesis, although the detailed mechanisms remain unclear. The question mark denotes an unknown or unclear process 
and molecular mechanism
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Future perspectives on HEV and EVs research
Despite these existing pieces of evidence supporting the 
production of eHEV through the exosomal pathway and 
its ability to infect hepatocytes, several unanswered ques-
tions persist. These include, but not limited to, the same 
question for other hepatotropic viruses, whether other 
EV subtypes are involved in the production of eHEV, and 
whether additional eHEV envelope compositions exist 
beyond lipid compositions phosphatidylserine, sphin-
gomyelin, ceramides, cholesterol, particularly in terms 
of host proteins like tetraspanins. Moreover, additional 
intracellular vesicular machinery like other ESCRT com-
ponents and Rab GTPases promote eHEV biogenesis and 
release in cooperation with viral proteins such as ORF2 
or ORF3. Additionally, the entry specificity of eHEV 
into liver cells and any potential regulators, considering 
TIM-1 (HAVCR-1) expression not only in the liver but 
also in other organs, remain subjects for future studies 
[83]. Addressing these issues will contribute to a more 
comprehensive understanding of the mechanisms under-
lying eHEV production and infection.

Conclusion remarks
Delving into the realm of EVs and their role in hepato-
tropic virus transmission has unveiled diverse facets of 
viral replication, transmission, and pathogenesis. Particu-
larly noteworthy is the prominence of exosomes as cen-
tral carriers for hepatotropic viruses, assuming essential 
functions in viral replication, transmission, and immune 
evasion. Table  1 summarizes the current understanding 
of the biogenesis of exosomal hepatotropic viruses and 
their utilization of cellular vesicle machineries.

Despite notable progress in comprehending EV-
mediated viral transmission, numerous queries persist 
in this field. Unexplored territories include the poten-
tial participation of other EV subtypes, given that 
earlier methodologies may struggle to effectively dis-
tinguish small ectosomes like MVs from exosomes, and 
their biogenesis pathways may diverge. Furthermore, 
uncertainties endure regarding the surface proteins of 
virus-containing EVs, the exploitation of ESCRT-inde-
pendent pathways (though demonstrated in certain 
viruses), and the role of EV-mediated transmission in 
occult infections, especially OBI and OCI. It is impera-
tive that future research addresses these knowledge 
gaps to propel our understanding of the intricate 
mechanisms governing EV-mediated viral transmis-
sion, thereby paving the way for innovative therapeu-
tic strategies. In essence, the exploration of EVs in the 
context of hepatotropic viruses signifies a dynamic and 
evolving field with considerable implications for public 
health and clinical interventions.
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