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Abstract 

Human immunodeficiency virus type 1 (HIV-1) vaccine immunogens capable of inducing broadly neutralizing anti-
bodies (bNAbs) remain obscure. HIV-1 evades immune responses through enormous diversity and hides its conserved 
vulnerable epitopes on the envelope glycoprotein (Env) by displaying an extensive immunodominant glycan shield. 
In elite HIV-1 viremic controllers, glycan-dependent bNAbs targeting conserved Env epitopes have been isolated 
and are utilized as vaccine design templates. However, immunological tolerance mechanisms limit the develop-
ment of these antibodies in the general population. The well characterized bNAbs monoclonal variants frequently 
exhibit extensive levels of somatic hypermutation, a long third heavy chain complementary determining region, 
or a short third light chain complementarity determining region, and some exhibit poly-reactivity to autoantigens. 
This review elaborates on the obstacles to engaging and manipulating the Env glycoprotein as an effective immuno-
gen and describes an alternative reverse vaccinology approach to develop a novel category of bNAb-epitope-derived 
non-cognate immunogens for HIV-1 vaccine design.
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Introduction
An effective vaccine is urgently needed to prevent the 
human immunodeficiency virus type 1 (HIV-1) epi-
demic, a disease transmitted to approximately 1.5 
million people each year [1]. Currently, lifelong antiret-
roviral therapy (ART) combinations are the standard of 
care for the management of HIV in people living with 
HIV (PLHIV). However, ART does not cure or eradi-
cate the virus from infected cells. Antiretroviral ther-
apy efficiently suppresses HIV viral replication, delays 
disease progression, restores T-cell immune responses, 
and improves the quality of life and the survival rate of 
PLHIV [2,3]. Unfortunately, transmissions still occur 
either from untreated people living with HIV or from 
PLHIV on antiretroviral therapy with insufficient viro-
logical suppression.

The HIV-1 infection begins with the entry and integra-
tion of the viral genome into target cells, which is initi-
ated by the binding of a trimeric envelope (Env) spike 
on the HIV-1 surface to CD4 receptors and co-receptors 
CCR5 or CXCR4 on host cells [4]. The binding of Env 
gp120 to the CD4 binding site on the CD4 T cells induces 
conformational changes to the gp41 ectodomain which 

permits membrane fusion and deposition of viral RNA 
into the host cell cytosol [4,5].

These events result in robust humoral immune 
responses with the production of non-neutralizing and 
neutralizing antibodies against the Env trimer to halt 
the HIV-1 virus from infecting host cells [6,7]. How-
ever, HIV-1 possesses several counteracting and subvert 
mechanisms to evade the antibody effector functions. 
First, the virion surface displays a few distantly spaced 
functional spikes, hindering the effective interaction 
with and activation of B cells [8]. Additionally, the virus 
produces non-functional uncleaved precursor Env glyco-
protein (gp160) and monomeric gp120 and gp41 which 
act as decoy epitopes that divert the antibody response 
to non-protective responses [4]. Second, conserved 
epitopes on the Env trimer are rendered inaccessible to 
neutralizing antibody responses by an extensive N-glycan 
shield and conformational masking [8,9]. Third, the Env 
trimer undergoes rapid mutations that generate enor-
mous sequence variability that prevails over the antibody 
responses [10–12].

During the acute HIV-1 phase, functional non-neu-
tralizing antibodies (nNAbs) against Env are rapidly 
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developed in the infected host [8]. The nNAbs protect 
against viral spreading through multiple binding events 
and the involvement of additional immune effec-
tor mechanisms. nNAbs are typically strain-specific 
and exhibit antiviral activity via phagocytosis of infec-
tious virions, antibody-dependent cellular cytotoxicity 
(ADCC), antibody-dependent complement deposition 
(ADCD), antibody-dependent virus inhibition (ADCVI), 
and sequestration of Fc receptor-bearing infected T cells 
[7,12,13]. Notably, nNAbs produced against HIV-1 pri-
marily target the immunodominant gp41 ectodomain 
but cannot prevent productive (cis) infection of target 
immune cells [12].

Generally, in the absence of antiretroviral therapy, 
PLHIV progresses to AIDS within 8–10 years after 
infection [14]. In approximately 20% of PLHIV, often 
referred to as long-term non-progressors (LTNP), dis-
ease progression and the development of clinical signs 
and symptoms are remarkably delayed in the absence of 
ART [14–17]. Based on viremic control of HIV-1 viral 
load, LTNP can be distinguished as viremic controllers 
and viremic non-controllers [14]. HIV-1 elite-controllers 
(EC) are a unique subset of approximately 0.3% of LTNP 
viremic controllers who maintain an undetectable viral 
load and high CD4 T-cell counts in the absence of ART 
[17,18]. Elite-controllers exhibit potent broadly neu-
tralizing antibodies (bNAbs) against diverse isolates of 
HIV-1 which prevent the viral infection of target cells [8]. 
bNAbs predominately target highly conserved epitope 
clusters on the Env glycoprotein trimer: CD4 binding 
site on gp120, V3 loop within the glycan shield, V2 apex 
on gp120, glycosylated silent face on gp120, gp120/gp41 
interface, fusion peptide, and the membrane-proximal 
external region (MPER) on the transmembrane domain 
of gp41 [8,10,19–21].

Attempts to consistently induce these antibodies to 
establish either a functional or sterilizing HIV-1 cure 
through vaccination have been challenging in part 
due to the unique structural and functional proper-
ties of bNAbs. For instance, bNAbs frequently exhibit 
high levels of somatic hypermutations (SHM) arising 
from prolonged co-evolution with HIV and are associ-
ated with inserts and/or deletions. [22,23] Also, many 
bNAbs possess exceptionally long heavy chain comple-
mentary determining region 3 (CDRH3) or short light 
chain complementarity determining region 3 (CDRL3), 
while some exhibit poly-reactivity to host autoantigens. 
[11,24,25] These immune responses strongly corre-
late with class I human leukocyte antigen (HLA) poly-
morphisms on the peptide binding groove which have 
been associated with the spontaneous control of HIV-1 
viral load in elite-controllers. [15] Interestingly, gly-
can-dependent bNAbs rely on Env trimer architecture 

and the composition of potential N-glycosylation sites 
which are considerably conserved among diverse HIV-1 
clades and isolates. [26] Alterations in signature glycans 
which sterically mask conserved epitopes on the Env 
trimer have been shown to affect viral binding, infectiv-
ity, and neutralization [27,28].

Recent advances in glycoimmunology show that the 
glycan (glycome) repertoire influences innate and adap-
tive immune responses. [29] Notably, the glycome in 
tumors, autoimmune disorders, chronic inflamma-
tion, and infectious diseases is characterized by aber-
rant glycosylation. [30,31] Interestingly, several altered 
glycan structures mediate immune function and cel-
lular processes by influencing interactions at the cell–
cell, and cell-pathogen interfaces [32]. For example, in 
autoimmune disorders (e.g. IgA nephropathy, rheu-
matoid arthritis, and systemic lupus erythematosus) 
the lymphocyte surface proteins typically express 
altered galactose or N-acetylgalactosamine termi-
nated glycans which impact disease pathogenesis and 
resolution. [29,30] Additionally, the overexpression of 
β-galactoside binding lectins (galectins 1/3/9) by sev-
eral tumors (e.g. melanoma, Hodgkin’s lymphoma, 
pancreatic carcinoma, and neuroblastoma) may facili-
tate tumor immune evasion and modulate anti-tumour 
immune responses. [29,30,33] Conversely, aberrant 
glycans may be utilized as templates for carbohydrate-
based vaccines or diagnostic/therapeutic biomarkers in 
cancer and infectious diseases [32,34,35].

The HIV glycan shield interacts with the host cell 
glycan-binding proteins (lectins), sialic acid-binding 
lectins (siglecs), and galectins. These interactions affect 
cellular processes and immunological responses dur-
ing HIV infection. [29,31,36] Siglecs (siglec 6/7/9) 
and galectins (galectin 1/3/9) interactions have been 
implicated in HIV immune dysfunction through the 
induction of T/B-cell exhaustion, apoptosis, and NK 
cell inhibition. [31] Emerging evidence indicates that 
the aberrant changes to sialic acid, core fucose, and 
galactose significantly affect the non-neutralizing anti-
body responses to HIV infection. For example, in elite 
controllers, antibody Fc-mediated antiviral effector 
functions (ADCC/ADCVI) are skewed towards aga-
lactosylated, afucosylated, and asialylated glycoforms. 
[29,31,37] Also, HIV-infected replication-competent 
T cells exhibit enhanced surface fucosylation which is 
essential for T-cell receptor binding, activation, and 
signaling. Structural analyses of isolated bNAbs have 
elucidated the dependence on signature glycans within 
the HIV glycan shield to elicit potent heterologous 
neutralization. [33] In this review, we provide an over-
view of the glycan-related obstacles to eliciting bNAbs 
and describe a reverse vaccinology non-cognate ligand 
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strategy (NCLS) using protein scaffold mimicry to 
develop HIV-1 vaccine immunogens.

Env variability and glycan shielding
Env-glycans are carbohydrate moieties that are added 
as post-translational modifications to Env proteins pro-
duced by host cells before being displayed on the surface 
of pathogenic viruses. Glycans on Env are vital for protein 
folding, replication, infectivity and evading host immune 
responses. [26,38,39] Glycosylation of HIV-1 Env precur-
sor gp160 occurs in the host cell endoplasmic reticulum. 
It is further processed in the Golgi, where gp160 is also 
proteolytically cleaved by a furin-type protease to gp120 
and gp41 and eventually trafficked to the cell surface 
for incorporation as a trimer on budding viral particles. 
[39,40] The Env glycoprotein is a trimer of non-covalently 
bound gp41/gp120 heterodimers and the sole glycopro-
tein on the viral surface coded by the HIV genome [41].

Approximately 50% of the gp120 molecular mass is 
composed of N-linked oligomannose, hybrid, and com-
plex glycans which form a mannose-patch and are wholly 
or partially recognized epitopes by some bNAbs. [38,39] 
Typically, 27–33 potential N-linked glycosylation sites 
(PNGS) per gp120 protomer exist across HIV-1 clades, 
which generates enormous Env genetic diversity and con-
tributes to the Env surface variability. [38] HIV utilizes 
the cell glycosylation pathway to display N-linked gly-
cans, which shield conserved epitopes on the Env from 
immune recognition. [38,41] In transmitted/founder 
(T/F) viruses which are responsible for establishing HIV 
infection after mucosal exposure, distinct epitope pat-
terns with higher levels of mannose, sialylation, and core 
fucosylation have been reported. [42] The T/F glycosyla-
tion profile of Env gp120 frequently differs from chronic 
infection variants by displaying fewer glycans with higher 
replication fitness. [38] T/F viruses also have shorter 
hypervariable loops and contain fewer PNGSs than those 
from the chronic variants [39,42].

Structural analysis of Env glycoprotein as a bNAb target
The Env crystal structure shows five variable regions 
(V1-V5) fused with five conserved regions (C1-C5) that 
are densely glycosylated with N- and O-linked glycans 
which are prime targets for neutralizing antibodies, and 
the focus of vaccine development. [23,43,44] Env glyco-
sylation is usually clustered as unprocessed oligoman-
nose N-linked glycans, distinctively divergent from 
typical mammalian cell glycosylation and concentrated 
at the intrinsic mannose patch on the outer domain of 
the gp120 subunit and the trimer-associated mannose 
patch at the trimer apex. [27,40] These glycan clusters are 
unique targets for bNAbs and are conserved across dif-
ferent HIV-1 group M clades (Fig. 1). [45] In this section, 

we describe Env trimer epitopes and highlight conserved 
glycans relevant to HIV-1 vaccine design.

N332 supersite
This glycan patch is a relatively well conserved region 
of virus vulnerability on the intrinsic mannose patch 
with multiple bNAbs heavy and light chain comple-
mentary determining region interactions, thus repre-
senting a supersite for antibody neutralization. [46,47] 
N322-dependent bNAbs (e.g. BG18, PGT121, PGT128, 
PGT130, PGT131, PGT133, PGT136, and PGT137) 
directly bind to the glycan shield and the GDIR peptide 
motif at the base of V3 loop inducing conformational 
changes, which restricts access to this epitope. Notably, 
2G12 and PGT135 are GDIR peptide motif independent. 
[48] The N332 supersite bNAbs possess unique charac-
teristics: first, the molecular orientation of the N332 site 
is more accessible to various angles of approach which 
allows diverse binding by glycan-dependent bNAbs to 
this conserved epitope; second, N332 glycan-directed 
bNAbs develop after a relatively short period of infection 
and show lower levels of somatic hypermutation; third, 
N332-dependent bNAbs exhibit broad interactions with 
surrounding glycans increasing surface contact with the 
Env glycoprotein [47,49].

Extensive neutralization breadth has been shown for 
glycan-specific bNAbs across HIV-1 viral panels, and 
the absence of vital PNGS on the variable loops may lead 
to the development of resistance with loss of infectivity. 
[50,51] During HIV infection, PNGS deletions contrib-
ute to immune escape from strain-specific neutralizing 
antibodies but can also lead to the formation of bNAb 
epitopes [52,53].

V1/V2 loop
This domain on gp120 is located at the apex of the trimer 
where it assumes at least three conformational states 
(β-strand, α-helix, 310 helix) required for Env trimer 
stabilization, viral entry, neutralization resistance, and 
integration into the host cell. [54–56] Typically, V1/V2 
bNAbs (PG9, PG16, PGT145, and CAP256.09) are elic-
ited by the β-strand conformation and have long CDRH3. 
[54,57] These bNAbs exhibit 10–20% mutation levels 
in the variable region of immunoglobulin heavy chain 
(VH) that target the quaternary epitope on V2 with vary-
ing neutralization potency. [58] Interactions between 
bNAbs and the conserved epitopes on the V1/V2 domain 
are achieved by the interaction between acidic residues 
(aspartate and sulphated tyrosine) at the tip of CDRH3 
bNAbs and basic lysine-rich residues on the Env spike 
which provides access to the N160 high mannose glycans, 
and sialic acid-containing hybrid glycans at positions 
N156 and N173 (HXB2 numbering). [59] The antibody 



Page 5 of 16Walimbwa et al. Journal of Biomedical Science           (2024) 31:83 	

responses to the V2 apex appear early in natural infection 
and are developed in several elite-controllers making it a 
favorable immunogen target albeit difficult to achieve due 
to the plasticity of Env conformational states during HIV 
infection. [54,59] In non-human primate, simian-human 
immunodeficiency viruses  (SHIV) challenge experi-
ments, a V2-directed bNAb PGDM1400 demonstrated 
modest potency and was subsequently transitioned into 
human clinical trials. Unfortunately, results from clinical 
trials (NCT03205917) investigating PGDM1400 alone, or 
in combination with other classes of bNAbs, showed only 
a temporary reduction in HIV-1 viral load [60].

In the RV144 trial (NCT00223080) where vaccine effi-
cacy was 31.2%, the generation of IgG to V1/V2 loops was 
associated with a reduction in the risk of acquiring HIV. 
[55,61] Analysis of the monomeric gp120 immunogens 
from the RV144 trial also revealed that signature glycans 
(N135, N141, N156, and N160) on this epitope are vital 
for inducing antibody responses. [62] Modifications to 

the heterologous prime-boost approach utilized in the 
RV144 have demonstrated that heterologous DNA pro-
teins induce sustained humoral responses against V1/
V2 loop with broadly binding functional antibodies con-
firming the durability of this epitope for vaccine devel-
opment. However, subsequent clinical trials (HVTN705 
(NCT03060629) and HVTN702 (NCT02968849)) failed 
to show similar vaccine efficacy [61].

V3 loop
The V3 loop is obscured by high-mannose and com-
plex N-glycans and is composed of three parts: a crown, 
stem, and base which contains relatively conserved 
domains that are vital for HIV-1 entry into target cells 
via co-receptor CCR5 or CXCR4. [11,63,64] Following 
CD4-Env binding, conformational changes result in the 
displacement of the V1/V2 loops exposing the crown on 
V3, which is vital for CCR5 or CXCR4 co-receptor inter-
action. [63] Antibodies to the V3 loop crown develop in 

Fig. 1  HIV-1 Env trimer structure and the conserved epitopes targeted by broadly neutralizing antibodies (bNAbs). The Env model is based 
on the cryo-electron microscopy structural model of the BG505 SOSIP.664 trimer available on RSCB PDB under Acc. No. 4ZMJ
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all PLHIV and are largely non-neutralizing. [64] There-
fore, serum from non-human primate prime-boost 
experiments using multimerized V3 virus-like-particle 
immunogens elicited weak heterologous neutralization 
coverage. [65] Conversely, in human clinical trials (Clini-
calTrials.gov Identifiers: NCT02960581, NCT02511990), 
PGT121 and 10-1074 bNAbs exhibited potency and 
breadth with significant viral load reduction among HIV-
infected participants suggesting that these bNAbs can be 
used as templates in vaccine development [10].

gp120/gp41 interface containing fusion peptide
The crystal structure of this immune evasive epitope 
has been visualized when bound to native-like soluble 
Env trimer SOSIP.664 constructs. [66,67] In the closed/
pretriggered conformational state, the gp41 fusion pep-
tide structural core forms a circle of four helices (α6-9) 
around the N and C termini of gp120. [68] Fluorescence 
resonance energy transfer studies show that CD4 bind-
ing triggers the opening of the Env glycoprotein to induce 
stable (open) Env trimer conformations. The corecep-
tor binding allows the fusion peptide transition into an 
extended six-helix bundle which facilitates viral and tar-
get cell membrane fusion. Although bNAbs target the 
pre-fusion closed metastable Env conformation, anti-
bodies elicited to the open Env conformations are poorly 
neutralizing [68–70].

Notably, glycan occupancy at potential N-linked gly-
cosylation sites within gp120 and the fusion peptide 
directly affects the stability of the closed Env trimer. 
[66,68,69] The stability of the Env trimer is also affected 
by mutations within or near this interface. These Env 
trimer mutations are associated with loss of HIV infectiv-
ity or the emergence of escape mutations at the V1/V2 
loop on gp120 and heptad repeat (HR1 and HR2) regions 
on gp41. [69,71] Interestingly, the variations in glycan 
composition may directly or allosterically affect paratope 
binding and the neutralization exhibited by fusion pep-
tide directed bNAbs [72].

Therefore, bNAbs targeting this interface engage and 
incorporate the conserved complex N-linked glycans on 
gp120 (eg. N88, N611, N234, N276) and gp41 (eg.N241, 
N637) to exhibit neutralization breadth and potency. 
[68,69,73] Several glycan-dependent bNAbs (e.g., 
8ANC195, PGT151, PGT158, VRC34, 35O22, ACS202, 
and 3BC315) targeting distinct overlapping epitopes on 
gp120/gp41 interface located below the CD4 binding 
site have been isolated in elite controllers. [38,67,74,75] 
The passive immunization of non-human primates using 
fusion peptide immunogens elicited bNAbs which effec-
tively protected rhesus macaques against SHIV(BG505) 
mucosal challenges. [70,76] However, the antibody 
response to the fusion peptide containing immunogen 

in a human clinical trial (NCT03783130) showed autolo-
gous viral neutralization with no breadth against a BG505 
tier-2 strain partly due to glycan masking at the con-
served N241 glycan. [70,77] Therefore, the development 
of immunogens targeting immune responses towards this 
interface will require ingenuity to decipher glycan het-
erogeneity and the convergent evolution of viral escape 
mutants [71,72].

CD4 binding site
Oligomannose and complex glycans cluster at the distal 
and proximal positions, respectively, forming a shield that 
obscures the CD4 binding site (CD4bs). [26] Multiple 
bNAbs (e.g. b12, VRC01, NIH45-46, VRC-PG04, VRC13, 
3BNC117, CH103, N6, N49P7, and IOMA) targeting the 
CD4bs have been isolated from PLHIV making them 
attractive candidates for further vaccine development. 
[11] The CD4bs bNAbs paratopes are derived through 
either a CDRH3-dominated (loop-dependent antibodies) 
or VH gene-restricted (CD4-mimic antibodies) ontogeny 
and disrupt the CD4-Env interactions through VH1-2 
or VH1-46 encoded heavy chains. [22,78] VH1-2 heavy 
chains encode for the VRC01-class antibodies, which are 
among the most potent and broad CD4bs bNAbs, while 
VH1-46 encodes for the 8ANC131-class antibodies. [78] 
VRC01-class antibodies typically have heavy chain resi-
dues interacting with gp120, exhibit high levels of SHM 
required to incorporate the highly conserved N276 gly-
can which is responsible for thwarting Env-bNAbs inter-
actions, and possess a short five residue CDRL3 which 
suggests that antibody elicitation through vaccination 
might be difficult. [11,38,79] Conversely, the IOMA-
class bNAbs (e.g., ASC101-3, B24, PCIN7I, PCIN66B, 
N60P1.1, and N60P25.1) are derived from VH1-2*02 Ig 
alleles and exhibit fewer SHMs, accommodate the N276 
glycan via a short helix in CDRL1 and possess an aver-
age-length eight-residue CDRL3, which suggests that this 
class of bNAbs might be easier to elicit through vaccina-
tion [79,80].

In the VRC601 (NCT01950325), HVPTN704 
(NCT02716675), and HVTN703 (NCT02568215) clinical 
trials, VRC01 bNAbs showed strain-specific neutraliza-
tion and reduction in plasma viremia providing proof-
of-concept for developing a therapeutic HIV-1 vaccine 
[10,81].

Silent‑face
The crystal structure of the silent-face bNAbs para-
topes in complex with gp120 has been visualized when 
bound to native-like BG505 pre-fusion stabilized trimers. 
[19,21] Cryo-electron microscopy shows that this immu-
norecessive epitope on gp120 is concealed by highly con-
served complex and oligomannose N-linked glycans at 



Page 7 of 16Walimbwa et al. Journal of Biomedical Science           (2024) 31:83 	

positions N262, N295, and N448. [9,19,38] These glycans 
are vital for viral entry and contribute to the generation 
of immune evasion mechanisms utilized by Env and have 
also been implicated in emergence of resistance to bNAb 
neutralization [19,74].

Currently, two rare glycan-dependent bNAbs, VRC-
PG05 and SF12 with 27% and 62% neutralization cover-
age respectively have been isolated targeting the silent 
face epitope. [19] Several factors contribute to the differ-
ences in the neutralization coverage observed. Notably, 
these two bNAbs have distinct evolutionary pathways 
arising from somatic hypermutation (SHM) within the 
VH-gene alleles IgHV (4–59*01 (SF12))) and 3–7*01 
(VRC-PG05)) and IgKV (3–20*01 (SF12))) and 4–1*01 
(VRC-PG050)). [19,21] Gene analysis of these two bNAbs 
has shown that the lengths of the amino acid peptides 
within the heavy and light chain complementary deter-
mining region 3 (CDR3) vary between SF12 and VRC-
PG05. Notably, to mediate epitope contact and penetrate 
the glycan shield, SF12 utilizes a heavy chain (CDRH3) 
of 23 amino acids and a light chain (CDRL3) of 6 amino 
acids whereas VRC-PG05 uses a CDRH3 of 17 amino 
acids and CDRL3 of 8 amino acids. [19] These amino 
acid sequence lengths in the CDR3 regions are similar 
to the average in the general human antibody repertoire. 
[82] However, eliciting these bNAbs through vaccina-
tion may be challenging because of the unique properties 
attributed to the extensive SHM and affinity maturation. 
[19,38] Furthermore, using heavy chains CDRH1 and 2, 
bNAb SF12 mediates additional contact with amino acid 
residues on gp120. [19] These additional interactions 
juxtaposed with gp120 significantly contribute to the 
observed neutralization by SF12.

Additionally, SF12 can neutralize viruses with the N295 
glycan deletion. This contrasts the VRC-PG05 bNAb 
which requires the presence of the three conserved 
silent-face masking glycans (N262,N295, and N448) on 
gp120. [21] Glycans substantially decorate the epitope 
surfaces targeted by silent-face bNAbs. Therefore, altera-
tions of the Env glycan shield and sequence diversity are 
unique decoy mechanisms to evade host immune recog-
nition. [38,83] HIV typically escapes antibody neutrali-
zation through mutations that lead to viral escape. After 
treatment with SF12 and VRC-PG05, the viral escape 
pathways involve modifications to the N448 glycan and 
glutamic acid residues at position 293 on gp120 [19,21]. 
Although N448 glycan is not imperative for viral infectiv-
ity, it is the major escape mechanism utilized by Env to 
evade SF12 neutralization. Therefore, immunogen design 
for silent-face bNAbs requires the consideration of 
ontogeny, paratope binding dynamics, Env glycan occu-
pancy, and topography to achieve native-like antigens 
[19,21,84].

MPER
The MPER epitope is effectively shielded by complex gly-
cans at positions N88 and N625 on the gp160 viral sur-
face and represents a highly conserved transient region 
revealed following Env binding to CD4. [85,86] The native 
quaternary epitope remains poorly defined although sev-
eral crystal structural models have been derived alone 
and in combination with lipid molecules. Several bNAbs 
(e.g., 10E8, 2F5, 4E10, DH511, DH517, VRC42, VRC46, 
VRC43.01, LN01, and PGZL1) targeting the C-terminal 
MPER domain have been isolated in PLHIV. [87] Most 
MPER bNAbs target linear epitopes that are transiently 
exposed during the pre-hairpin intermediate state or 
after forming the six-helix bundle during viral and tar-
get cell membrane fusion. [88–91] Interestingly, despite 
the uniqueness of this region, bNAbs targeting the MPER 
epitopes have characteristics similar to those targeting 
other conserved epitopes on Env. bNAbs elicited against 
the MPER epitopes contain long CDRH3 loops to bind 
the Env pre-fusion structures in the transitory pre-hair-
pin conformation. [89,92] This restricts the flexibility of 
the MPER fusion peptides and may disrupt the stabiliza-
tion of the six-helix bundle to prevent viral entry into tar-
get cells. [93] Notably, the host immune response to the 
rapid transition from membrane hemifusion to complete 
fusion is typically inadequate to effectively thwart viral 
infection. [88,93] Steric hindrance from the N88/N625 
glycans and gp120 may elicit non-broadly neutralizing 
antibodies. Therefore, for neutralization, MPER bNAbs 
must engage and incorporate the N88/N625 glycans and 
bind to the base of gp120 during the transitory phase of 
viral infection. [92,94] Results from the MABGEL-1 trial 
(ISRCTN64808733) demonstrated the durability of 4E10 
and 2F5 bNAbs as valuable templates for vaccine devel-
opment and provided a strong rationale for the evaluation 
of 10E8 bNAbs using modified bispecific and trispecific 
platforms to improve epitope binding. [10,95] Further-
more, liposomal MPER peptide immunogens targeting 
the 2F5 bNAb epitopes in the HVTN-133 clinical trial 
(NCT03934541) induced clade B heterologous neutral-
izing antibodies. This suggests that eliciting 2F5 bNAbs 
through vaccination is feasible although obstacles to 
immunogen delivery and MPER sequence diversity need 
to be addressed. [96] Interestingly, nanodisc assembly 
technologies are being utilized to develop novel MPER 
bNAb immunogens for HIV-1 vaccine development. [87] 
Nanoparticles are advantageous in immunogen design as 
they offer modalities for improved delivery of immuno-
gens to germinal centers consequently inducing CD4+ T 
follicular helper cells and bypassing the glycan-induced 
non-neutralizing epitopes responsible for diverting B-cell 
affinity maturation [61]. Nanoparticles could in essence 
facilitate prolonged exposure of immunogens in the 
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germinal center leading to higher affinity maturation dur-
ing the development of bNAbs [97].

Current dominating HIV‑1 vaccine immunogen‑generating 
strategies
The glycan shield exhibits distinct folding dynamics 
coupled with Env sequence variability which presents a 
formidable barrier to eliciting most bNAbs. Neverthe-
less, the identification of monoclonal bNAbs in PLHIV 
provides optimism for developing vaccines to elicit 
broadly neutralizing antibodies. [38,87] Reviews of vac-
cine designs that utilize Env N-linked glycans in epitope 
formation have validated the need to overcome the gly-
can heterogeneity and the low glycan immunogenic-
ity by using alternative vaccine strategies. [22,38,97] 
Approaches to engage glycans that block access to con-
served epitopes while preserving the salient contribu-
tion of glycans to the folding and stabilization of the Env 
trimer are areas of active research. [38] To experimentally 
elicit bNAbs, sequential vaccination with sets of in silico-
designed immunogens targeting deciphered maturation 
pathways of B cell clone/s producing the target bNAb are 
used.

The germline targeting approach is a leading strategy 
in vaccine regimens to elicit bNAbs. Germline-targeting 
(GT) immunogens are designed to recapitulate the events 
in developing occurring during the development of long-
lived memory B cells. [98,99] This involves using non-
native trimers as GT priming immunogens to activate 
naïve B cell precursors or bind to the unmutated/inferred 
intermediates of mature bNAbs class lineages. [99] GT 
immunogen priming is essential to naïve B cell activation 
as only B cells producing antibody precursors predicted 
to develop into functional bNAbs must be stimulated at 
this stage. The priming step recruits B cell precursors into 
the germinal centers where the distinct characteristics 
associated with bNAbs are developed through somatic 
hypermutation and affinity maturation. [61,100] Success-
ful priming largely depends on the frequency of bNAbs-
produing B cell precursors within the entire human B cell 
repertoire. [100,101] This approach has been validated 
for the VRC01 class of bNAbs. Recent data from animal 
models and human clinical trials show that precursors 
to VRC01 bNAbs can be activated using appropriately 
designed germline B cells priming immunogens. [100–
102] VRC01 class bNAbs are more favorably primed in 
part due to the relative abundance of precursors in the 
human B cell repertoire and their ability to engage the 
CD4 binding site epitope without the dominance of a 
long heavy chain complementary determining region 3 
(CDRH3). [100,103] However, considerable improbable 
mutations are required to achieve neutralization breadth 
and potency. Therefore, GT immunogen designs rely on 

bioinformatics and computational approaches to predict 
and select precursor B cell clones that can develop into 
mature bNAbs-producing plasma cells [61,103,104].

Sequential vaccination with sets of prime-boost immu-
nogens is required to drive the activated precursor B 
cells into the germinal centers (GCs). [102] Vaccination 
induces the proliferation of antigen-activated precursor 
B cells and interaction with CD4 T cells. The subsequent 
transfer into the center of B cell follicles leads to the for-
mation of GCs. [102,105,106] This vital step in devel-
oping mature bNAbs allows for selecting improbable 
nucleotide substitutions through somatic mutations and 
infrequent activation-induced cytidine deaminase (AID) 
activity. [107,108] Also, mutations within the framework 
region are required for antibody binding region flexibil-
ity. However, framework region mutations are less toler-
ated than mutations in the complementary determining 
regions and can adversely affect B cell fitness in the ger-
minal center. [104] This implies that several obstacles 
must be overcome within the germinal centers to drive 
the acquisition and accumulation of improbable muta-
tions. Notably, the success of B cell responses in the 
germinal centers correlates with precursor frequency, 
B cell receptor affinity for booster immunogen, antigen 
avidity, follicular Th cell (TFH) support, antigen deliv-
ery, and adjuvants. [102,105] Thus, immunodominance 
and competition from more frequent non-neutralizing 
antibody-producing B cells may outcompete bNAbs B 
cell precursors within the GCs. [105,106] An approach to 
prevail over immunodominance using glycan masking of 
immunodominant non-neutralizing epitopes on antigens 
has informed iterative engineered Env outer domain GT 
immunogens. [106] Data from humanized mouse mod-
els show this approach is viable for the VRC01 class of 
bNAbs. [109]Interestingly, sequential boosting may have 
limitations in memory B cells GC reentry and occupancy 
which are critical for acquiring high-affinity for anti-
body recognition of antigens by somatic hypermutation. 
[102,110] Also, diversification of the T cell compartment 
through clonal expansion of the TFH mediates antibody 
affinity selection and prevents the emergence of autoanti-
body B cells. This immune tolerance checkpoint disfavors 
the development of some bNAbs that exhibit autoreac-
tivity. [105,111] Therefore, immunomodulation using 
immune tolerance inhibitors, adjuvants, and formula-
tions may be required to succeed in bNAbs maturation 
[54].

Conceptually, native or native-like Env trimers with 
native glycosylation are preferred as boosting immuno-
gens in the germ-line targeting approach. Boosting with 
heterologous native-like trimers should promote affinity 
maturation and generate neutralization against diverse 
wild-type Env epitopes. [99,104] Thus far, eliciting bNAbs 
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that neutralize circulating wild-type HIV-1 viruses 
remains to be achieved. However, clinical trials using the 
GT immunogens have shown promise and validated this 
approach [98].

Alternative strategies for eliciting bNAbs have been 
proposed to complement the GT approach. [61] In the 
B cell lineage design approach, immunogen templates 
bind with high affinity to unmutated, intermediate 
bNAbs ancestors or the transmitted/founder viral strain. 
[54,57,112] The priming immunogens are designed to 
recapitulate the earliest maturation pathways of mature 
bNAbs using clonal lineage analysis. The lineage-based 
design relies on the computational inference of heavy 
and light chain gene arrangements of bNAb clones iso-
lated from elite controllers. [57,108,113] The paratopes 
of the identified unmutated and intermediate ancestors 
then serve as structural templates for designing recom-
binant monoclonal antibodies with high-affinity binding. 
[99,113] Theoretically, lineage-based boosting immu-
nogens can target multiple intermediate memory B cell 
lineages to induce several neutralizing antibody clones 
with higher protective antibody titers. [57] However, the 
diversity of the human antibody repertoire limits this 
strategy. The clonal lineages of bNAbs identified in one 
elite controller may not be relevant to eliciting antibodies 
in the general population [113].

The mutation-guided approach is based on identi-
fying functional improbable mutations acquired dur-
ing the development of bNAbs. This approach aims to 
shorten the affinity maturation process upon immuniza-
tion. [61,107] Mapping of B cell ontogeny suggests that 
improbable mutations are generally acquired during the 
early and intermediate phases of bNAbs development. 
Therefore, priming immunogens are designed to bind to 
inferred unmutated common ancestors (UCA) and select 
B cell receptors with the highest probability of acquir-
ing improbable mutations. [114,115] The feasibility of 
this strategy in a prime-boost regimen has been dem-
onstrated for the DH270 B cell clones targeting the V3 
glycan epitope in mouse models. Interestingly, although 
intermediate DH270 UCA lineages were successfully 
induced, no accumulation of improbable mutations was 
observed. Also, better vaccine-induced antibody neu-
tralization was elicited for improbable mutations altering 
binding contacts to glycans N332 and N301 [115].

The epitope-focused vaccine design aims to develop 
epitope scaffolds that mimic conserved regions on the 
Env glycoprotein. This approach requires delineating 
the Env-bNAbs complexes and the atomic structure of 
conserved epitopes targeted by neutralizing antibod-
ies. [57,61] Epitope scaffolds should exhibit high affin-
ity binding to target bNABs and after immunization, it 
should elicit generation of antibodies binding native or 

native-like antigens. The uniqueness of this approach is 
that different classes of bNAbs and not a single lineage 
can assess the antigenicity of epitope scaffolds. Infer-
ence for immunogen designs is derived from identifying 
and isolating bNAbs recognizing overlapping conserved 
epitopes. Epitope-focused immunogens targeting the 
CD4 binding site, fusion peptide, and the V3 glycan site 
have been designed. [57,116] Thus far, the ideal prime-
boost immunogens capable of inducing a polyclonal 
response remain to be achieved. Notably, glycan shield-
ing, conformational masking, and the diversity of the 
HIV-1 viral immune evasion mechanisms that conceal 
the sites of vulnerability are key bottlenecks for this strat-
egy [57].

The current strategies to elicit bNAbs can be broadly 
categorized into germline targeting and antibody-guided 
structural-based approaches. The priming immunogens 
designed by identification of germline or unmutated 
common ancestors (UCA) of naïve B cells should acti-
vate and expand rare precursors. Studies in humans 
and animal models have validated this initial step. How-
ever, boosting immunogens capable of shepherding the 
activated B cell receptors through affinity maturation 
towards bNAbs remains to be achieved in humans. The 
boosting phase immunogens should ideally select B cell 
clones bearing functional improbable heavy and light 
chain mutations corresponding to those identified in 
native bNAbs. [61,98,99,116] The strategies summa-
rized here have provided proof of concept that eliciting 
bNAbs is possible by developing appropriately designed 
immunogens (Table  1). However, as mentioned above, 
several obstacles remain in the search for an HIV-1 vac-
cine immunogen. These partly include the rarity of bNAb 
precursors in B-cell repertoire, coupled with distinct ger-
minal center affinity maturation dynamics, self-tolerance 
and clonal deletion, Env epitope immunodominance, and 
glycan heterogeneity. Therefore, novel strategies for the 
HIV-1 immunogen development armamentarium are 
urgently required to overcome these obstacles.

Non‑cognate Env epitope strategy
Generally, native-like (cognate) Env trimers, and gp120 
or gp41 monomers, elicit sporadic and modest antibody 
responses with poor or no CD4-binding site neutraliza-
tion. Recently, we developed a novel strategy without 
structural modifications of cognate Env glycoproteins 
consisting of mutation-guided glycan shield manipula-
tion, germline-targeting Env design, and epitope-focused 
immunogen design by focusing on Env unrelated pro-
tein (non-cognate) epitopes specifically recognized by 
broadly neutralizing monoclonal antibodies (bNmAb). 
This approach eliminates the host immune responses 
to non-neutralizing Env epitopes of either glycan or 
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glycoprotein nature and focuses the antibody responses 
to neutralization-sensitive Env regions. Our alternative 
Env-modifying strategy is based on the generation of Env 
sequence-unrelated protein immunogens as replicas of 
select bNmAb paratopes [117–119].

This strategy was inspired by observations of anti-idi-
otype and anti-anti-idiotype antibodies generated dur-
ing HIV-1 infection and was designated “Non-Cognate 
Ligand Strategy (NCLS)” based on comments by Klasse 
[120]. Briefly, panels of non-cognate ligands of bNmAbs 
were generated by screening small protein libraries devel-
oped by computer-assisted directed evolution of small 
binding proteins and mutagenesis of amino acids at dis-
crete positions that were derived from two geometrically 
different protein domain scaffolds. First, we used a highly 
complex combinatorial protein scaffold library, gener-
ated by randomization of 11 discrete amino acid residues 
located in the second and third helices of the three-helix 
bundle albumin-binding domain (ABD) of streptococcal 
protein G (Fig. 2), which provided a theoretical complex-
ity of 2 × 10exp14 variants. [121] A small 5  kDa protein 
scaffold was sufficient to mimic the epitope recognized 
by VRC01 bNAb, thus providing a collection of binders 

designated as VRA mimotopes. [118] To mimic larger 
and more complex Env epitopes involving N-glycans, we 
generated a second highly complex combinatorial library 
by randomization of 12 amino acid residues formed by 
111-amino-acids in “domain 10” of human muscle con-
tractile protein Myomesin-1 (designated Myomedin) 
(Fig.  2). We randomized residues of three Myomedin 
loops L1, L2, and L3, providing a “Myomedin loop 
combinatorial library” with an estimated complexity of 
2 × 10exp15 variants. This Myomedin library was used 
to identify a set of binders mimicking the MPER epitope 
recognized by 10E8 bNAb and the immunogens were 
designated MLA. We also used the Myomedin library 
to mimic the glycan V3 loop Env epitopes recognized by 
PGT121 and PGT126 bNAbs and selected a set of binders 
designated MLB and MLD respectively that were used as 
immunogens. [117,119] The VRA, MLA, MLB, and MLD 
binders were individually tested as soluble immunogens 
in prime-boost vaccination protocols using experimen-
tal BALB/c mice. The hyperimmune sera from mice 
immunized with VRA, MLB, and MLD immunogens 
exhibited specific binding to recombinant multimerized 
HIV-1 gp120 protein. [27,118,119,122] Importantly, the 

Fig. 2  Development of highly complex combinatorial libraries based on protein domain scaffolds. Randomization of 11 amino-acid residues 
in two helices of the albumin-binding domain (ABD) in streptococcal protein G is shown in yellow. VRC01 bNAb was targeted by binders (VRA) 
from an ABD combinatory library with a 1014 theoretical complexity. Randomization of 12 amino-acid residues in domain 10 of the human 
muscle contractile protein Myomesin-1 loops L1-L3 generated a combinatorial library with a 2 × 1015 theoretical complexity. The Myomedin β 
sheet randomization generated a combinatorial library with a 1015 theoretical complexity. MPER bNAbs 10E8, PGT121, and PGT126 were targeted 
by binders MLA, MLB, and MLD respectively
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neutralization potency against HIV-1 clades was assessed 
using panels of A, B, and C Tier 2 pseudoviruses, and the 
sera neutralized a substantial proportion of tested pseu-
dovirus strains.

VRA-immunized mice produced Env-binding anti-
bodies which neutralized up to 66% of the tested HIV-1 
Tier 2 pseudoviruses. MLA immunizations elicited the 
production of Env binding antibodies which neutral-
ized 54% of the tested pseudo viruses across clades A, 
B, C, and AE. MLD and MLB immunizations elicited 
murine serum antibodies that neutralized up to 40% 
and 45% respectively of the tested HIV-1-pseudotyped 
viruses across clades A, B, and C. Notably, all generated 
VRA, MLA, MLB, and MLD binders were produced as 
recombinant proteins in E. coli and thus their protein 
structure is not modified by attaching N- or O-glycans. 
For MLB and MLD we demonstrated that glycan-free 
protein immunogens can be generated to serve as effec-
tive immunogens mimicking Env V3 glycan-containing 
epitopes recognized by bNAbs PGT121 and PGT126.

As expected, sera from MLD-immunized mice neutral-
ized eight pseudoviruses with the wild-type N332 glycan. 
Of five additional pseudoviruses that carried the N332 
mutation and compensation by S334N PNGS, four of 
them were neutralized. [119] Conversely, two pseudovi-
ruses lacking the N332 compensation mutation were not 
neutralized.

For the MLB and MLD immunogens, our observed 
virus-neutralizing coverage can be compared to that pub-
lished by Walker et al. for PGT121 and PGT126 bNAbs. 
[51] MLB and MLD hyperimmune sera neutralized up to 
45% and 40% respectively of similar pseudoviruses pan-
els. [119] Also, due to the autoreactive properties of some 
bNAbs like 10E8, MLA-induced sera were tested for 
autoreactivity with murine cell antigens and were non-
reactive [117].

Our preliminary immunization experiments with these 
binders formulated into corpuscular vaccines indicated 
that the multivalent formulation substantially enhances 
the Env-specific antibody titers and the hyperimmune 
sera neutralization coverage of PGT121 and PGT126 
bNmAb. Also, a formulation of the generated binders 
as mRNA vaccines encapsulated in lipid nanoparticles 
could substantially enhance the titers of elicited neutral-
izing antibodies. [61] Further experiments will address 
questions regarding the use of these binders as priming 
antigens instead of germline-targeting precursors fol-
lowed by sequential boosting with soluble multimeric 
Env constructs such as trimeric gp120, SOSIP variants, or 
membrane-bound recombinant Env formulations using 
nanodiscs. Therefore VRA, MLA, MLB, and MLD bind-
ers provide promising templates to develop HIV vaccine 
immunogens that can accommodate signature glycans 

and overcome the immune tolerance of the ENV trimer. 
Additionally, immunization protocols utilizing these 
binders within mosaic vaccine strategies could provide 
clues to countering escape variants that have influenced 
the vaccine efficacy of experimental HIV-1 vaccines.

Conclusion and outlook
Thus far, glycan-dependent broadly neutralizing anti-
bodies identified in elite viremic controllers are excel-
lent templates to engage and manipulate the glycan 
shield. This review highlights the need for multipronged 
approaches that directly alter the immunodominant 
decoy glycans while focusing the broadly neutralizing 
antibody immune responses to the conserved epitopes 
on the Env glycoprotein. Moreover, to make the HIV Env 
glycan immunogenic through vaccination novel immu-
nogens that utilize glycan immuno-shifting and focusing 
will be required. [38,123] We elaborated on the versatility 
of the Env glycan shield and the interactions with glycan-
dependent broadly neutralizing antibodies. This review 
demonstrates the need to develop novel immunogen 
designs that solve glycan heterogeneity. The non-cognate 
ligand strategy using epitope-mimicking immunogens 
that utilize screening of highly complex small protein 
libraries has been effective in vitro. Therefore, in addition 
to the strategies targeting monoclonal bNAb-producing 
cell precursors, novel approaches based on the identifica-
tion and determination of the molecular structures acting 
as non-cognate ligands of monoclonal bNAbs paratopes 
are promising alternatives.

Clinical-stage experimental vaccines routinely utilize 
non-glycosylated trimers in sequential immunization 
regimens. Although a native-like trimer with wild-type 
glycosylation patterns remains difficult to achieve, non-
native trimers have advanced the field of HIV vaccine 
and cure research. Non-native like trimers often display 
glycosylation patterns analogous to monomeric gp120 
in an open conformational state with reduced glycan 
occupancy at the potential N-linked glycosylation sites. 
[124] Thus, trimers presented in stabilized open con-
formational states induce non-neutralizing antibody 
responses. Conversely, a pre-fusion native-like trimer 
should in theory be able to induce broadly neutralizing 
antibody responses. [4,124] Overcoming the glycan bar-
riers to eliciting bNAbs requires glycan profiling and gly-
cosylation prediction of the Env glycoprotein conserved 
epitopes and the native bNAb-viral complexes. [41] Anti-
gens with native-like structures, folding, and binding 
characteristics identified using glycosylation predictive 
tools will provide opportunities to accelerate the devel-
opment of an HIV vaccine [41,125].
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nNAbs	� Non-neutralizing antibodies
PLHIV	� People living with HIV
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