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Abstract 

Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in vari-
ous physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration 
but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogene-
ous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise 
in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease 
of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, 
complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent 
advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in dis-
ease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.

Highlights 

This paper reviews recent advances in EV subpopulation and characterization. We discuss the potential of EVs 
to address multiple aspects of neurological diseases, including neuroinflammation, mitochondrial dysfunction, apop-
tosis, and blood-brain barrier leakage. The review emphasizes the complexity and heterogeneity of EVs, highlighting 
the need for better characterization and classification to optimize therapeutic applications. By understanding EV 
subtypes and their roles, we can develop more effective and tailored EV therapies for clinical use in treating neurologi-
cal conditions.
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Graphical abstract

Introduction
Extracellular vesicles (EVs) play a vital role in cell-to-
cell communication, facilitating the transfer of proteins, 
lipids, and nucleic acids across various physiological 
and pathological processes acids [1, 2]. EVs were previ-
ously categorized into three classes based on their bio-
genesis: exosomes, microvesicles (MVs), and apoptotic 
bodies [1]. While numerous subpopulations continue to 
be identified, a clear understanding of their distinct func-
tions remains elusive. Some aspects of biogenesis and 
regulation overlap among these classes. Furthermore, 
the heterogeneity of EV populations and their cargo is 
influenced by various factors [3]. Thus, in this study, we 
opt to classify EVs based on their size, providing a more 
generalized framework while also leaving room for future 
investigations.

Since EVs play pivotal roles in immune modula-
tion [4] and tissue regeneration [5, 6], EVs represent 

a promising avenue for therapy across various medi-
cal domains. Compared to cell therapy, EVs offer sev-
eral advantages, including greater versatility in delivery 
routes, ease of engineering, more concentrated cargo, 
absence of ethical concerns, and minimal risk of tumo-
rigenesis or alloimmunization [7]. Moreover, EVs serve 
as a promising drug delivery platform [8–10]. However, 
several limitations hinder the real-world application 
of EVs, especially the characterization of their hetero-
genicity and exact therapeutic mechanisms.

This review underscores the importance of studying 
EV heterogeneity for therapeutic purposes in neuro-
logical disorders. Initially, we will delineate the vari-
ous classes of EVs and elucidate the factors influencing 
their heterogeneity. Subsequent sections will delve into 
studies concerning the clinical utilization of EVs across 
diverse neurological disorders (Fig. 1). A better under-
standing of EV subpopulations and functions will pave 
the way for more tailored EV therapies.
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Extracellular vesicle subtypes
EVs are lipid bilayer-bound vesicles released by cells, 
varying from 30 nm to 2000 nm in diameter, and can-
not replicate [1, 11]. Various classification systems exist 
for EVs, including their cellular origin, biological func-
tion, or biogenesis (Table 1). However, there is still not 
yet a consensus on EV classification. Although distinct 
mechanisms underlie the formation of each type of EV, 
there are notable overlaps between subpopulations. For 
example, all EV classes involve actin-myosin interac-
tions [29–31] and translocation of phosphatidylserine 
[32, 33]. A combination of markers is commonly uti-
lized to define EV subtypes [34].

Numerous factors contribute to the heterogeneity of 
EVs, including cellular source, physiological state, and 
biological environment. EVs isolated from mesenchy-
mal stem cells (MSCs) originating from different tissues 
exhibit variations in composition and function [35]. 
EVs from higher passage MSCs demonstrate reduced 
efficacy compared to those from younger cells [36]. EVs 
secreted from basolateral epithelial cells utilize distinct 
pathways compared to those from apical cells [20, 37]. 
A myriad of cell culture paradigms, such as 2D and 3D 
scaffolds, also impact EV composition [38, 39]. Further-
more, external stimuli such as inflammatory signals, 
ATP, heat stress, intracellular calcium levels, hypoxia, 
and various others can alter the composition of EVs, 
leading to environmental modification in EV therapy 
optimization [40–43].

Due to the difficulty in EV characterization, EVs can 
be roughly divided into small (< 200  nm) and large 
(> 200 nm) sizes. Small EVs, such as exosomes and MVs, 
are generally found to be more therapeutic than large 
EVs. However, the mechanism of action of each class of 
small EVs is different. For example, exosomes carry anti-
inflammatory microRNA (miRNA) and growth factor 
receptors while MVs transfer functional mitochondria. 
Small EVs are also frequently used as drug delivery vehi-
cles more often than large EVs. Finding the optimal treat-
ment regimens of EVs and MVs will advance their safe 
and effective therapeutic applications for neurological 
disorders.

Small EVs
Small EVs are the most studied group of EVs, especially 
exosomes and MVs. Exosomes arise via the inward bud-
ding of multivesicular bodies (MVBs), generating intralu-
minal vesicles (ILVs) [44]. MVBs may fuse with the cell 
membrane for exosome secretion or with lysosomes for 
degradation [45, 46]. There are different exosome sub-
types, as indicated by variations in ILV formation and 
cargo-loading mechanisms [2]. Exosomes employ two 
primary cargo sorting mechanisms: the endosomal sort-
ing complexes required for transport (ESCRT) pathway 
and the ceramide-dependent mechanism [47, 48]. Key 
regulators of the ESCRT pathway, such as programmed 
cell death 6-interacting protein (PDCD6IP or ALIX) 
and tumor susceptibility gene 101 protein (TSG101), are 

Table 1 EV populations and subpopulations

Class EV types Size Marker Biogenesis References

Small EVs (< 200 nm) Exosomes 30–150 nm CD63, Syntenin, LAMP1/2, ALIX, 
TSG101, CD9, CD81

Multivesicular bodies [12–14]

Small ectosomes 30–150 nm CD147, CD9, CD81 Plasma membrane budding [15]

Protrusion-derived ectosomes 30 nm Cholesterol, HSP90, cytoskeleton, 
prominin-1 (CD133)

Plasma membrane budding [16]

ARMMs 45–100 nm TSG101, ARRDC1, VSP4 ATPase Plasma membrane budding [17, 18]

Intracellular membrane-
derived ectosomes

50–120 nm Negatively charged phospholipid, 
cytokines

Plasma membrane budding 
(fast releasing method)

[19]

Small to large EVs MVs 50–1000 nm Annexin A1, annexin A2, a-actinin 
4, ARF6, VCAMP3

Plasma membrane budding [14, 20, 21]

Apoptotic bodies 40–4,000 nm Annexin V, TSP, C3b
ICAM-3, phosphatidylserine, his-
tone, mitochondrial content

Apoptosis [14]

Large EVs (> 200 nm) Large oncosomes 1–10 μm Cytokeratin 18, caveolin-1, ARF6, 
GAPDH, HSPA5, V-ATPase G1, 
Annexin A1

Plasma membrane budding [14, 22]

Migrasomes 500–3000 nm TSPAN4, cholesterol, integrin a5 Migration fiber [23–25]

Midbody remnants 200–600 nm Microtubules, MKLP1, RACGAP1 Cytokinesis [26]

Exopheres 3.5–4 μm Phosphatidylserine, LC3, Hunting-
tin, Tau, Annexin V, damaged mito-
chondria, Mitochondrial content

Unknown, Autophagy-related [27, 28]
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often used as exosome markers [49, 50]. Tetraspanins, 
including CD9, CD63, CD81, and CD82, also play a role 
in cargo selection [51, 52]. Other well-known markers for 
exosomes are LAMP1/2 and Syntenin [15].

Small ectosomes are released through plasma mem-
brane budding [15]. Differentiating between small ecto-
somes and exosomes within the small EV population 
requires a combination of presenting plasma mem-
brane molecules and lacking endosomal markers, such 
as CD63. Small ectosomes, albeit similar in size to 
exosomes, are more enriched in centrosomal, ribosomal, 
and mitochondrial proteins and contain fewer oncogenic 
genes compared to exosomes [53].

Protrusion-derived ectosomes are released from mem-
brane protrusions such as filopodia, microvilli, and cilia 
during cellular movement [16]. Bin–Amphiphysin–Rvs 
(I-BAR) domain-containing proteins, including MIM and 
IRSp53, connect the plasma membrane to actin, GTPase, 
and phosphoinositides [54, 55] to facilitate protrusion 
forming and also ectosome release. CD133, also known 
as prominin, is necessary for the release of ectosomes 
from microvilli [56, 57]. There are three proposed scis-
sion processes: first, ESCRT machinery recruitment, as 
evidenced by viral-induced vesicle release [58]; second, 
actomyosin contractility causing plasma membrane scis-
sion through GTPase ADP-ribosylation factor, though its 
exact mechanism—whether mechanical contraction or 
molecular signaling—remains unclear; and third, shear 
friction from extracellular fluid flow contributing to ecto-
some release. Prominin-1 and I-BAR domain-containing 
proteins are potential markers for protrusion-derived 
ectosomes, but further research is needed for precise 
classification.

Arrestin domain-containing protein 1 (ARRDC1)-
mediated microvesicles (ARMMs) are generated through 
plasma membrane budding, akin to virus-induced MVs. 
The PSAP motif of ARRDC1 on the plasma membrane 
recruits endosomal TSG101 to the cell membrane for 
budding. The VPS4 ATPase facilitates the final budding 
process of ARMMs, similar to exosome and viral budding 
[17]. ARRDC1 is specifically recruited in PPXY-mediated 
budding and interacts with HECT ubiquitin ligases such 
as WW1, WW2, and [18]. ARRDC1 serves as a marker 
for ARMMs, and due to their biogenesis, these MVs are 
negative for endosomal markers such as LAMP3 and 
CD63 [17].

Intracellular membrane-derived ectosomes exhibit two 
distinct release mechanisms: slow-releasing and fast-
releasing. In the slow-releasing method, ectosomes are 
secreted via outward budding of the plasma membrane 
[19]. Conversely, the fast-releasing process involves intra-
cellular vesicles being directly squeezed out through 
pores in the plasma membrane, resulting in ectosomes 

with different components compared to conventional 
plasma membrane-derived ectosomes. Ectosomes 
released in the fast phase possess negatively charged 
phospholipids, typically found in the inner membrane, 
whereas conventional ectosomes share similar plasma 
membrane components with the host cells.

Small EVs, particularly exosomes and small ecto-
somes, have been extensively studied for their critical 
roles in intercellular communication. Despite differences 
in their biogenesis, overlapping mechanisms highlight 
the necessity for combination markers in their charac-
terization. However, the characterization of their sub-
population within the same classes is still not clear. The 
heterogenicity of their cargo leads to inconsistent results 
in treatment outcomes and mechanism of action. Bet-
ter characterization and isolation techniques as well as a 
complete content profile are important for their utiliza-
tion. Protrusion-derived ectosomes and ARMMs, though 
less understood, offer insights into cell movement-related 
and viral-induced communication, respectively. Intracel-
lular membrane-derived ectosomes represent another 
subtype, and the impact of their negatively charged mem-
branes on targeting ability remains unexplored. Although 
exosomes and small ectosomes from sources like stem 
cells have shown therapeutic potential, their optimal 
treatment regimen, as well as the utility of yet to be 
examined small EVs, remain unclear and warrant addi-
tional studies.

Small‑to‑large EVs
MVs, generally known as ectosomes or shedding vesi-
cles, are generated via direct outward budding of the cell 
membrane [46, 59]. Despite ongoing research, the mech-
anisms underlying cargo sorting in MVs remain elusive, 
with various proposed pathways such as calcium-induced 
cytoskeletal remodeling [60, 61], protein kinase C and 
purinergic receptors P2X7/P2Y [62, 63]. ARF6, TSG101, 
ceramide, and lipid rafts regulate the formation of both 
MVs and exosomes, suggesting shared underlying mech-
anisms [64, 65]. Following shedding, MVs either degrade 
rapidly, releasing their contents into the extracellular 
space, or engage in communication with specific target 
cells through receptor signaling, direct fusion with the 
plasma membrane, or endocytosis [66].

Apoptotic bodies, also known as apoptosomes, are 
vesicles released during programmed cell death [34, 67]. 
These bodies typically exhibit a large size and contain 
organelles within their vesicular structure [68, 69]. Apop-
totic bodies are expelled via a ’beads-on-a-string’ for-
mation, a screening procedure that selectively excludes 
nuclear content from these bodies [70, 71]. Concurrently, 
smaller vesicles are also released, potentially originating 
from membrane blebbing during apoptosis [70, 72]. Most 
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apoptotic bodies are phagocytosed by local macrophages, 
which recognize them through Annexin V, thrombos-
pondin, and C3b [73–75]. Apoptotic bodies also carry 
genetic cargo, potentially involved in tumor metastasis 
[76, 77].

Small-to-large EVs encompass a wide range of sizes and 
properties. MVs exemplify a pivotal class of EV that has 
garnered much interest. Initially, MVs were often con-
fused with exosomes due to their similar size. However, 
discoveries in their distinct biogenesis, cargo, and mark-
ers have clarified the diversity of EVs. MVs deserve more 
attention due to varying reports on their therapeutic 
effects. Their larger size and direct membrane budding 
biogenesis may be advantageous for developing drug 
delivery vehicles, as MVs can carry more content and 
functional organelles such as mitochondria. On the other 
hand, apoptotic bodies are generally pathogenic. Enhanc-
ing the clearance of apoptotic bodies or inhibiting their 
uptake by peripheral tissues can be a promising area of 
study to suppress inflammation and tumor metastasis, 
especially in relation to brain function will advance EV 
use in neurological disorders.

Large EVs
Large oncosomes manifest as large ectosomes originat-
ing from tumor cells. Oncoproteins such as MyrAkt1, 
HB-EGF, and caveolin-1 (Cav-1), as well as EGFR over-
expression resulting in plasma membrane blebbing. The 
cargo of oncosomes can induce tumor spreading and 
progression [22]. In prostate cancer, tumor cells release 
oncosomes containing AKT1 kinase. The internaliza-
tion of oncosomes leads to fibroblast reprogramming, 
promoting tumor growth via MYC activation and envi-
ronmental modulation. Inhibition of oncosome uptake 
can prevent tumor progression, offering a novel thera-
peutic approach for cancer [78]. In addition to oncopro-
teins, cytokeratin 18 (CK18) is proposed as a marker for 
oncosomes.

Migrasomes are formed during cell migration [23]. 
During this process, large vesicles develop at the tips of 
retracting fibers behind the cells, relying on actin polym-
erization. Migrasomes contain abundant small vesicles, 
with diameters ranging from 50 to 100  nm, resembling 
pomegranates. Tetraspanin-4 (TSPAN4) has been iden-
tified as the most prominent marker for migrasomes, 
along with TSPAN7, cholesterol, and integrin α5 [24, 25]. 
Although the precise function of migrasomes remains 
unclear, they are hypothesized to facilitate cell–cell com-
munication in a specific direction related to cell migra-
tion [23].

Midbody remnants, another type of ectosome, are 
remnants of the intercellular bridge formed during cell 
division [26]. They are rich in cytoskeletal proteins such 

as microtubules, centralspindlin, and the chromosomal 
passenger complex. This structure can either retract into 
daughter cells or be released into the extracellular space, 
where they may be degraded or internalized by neigh-
boring cells. Midbody remnants are primarily reported 
in cancer cells [26, 79]. Uptake of midbody remnants 
secreted from cancer cells can induce a malignant phe-
notype in fibroblasts [26]. Midbody derivatives selectively 
accumulate in stem cells, leading to loss of differentiation 
and autophagy evasion through the binding of the CEP55 
midbody protein to the autophagic receptor NBR1 [80]. 
The precise mechanism of action, whether through 
mutated protein cargo or epigenetic dysregulation, 
remains unknown.

Exophers represent large ectosomes with ambiguous 
biogenesis, containing organelles, particularly mitochon-
dria and lysosomes, as well as protein aggregates such as 
huntingtin and tau. Most of the secreted exophers are 
taken up by neighboring cells. Exophers have also been 
found in remote tissues, suggesting secondary release 
after uptake [27]. During stress, cardiomyocytes excrete 
dysfunctional mitochondria into exophers driven by 
autophagy machinery. Impaired autophagy causes the 
accumulation of anomalous mitochondria, leading to 
dysfunctional ventricles and metabolism [81]. The role of 
exophers may be the eradication of toxins and dysfunc-
tional organelles during stress.

Taken together, large oncosomes, migrasomes, mid-
body remnants, and exophers represent diverse and 
specialized ectosomes with significant roles in cellular 
processes and disease progression. Large oncosomes and 
midbody remnants, which play crucial roles in tumor 
progression and spreading, are potential targets for can-
cer therapy through the inhibition of their biogenesis and 
uptake. The discovery of migrasomes suggests direction-
specific communication, but more research is needed 
to understand their effects and control mechanisms 
fully. Exophers help alleviate cellular stress by removing 
dysfunctional components. Understanding their func-
tion will elucidate organelle transfer and cellular stress 
management. Enhancing exopher production in  situa-
tions involving organelle dysfunction-related diseases 
may mitigate pathogenesis. Probing the pathological and 
treatment modalities of these large EVs presents new ave-
nues for research and therapeutic development for brain 
diseases.

EV therapy in neurological disorders
EVs play crucial roles in disease pathogenesis, especially 
immunomodulation (Table  2). Inflammation is involved 
across a spectrum of diseases, including degeneration, 
cancer, infections, and trauma [112]. EV therapy can be 
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categorized into two methods: inhibiting pathogenic EVs 
and promoting therapeutic EVs [1].

Pathologic EVs carry pro-inflammatory factors and 
toxic proteins. Blocking phosphatidylserine, a surface 
component crucial for EV sorting and uptake, can reduce 
EV uptake, consequently diminishing tumor growth and 
angiogenesis [113]. Additionally, targeting FAS ligands 
on EVs with anti-FASL monoclonal antibodies has been 
shown to reduce tumor progression [114]. However, 
inhibiting the EV cascade lacks specificity and may dis-
rupt physiological processes.

Therapeutic EVs suppress inflammation and promote 
tissue regeneration. Therapeutic EVs can be derived from 
various sources, with stem cells being the most exten-
sively studied due to their versatility [1]. While stem cell 
transplantation has shown great results in treating neuro-
logical disorders, their mechanism of action is primarily 
through paracrine effects rather than cellular replace-
ment [115, 116]. Culture media derived from healthy 
cells can alleviate inflammation, promote angiogen-
esis, and restore function in the same way as cell trans-
plantation [91]. EVs mediating these paracrine effects 
contain miRNA, non-coding RNA, growth factors, 
receptors, proteins, and lipids [1]. miRNA is believed to 
be indispensable for the therapeutic effects. EVs contain 
components involved in RNA transportation and pro-
cessing such as RNA-binding proteins Staufen homolog 
1 (STAU1), STAU2, Argonaute 2 (AGO2), and trinucleo-
tide repeat-containing gene 6A protein (TNRC6A; also 
known as GW182). Ago2 knockdown diminishes the 
therapeutic effects of MSC-EVs [117].

Neurological disorders are always notoriously challeng-
ing due to the limited regenerative capabilities of neurons 

and the selective blood–brain barrier (BBB) preventing 
CNS entry of many therapeutic agents. EV therapy has 
a great advantage as it can precisely target brain paren-
chyma and effectively cross BBB (Table  3). Systemic 
administration or invasive methods such as intranasal 
spray can deliver EVs into the central nervous system 
(CNS). Here we summarize advances of EV therapy in 
neurological disorders across various pathologies to give 
a complete view of EV application: ischemia, trauma, 
degeneration, autoimmune-induced inflammation, 
and genetic mutation. In each disease section, we cover 
pathogenesis, pathologic EV involvement, mechanisms of 
therapeutic action, and EV optimization.

Stroke
Stroke, including ischemic and hemorrhagic strokes, 
ranks second as a cause of death and disability worldwide 
[189, 190]. The pathogenesis of brain injury following 
ischemia involves oxidative stress, inflammation, excito-
toxicity, and apoptosis [191]. On the other hand, hem-
orrhagic stroke injury is from hematoma compression 
and increased intracranial pressure, subsequently also 
causing inflammation, excitotoxicity, and impaired BBB 
[192]. Interestingly, the upregulation of CD63 exosomes 
closely approximates with endogenous neurovascular 
unit regenerative process [193]. Although stroke inter-
vention methods like mechanical thrombectomy and 
surgical decompression have rapidly improved, few treat-
ments effectively address neuronal death [194]. Novel 
anti-inflammatory therapies targeting inflammatory 
cell recruitment have failed in clinical trials, suggesting 
that additional modalities, such as regeneration, may be 
necessary.

Table 2 Pathologic and therapeutic effects of EVs

EVs Effects References

Pathogenic EVs Prion-like misfolded protein propagation, ex. tau, α-synuclein, mHTT [82–85]

Proinflammatory miRNA and protein transfer [86, 87]

Promote inflammatory M1 microglia and A1 astrocytes polarization [88]

Cellular proliferation ex. tumorigenesis [89]

Hypercoagulation [90]

Therapeutic EVs Anti-inflammatory miRNA and protein transfer [1, 91–94]

Promote anti-inflammatory M2 microglia and A2 astrocytes phenotype change [93]

Anti-apoptosis miRNA and protein transfer [95–99]

Recover mitochondria function [100, 101]

Reduce endoplasmic reticulum stress [102]

Neurogenesis, neurite outgrowth, and remyelination [103, 104]

Increase angiogenesis [105–109]

Restore BBB integrity [110]

Restore normal microbiome-gut-brain axis [111]
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Table 3 Cell-derived EV therapy in neurological disorders

Disease EVs sources Outcomes Mechanisms Type/references

Ischemic stroke MSCs ↓Astrocyte apoptosis
↓Inflammatory marker 
in astrocyte
↓Oligodendrocyte apoptosis

miR-138-5p downregulates 
lipocalin 2 (LCN2)
miR-134 suppresses cas-
pase-8

In vitro: [95, 98]

ASCs ↓Infarct size
↑Neurological recovery
↑Angiogensis
↓Inflammatory, ROS, 
apoptotic, and fibrosis, BBB 
leakage

MALAT1 recruits splice factor 
serine-arginine-rich splice 
factor 2 (SRSF2) → ↑splic-
ing of PKCδII → ↑neuron 
proliferation
miR-181b-5p targets 
transient receptor 
potential melastatin 7 
(TRPM7) → ↑endothelial cell 
migration
miR-126 mediates neuropro-
tection

In vitro: [97, 106]
In vivo: [105, 108]

Neurons ↑BBB integrity miR-132 upregulate 
eef2k → ↑VE-cadherin

In vitro: [109]

Endothelial cells ↑Mitochondrial function
↑Neurological outcomes
↓Infarct sizes
↓Apoptosis

Mitochondrial component 
transfer in medium-to-large 
EVs
miR-199a-5p suppresses ER 
stress
miR-126 mediates neurores-
toration

In vitro: [96, 101]
In vivo: [101, 102, 107]

Microglia ↑Angiogensis miRNA-26a mediates angio-
gensis

In vitro: [109]
In vivo: [109]

Serum ↑Synaptic transmission/
plasticity, ↑Spatial learning 
and memory

↓Cyclooxygenase-2 (COX-2) 
expression

In vivo: [118]

Hemorrhagic stroke MSCs ↑Hematoma clearance
↓Brain edema
↓Neuronal apoptosis
↑Neurological function
↑Regulatory T cells
↑M2 polarization

Blocking CD47- signal regula-
tory protein alpha (SIRPα) 
interactions
Activation of the BDNF/TrkB/
CREB signaling pathway
Inhibited NF-κB and activated 
AMPK signaling pathways
Decreased transcription 
of high-mobility group 
box 1 protein (HMGB1) 
and miRNA129-5p
miR-140-5p targets 
and downregulates ALK5 
and NOX2 expression

In vivo: [119–123]

ASCs ↑Neurological function
↓Neuron loss

miR-19b-3p-modified ADSCs 
inhibit ferroptosis

In vitro: [124]
In vivo: [124]

NSCs ↑Behavioral recovery
↑Angiogenesis

Akt1, GDNF, and BDNF 
overexpressions increase 
resistance to oxidative stress 
and promote neuroprotec-
tion

In vivo: [125–127]
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Table 3 (continued)

Disease EVs sources Outcomes Mechanisms Type/references

Traumatic brain injury MSCs ↑Pattern separation and spa-
tial learning
↓Neuroinflammation
↑M2 microglial polarization
↑Hippocampal neurogenesis
↑Synaptogenesis and neuro-
plasticity

miR-140-5p modulates 
HDAC7/AKAP12/cAMP/PKA/
CREB pathway
Enhancing the BDNF-ERK-
CREB signaling pathway
Inhibit NLRP3 inflammasome 
and p38/MAPK signaling 
pathways

In vivo: [99, 104, 128–130]

Endothelial progenitor cells ↑BBB integrity Inhibits PTEN/AKT signaling 
pathway

In vitro: [131]
In vivo: [107, 131]

Astrocytes ↑M2 microglia transformation
↑Neurological outcomes

miR-873a-5p inhibits ERK/
NF-κB pathway

In vivo: [93]

Microglia ↑M2 microglia transformation
↑Neurological outcomes

miR-124-3p inhibits TLR4 
pathway, autophagy-associ-
ated FIP200 gene, and Rela/
ApoE pathway

In vitro: [132]
In vivo: [132–135]

Spinal cord injury MSCs ↑Neuronal proliferation
↓Apoptosis
↓Inflammation
↓Lesion size
↑Motor function
↑A2 astrocytes

Activation of Wnt/β-catenin 
signaling pathway
miR-21 targets the JAK2/
STAT3 signaling pathway 
in astrocyte phenotypic 
alterations
miR-211-5p downregulates 
COX2 mRNA
miR-21a-5p blocks PELI1 
expression → ↓pyroptosis, 
↑autophagy
miR-125a-3p inhibits NET 
formation
miR-26b-5p targets KDM6A 
→ ↑H3K27me3 → ↓NOX4 
→ ↓ROS

In vitro: [136, 137]
In vivo: [94, 136–139]

NPSCs ↓Inflammation
↓Apoptosis
↑Motor function
↑Angiogenesis

14-3-3t protein interacts 
with Beclin-1 to ↑autophagy
NLRP3 inflammasome forma-
tion inhibition
VEGF promote angiogenesis

In vivo: [140–142]

Neurons ↓M1 microglia and A1 
astrocytes

miR-124-3p/MYH9 axis inter-
acts with PI3K/AKT/NF-κB 
signaling pathway

In vivo: [143]

Peripheral nerve injury MSCs ↑Axonal regeneration
↑Motor function
↓Inflammation

cyclin Ki67 In vitro: [3]
In vivo: [144–146]

ASCs ↑Axonal regeneration In vivo: [144]

SCs ↑Axonal regeneration GTPase RhoA inhibition
miRNA-21 ↓PTEN and ↑PI3-
kinase pathway in neuron 
proliferation

In vitro: [147, 148]
In vivo: [148]

Neurons ↑Axonal regeneration In vitro: [3]

Macrophages ↑SC proliferation
↑Nerve growth factors

miR-223 increases NGF 
and Laminin

In vitro: [149]
In vivo: [149]

OECs ↑Axonal regeneration 
and myelination

↑PI3K/Akt signaling pathway
↓JNK signaling pathway

In vivo: [150]

Pericytes ↑Angiogenesis
↑Nerve regeneration
↑BDNF, neurotrophin-3, 
and NGF

In vivo: [151]

Dental pulp stem cells ↑Myelination miR-122-5p inhibits 
P53-mediated autophagy

In vitro: [152]
In vivo: [152]
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Table 3 (continued)

Disease EVs sources Outcomes Mechanisms Type/references

Epilepsy MSCs ↓Neuron loss
↓Inflammation
↑Hippocampus neurogenesis
↑Cognitive and memory 
function

In vivo: [153]

Alzheimer’s disease MSCs ↑Memory and cognitive 
function
↓Inflammation and oxidative 
stress
↑Neuroplasticity
↑Mitochondrial function

Catalase-mediated protec-
tion against ROS
Nrf2 signaling pathway
miR-146a inhibit NF-κB 
signaling
miR-223 targets PTEN-PI3K/
Akt pathway

In vitro: [154–158]
In vivo: [155, 158–160]

ASCs ↓Neuronal damages 
and apoptosis
↑Mitochondrial function

In vitro: [161, 162]
In vivo: [163]

NSCs ↑Mitochondrial function
↑SIRT1 activation
↑Synaptic activity
↓Inflammation and oxidative 
stress
↓Cognitive deficits

In vivo: [164–166]

Neuron ↓ Aβ deposit
↑Neuroplasticity

Aβ binding by EVs surface 
proteins such as prion pro-
teins and GSLs

In vivo: [167, 168]

CSF ↑Electrophysiological activity
↑Neurogenesis

In vivo: [167]

HBMVECs ↑Aβ clearance
↑Cognitive function

P-glycoprotein on exosomes 
as an extracorporeal Aβ 
cleansing system

In vivo: [169]

Parkinson’s disease MSCs ↓Apoptosis
↓Motor deficit
↓Dopaminergic neuron loss

Increase autophagy In vitro: [170]
In vivo: [170]

SHEDs ↑Motor function
↑Tyrosine hydroxylase in stria-
tum and substantia nigra
↓Apoptosis

Cu/Zn SOD1, TXN and PRDX6 
proteins as antioxidants
HSP70 gene transfer

In vivo: [171]

Astrocyte ↓Cell death with ↓MKK4 miR-200a-3p down-regulates 
MKK4

In vitro: [172]

Amyotrophic lateral sclerosis MSCs ↑BBB integrity In vitro: [173, 174]
In vivo: [173]

ASCs ↑Motor function
↓Lumbar motoneuron loss
↓Gliosis
↑Mitochondrial function

In vitro: [175, 176]
In vivo: [177]

Multiple sclerosis MSCs ↓Neurological deficits
↓Inflammation and demyeli-
nation
↑M2 microglia

In vivo: [178, 179]

Periodontal ligament stem 
cells

↓Inflammation
↓Apoptosis (STAT1, p53, 
caspase 3, and Bax)

CD90 induces IL-10 produc-
tion

In vivo: [180]

Microglia ↑Oligodendrocyte progenitor 
cells recruitment and differ-
entiation

Lipid cargo enhances OPC 
maturation
EV-associated S1P in stimu-
lating OPC migration
Astrocyte may be effector 
in oligotoxic cell maturation

In vitro: [181]
In vivo: [181]
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EV therapy can address multiple aspects of stroke 
pathophysiology and improve neurological outcomes 
[195], while minimizing complications associated 
with cell-based therapy [196]. Overall, most EV thera-
pies improve infarct size, hematoma clearance, brain 
edema, and neurological functions [108, 119, 120, 124, 
134]. Mechanistically, EVs derived from MSCs, adi-
pose-derived stem cells (ASCs), and astrocytes promote 
anti-inflammatory M2 microglia polarization, suppress 
inflammatory cytokines, and reduce oxidative stress [88, 
197, 198]. EVs carrying miR-132 can suppress eukaryotic 
elongation factor 2 kinase (eef2k) and restore VE-cad-
herin, an endothelial adhesive junction component [110]. 
ASCs-EVs also decrease aquaporin-4 (AQP-4) levels 
[105]. Mitochondria transfer by MVs and mitochondrial 
DNA via exosomes also increase the integrity of brain 
endothelial cells (BECs) [100, 101]. EVs effectively reduce 
apoptosis of neurons, oligodendrocytes, and astrocytes. 
EVs containing miR-138-5p reduce Lipocalin 2 and 
metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1), downregulating bax, caspase-3, caspase-8, 
and inflammatory cytokines while upregulating Bcl-2 
and Cyclin family proteins [95, 98]. EVs containing miR-
199a-5p also reduce apoptosis by ameliorating endoplas-
mic reticulum stress [102]. EVs promote neurogenesis 
and angiogenesis through miR-126, miR-26a, miR-181b, 
and multiple growth factors [107–109]. They also benefit 
the microbiome-gut-brain axis damaged after ischemic 
stroke by downregulating Interleukin (IL) 17 and upregu-
lating IL-10, which modulates microbiota diversity and 
intestinal immunity [111].

Preconditioning, source selection, and combination 
therapy improve EV therapy efficacy [199, 200]. Pre-
treatment with hypoxia in MSC restores the BBB more 
effectively [201]. EVs from macrophages and microglia 
pretreated with IL-4 ameliorate apoptosis and promote 
angiogenesis, while EVs from tumor necrosis factor alpha 

(TNF-α) pretreated endothelial progenitor cells have the 
opposite effect [202, 203]. Mitochondria-containing EVs 
derived from brain endothelial cells from the same spe-
cies donor are more effective in mitochondria transfer 
[204]. Better outcomes are observed in combined thera-
pies with exercise, enriched environments, acupuncture, 
brain stimulation, and hypothermia [199].

EV therapy for stroke offers multiple therapeutic ben-
efits, including anti-neuroinflammation, anti-apoptosis, 
BBB restoration, neurogenesis, and angiogenesis. How-
ever, the diverse range of therapeutic cargo and molecu-
lar pathways reported, even from the same cell source, 
leads to confusion about which cargo acts as the primary 
regulator. It remains unclear whether these compo-
nents coexist within the same vesicles or are distributed 
among different EV subtypes. Various cell sources have 
been studied, but their effects on different domains of 
pathogenesis have not yet been compared. For instance, 
EVs derived from stem cells and anti-inflammatory glia 
may primarily modulate inflammation, while those from 
endothelial cells may be more effective in promoting 
angiogenesis. Preconditioning parent cells with hypoxia, 
which mimics ischemic stroke conditions, induces 
the secretion of EVs suited for such situations. Given 
that neuronal death is a primary cause of disabilities in 
ischemic stroke, EV therapy should focus more on long-
term neurogenesis and functional recovery. Moreover, 
while most preclinical studies deliver EVs within the first 
hour following the lesion induction, actual patients typi-
cally receive treatment at a much later stage, implying 
the need to modify the experiment design [205]. Finally, 
the safety profile of EVs is a concern. Overexpression of 
vascular endothelial growth factor (VEGF) and hypoxia-
inducible factor-1 (HIF-1) can potentially lead to BBB 
leakage and brain edema [206, 207]. Therefore, recogniz-
ing the risks and benefits of these secreted growth factors 
should guide the timing of administration and expression 

Table 3 (continued)

Disease EVs sources Outcomes Mechanisms Type/references

Huntington’s disease ASCs ↑Mitochondrial function
↓N-terminal cleavaged mHTT
↓Apoptosis

In vitro: [182]
In vivo: [183]

NPSCs ↓N-Terminal Cleavaged Mhtt
↓Apoptosis

In vitro: [184]

Fibroblast ↑GABAergic synapses 
and transmission

In vitro: [185–187]

Blood serum ↓mHTT aggregation
↓Neuronal death
↓Inflammation and gliosis
↑Neuromuscular function

In vivo: [188]
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of specific EV components and will require further 
investigations.

Traumatic brain injury (TBI)
TBI is the most common cause of morbidity and mortal-
ity in the young population, commonly resulting from 
falls and traffic accidents [208]. Neurological damage 
occurs both from the initial impact (primary brain injury) 
and subsequent ischemia due to brain swelling (second-
ary injury). Despite several neuroprotective strategies, 
such as antioxidants, N-methyl-d-aspartate (NMDA) 
receptor antagonists, and calcium channel blockers, there 
is only minimal improvement [209]. TBI brain-derived 
EVs induce multisystemic organ dysfunction. Lactad-
herin can eliminate brain-derived EVs and improve coag-
ulopathy and inflammation [210–212].

Like ischemic stroke, therapeutic EVs modulate neu-
roinflammation by promoting M2 microglia polarization 
and reducing pro-inflammatory cytokines, subsequently 
decreasing neuronal apoptosis. Astrocytes-derived EVs 
carry miR-873a-5p, inhibiting the ERK/NF-κB signal-
ing pathway [93]. Additionally, microglia-derived EVs 
contain miR-124–3p, which suppress mTOR signaling, 
autophagy-associated FIP200 gene, Rela/ApoE path-
way, and toll-like receptor-4 (TLR4) signaling pathway 
[133–135]. MSC-EVs suppress TRAF6 in the TLR4 sign-
aling pathway via miR-146a, the cAMP/PKA/CREB path-
way via miR-140-5p, and the CysLT2R-ERK1/2 pathway 
mediating M1 polarization [128, 213–215]. MSC-EVs 
also decrease the pro-apoptotic factor Bax while increas-
ing the anti-apoptotic factor Bcl-2 expression [99]. 
For long-term complications of TBI, MSC-EVs inhibit 
chronic activation of the NLRP3-p38/MAPK signaling 
pathway and improve long-term cognitive function [129]. 
EVs also increase neuron survival by stimulating myelina-
tion [103] and transferring neuroprotective agents such 
as Apo-lipoprotein D (ApoD) [216, 217]. EVs upregulate 
genes associated with neurogenesis, synaptogenesis, and 
neuroplasticity while downregulating non-neuronal dif-
ferentiation genes [104]. Neural stem cell-derived EVs 
(NSC-EVs) increase neurogenesis through miR-320-5p, 
miR-210, miR-21a, and miR-9 [218–221].

EV therapy effectively addresses neuroinflammation in 
both the acute and chronic phases of TBI while also pro-
moting neurogenesis. Various miRNAs and their associ-
ated pathways are integral to this mechanism. Tailoring 
specific EV properties to different phases of pathology 
can enhance treatment outcomes. For example, admin-
istering anti-inflammatory EVs in the hyperacute phase 
may prevent secondary brain injury, while using pro-
neurogenesis and pro-angiogenesis EVs later can improve 
functional recovery. Besides therapeutic EVs, temporar-
ily blocking pathological EVs that signal inflammation 

may also benefit patients by reducing secondary dam-
age, though current techniques for blocking EV release, 
explored in models of neurodegenerative disorders, still 
lack precision. Furthermore, since TBI often coincides 
with systemic damage such as hemorrhagic shock or 
organ trauma, it is crucial to investigate the effects and 
systemic distribution of EVs in these contexts. The modi-
fication of EV sources in TBI has not been as thoroughly 
studied as in ischemic stroke, presenting an opportunity 
to apply existing stroke-relevant knowledge to this field.

Spinal cord injury (SCI)
SCI, often caused by trauma, is a chronic disability that 
imposes a significant healthcare burden [222]. Like TBI, 
SCI involves primary injury from traction and compres-
sion forces, followed by secondary hypoperfusion due 
to spinal cord swelling [223, 224]. Inflammation fur-
ther exacerbates the condition, leading to excitotoxicity 
and reactive oxygen species (ROS)-induced apoptosis. 
Despite therapeutic advances over the past decade, treat-
ments for SCI, such as surgical decompression, corticos-
teroids, and neuroprotective agents, remain controversial 
and largely ineffective. Novel therapeutic strategies focus 
on limiting cell death, promoting regeneration, and 
restoring myelination. Pathologic EVs inhibit axon regen-
eration, induce systemic inflammation, and cause multi-
organ damage [225].

Neural stem cell/progenitor cell (NPSC)-derived EVs 
reduce inflammation by suppressing the NLRP3 inflam-
masome and increasing autophagy-regulating Bec-
lin-1 expression through the 14-3-3τ protein [140, 141]. 
They also induce angiogenesis by transferring VEGF to 
endothelial cells [142]. Cortical neuron-derived EVs sup-
press pro-inflammatory microglia and astrocytes through 
miR-124-3p [143]. MSC-derived EVs promote A1-to-A2 
astrocyte conversion via miR-21 [136], suppress cycloox-
ygenase 2 (COX2) mRNA via miR-211-5p [94], inhibit 
macrophage/microglial pyroptosis through the miR-
21a-5p/PELI1 axis-mediated autophagy pathway [226], 
and reduce neutrophil extracellular trap (NET) formation 
in both the spinal cord and circulation via miR-125a-3p 
[167]. Additionally, miR-26b-5p-enriched MSC-EVs epi-
genetically regulate the KDM6A/NOX4 axis to suppress 
inflammation and ROS production [139].

Environmentally modulated EVs perform better than 
naïve EVs [225]. Microglia-derived EVs function dif-
ferently under pro-inflammatory or pro-regenerative 
preconditioning [227]. Similarly, EVs isolated from 
hypoxic MSCs have significantly higher potency in miR-
146a-5p-mediated immune modulation [228]. NPSCs 
primed with insulin-like growth factor 1 (IGF-1) secrete 
EVs highly enriched in miR-219a-2-3p, which induce 
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oligodendrocyte progenitor cell (OPC) maturation and 
promote axonal regeneration [229].

Similar to TBI, EVs help prevent secondary injury in 
SCI by suppressing inflammation. To establish EVs as a 
viable immunosuppressant therapy, comparative studies 
with conventional corticosteroids are needed to evalu-
ate their efficacy. Currently, EV sources in SCI are lim-
ited to MSCs, NPSCs, and neurons. Exploring additional 
sources, such as endothelial cells and immune cells, can 
provide a more comprehensive treatment approach for 
SCI. Additionally, assessing the extent of SCI severity and 
determining the optimal treatment regimen specific to 
the EV source in tandem with adjunct therapies will be 
crucial for maximizing the beneficial effects of EVs.

Peripheral nerve injury (PNI)
Despite advances in neurology, there is still no effective 
therapy for nerve regeneration [230]. Although axons 
can regrow after injury, the growth rate is extremely slow 
and often complicated by inflammation and scar forma-
tion [231]. Neurorrhaphy is feasible only for short-gap 
injuries, while autologous nerve grafts have limitations, 
including nerve source selection and donor site dysfunc-
tion. Nerve guide conduits and cell therapy are poten-
tial candidates for PNI treatment but still face several 
complications [230, 232]. Pathologic EVs play an impor-
tant role in blocking nerve growth. Schwann cells (SCs) 
secrete miR-1, inhibiting brain-derived neurotrophic 
factor (BDNF) expression and blocking axonal regenera-
tion. miR-1 inhibitors efficiently improve SC proliferation 
and migration [233]. Injured dorsal root ganglia (DRG) 
secrete miR-23a-enriched EVs, targeting the A20 gene 
and promoting M1 macrophage polarization. EV-miR-
23a antagomir reduces M1 macrophages, pro-inflamma-
tory cytokines, and pain hypersensitivity [234].

EVs effectively target injured neurons and peripheral 
axons [235]. SC-derived EVs are highly focused can-
didates for PNI treatment [230]. Following PNI, SCs 
dedifferentiate to a progenitor-like state, guiding axonal 
regeneration. Exosomes from dedifferentiated SCs sig-
nificantly increase axonal growth by inhibiting GTPase 
RhoA [148] and downregulating PTEN by miR-21 [147]. 
MSC-exosomes enhance neurite outgrowth by express-
ing neural growth factors such as BDNF, fibroblast 
growth factor 1 (FGF-1), glial cell line-derived neuro-
trophic factor (GDNF), IGF-1, and nerve growth factor 
(NGF), while MSC-MVs have the opposite effect [3, 144]. 
However, MVs derived from M1 macrophages increase 
SC proliferation and migration compared to those from 
M0 macrophages [149]. Other beneficial cell sources for 
nerve growth include olfactory ensheathing cells (OECs), 
pericytes, dental pulp stem cells, and induced pluripotent 
stem cells (iPSCs) [150–152, 236, 237]. EVs also address 

complications of PNI, such as injury-induced neuro-
pathic pain [235] and denervation-induced muscle atro-
phy [238]. EVs are also effective in treating non-traumatic 
peripheral neuropathy, such as diabetic peripheral neu-
ropathy and chemotherapy-induced peripheral neuropa-
thy [239, 240].

Multiple optimization techniques show promise in PNI 
treatment. Mechanical stimulation of SCs increases miR-
23b-3p-enriched EVs, which promote DRG neuron sur-
vival and neurite outgrowth [241]. Platelet-rich plasma 
(PRP) supplementation upregulates c-Jun and GDNF in 
the EVs while also promoting parent cell viability [242, 
243]. Hypoxic neural crest cells promote sensory neuron 
repair through miR-21-5p [244]. EVs combined with con-
duits offer more efficient PNI treatment [244–247]. Even 
more advanced, a superparamagnetic nanocomposite 
scaffold, which can mechanically stimulate encapsulated 
SCs to release EVs, optimizes noninvasive and remotely 
time-scheduled nerve repair [248].

PNI models demonstrate the potential of EV therapy in 
the peripheral nervous system (PNS). EVs facilitate nerve 
regeneration by restoring SCs and DRG neurons while 
simultaneously suppressing inflammation. However, dif-
ferent EV subtypes yield distinct outcomes: exosomes are 
therapeutic, whereas MVs can be pathological. Due to 
the size range overlap between exosomes and MVs, the 
purification and characterization of EVs are critical for 
effective treatment outcomes. In addition to conventional 
peripheral nerve models, exploring the effects of EV ther-
apy on cranial nerve injuries is also needed. Advances in 
EV-conduit integration and noninvasive remote sched-
uling systems show great promise for the future of PNI 
treatment, offering more precise and effective therapeu-
tic options.

Epilepsy
Epilepsy stands as a major debilitating brain disorder 
complicated by numerous factors and genetic predisposi-
tions [249]. While antiepileptic medication can suppress 
seizures, it does not improve long-term outcomes. Epi-
lepsy surgery is the most effective treatment but is only 
suitable for selected patients. Prolonged seizures, such as 
status epilepticus (SE), lead to an inflammatory cytokine 
storm mediated by activated microglia and reactive 
astrocytes, causing neurodegeneration, particularly in 
the hippocampus.

EVs can alleviate brain damage from epilepsy by mod-
ulating neuroinflammation [250], similar to stem cell 
transplantation [251]. However, there are only a few 
studies on EVs in epileptic models. Intranasal adminis-
tration of MSC-exosomes immediately after SE reduces 
SE-induced injury in the hippocampus and preserves 
glutamatergic and GABAergic neurons [153]. Loading 
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exogenous GABA into EVs can significantly suppress sei-
zures. EVs derived from GABAergic interneurons (INs) 
and medial ganglionic eminence (MGE) cells were par-
ticularly effective, while EVs from NPSCs showed limited 
efficacy [252].

EVs reduce brain damage by suppressing the inflam-
matory cytokine storm following a seizure. However, it 
remains unexplored whether EV therapy can reduce the 
occurrence of seizures. Current studies primarily utilize 
MSCs as the EV source, with little exploration of other 
cell sources such as neurons and glia. Additionally, there 
is a lack of research on the molecular pathways of EVs 
specific to epilepsy treatment and their effects on elec-
trophysiological properties. With limited investigations 
on the application of EVs in epilepsy, more studies test-
ing EVs in epileptic models are needed to enhance our 
understanding of the pathological and therapeutic roles 
of EVs in this disease.

Alzheimer’s disease (AD)
In the era of an aging society, AD has been routinely 
associated with dementia in the elderly [253]. AD pathol-
ogy manifests as extracellular accumulation of amy-
loid β (Aβ) plaques and intracellular neurofibrillary tau 
tangles in cortical and limbic areas [254]. Aβ peptides 
are phagocytosed by microglia, subsequently trigger-
ing immune neuroinflammation. EVs are closely impli-
cated in AD pathogenesis. Microglia spread tau protein 
through exosomes [85]. Additionally, EVs mediate sys-
temic inflammation and multi-organ dysfunction in AD, 
such as osteoporosis and cardiovascular diseases [255, 
256]. Inhibition of EV biogenesis can reduce Aβ and tau 
accumulation, subsequently delaying disease progression 
[257]. Inhibiting ceramide-dependent exosome forma-
tion with sphingomyelinase (SMase) silencing improves 
cognitive function [85, 258, 259]. Similarly, GW4869, an 
exosome synthesis inhibitor, alleviates neurological defi-
cits in AD [260]. Inhibiting P2X purinoceptor 7 (P2RX7), 
an ATP-gated cation channel important for microglia’s 
exosome release, improves memory in animal models 
[261].

EVs tackle multiple aspects of AD pathogenesis [262]. 
EVs themselves act therapeutically, functioning as a Tro-
jan horse for Aβ accumulation. Exogenous exosomes 
markedly reduce Aβ levels in mouse models by binding 
Aβ to glycosphingolipids (GSLs) and subsequently taken 
up by microglia [168, 263]. EVs have excellent targeting 
ability. MSC-EVs are specifically taken up by neurons in 
pathological regions, suggesting inflammation-driven 
uptake [264]. However, other studies conversely report 
that the majority of EVs are internalized by micro-
glia and astrocytes [154]. MSCs are the most popular 
source of EVs in AD therapy. The proposed mechanisms 

of MSC-EVs include activation of autophagy through 
the catalase enzyme, Nrf2 signaling pathway, miR-
146a-inhibited NF-κB pathway, and miR-223 targeting 
the PTEN-PI3K/Akt pathway [155, 156, 159, 265]. Cer-
ebrospinal fluid (CSF) exchange therapy using artificial 
CSF enriched with MSCs promotes neurogenesis and 
decreases gliosis in the hippocampus [266]. ASC-EVs 
similarly decrease Aβ accumulation, neuronal apoptosis, 
and energy consumption activated by glutamate [161–
163], even more effective than MSC-EVs [267]. EVs from 
other sources, such as NPSCs, neurons, CSF, and human 
brain microvascular endothelial cells (HBMVECs), also 
promote neuronal restoration and cognitive recovery 
[164–169].

Optimized environments affect the therapeutic proper-
ties of EVs. A 3D graphene scaffold produces exosomes 
that more effectively reduce Aβ production [160]. 
Hypoxia preconditioning decreases pro-inflammatory 
miR-770-3p and promotes M2 microglia polarization. 
Similarly, pretreatment with TNF-α and IFN-γ decreases 
microglia activation and promotes neurite outgrowth 
[262].

AD is a significant model of neurodegeneration caused 
by the accumulation of toxic proteins. EV therapy acts as 
a scavenger for misfolded proteins, an immunomodula-
tor, and a promoter of neurogenesis. The targeting prop-
erties of EVs are crucial for precise treatment. However, 
there are still conflicting reports on the main targets of 
EVs, and the mechanisms by which EVs target specific 
cell types or areas of inflammation remain unclear. EVs 
from different sources may target differently; for exam-
ple, EVs from astrocytes may have more specificity to 
neurons than those from MSCs. The extent of EV accu-
mulation in other tissues should also be explored for 
safety, as EV uptake into normal brain parenchyma may 
potentially overstimulate proliferation, leading to tumo-
rigenesis. Given the lack of effective treatments for AD, 
incorporating EV therapy into conventional medication 
regimens may improve outcomes. Further research is 
warranted to fully unravel the efficacy and safety profiles 
and mechanisms underlying EV treatment in AD.

Parkinson’s disease (PD)
PD corresponds to the second most rampant neurode-
generative disorder behind AD [268, 269]. PD is marked 
by degeneration of dopaminergic neurons in the sub-
stantia nigra within the midbrain. The pathological fea-
ture of PD involves the aberrant accrual of α-synuclein, 
which forms intracellular inclusions known as Lewy bod-
ies. Neuroinflammation plays a crucial role in the patho-
genesis of PD [270], and EVs are closely involved in PD 
pathogenesis [271]. Similar to AD, EVs are implicated 
in α-synuclein propagation [82]. Leucine-rich repeat 
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serine/threonine kinase 2 (LRRK2), a mutated protein in 
monogenic PD, is also released through exosomes [83]. 
Additionally, the prion protein, a glycosylphosphati-
dylinositol-anchored membrane protein, is involved in 
α-synuclein transmission through EVs [272, 273].

EVs show potential as a disease-modifying treatment 
for PD. MSC-derived exosomes can traverse the BBB and 
exert neuroprotective effects by promoting cell prolifera-
tion and inhibiting apoptosis through autophagy induc-
tion [170]. Exosomes derived from the dental pulp of 
human exfoliated deciduous teeth (SHEDs) reduce apop-
tosis, whereas MVs from the same cells do not provide 
therapeutic benefits [274]. Exosomes normalize tyrosine 
hydroxylase expression [171]. Moreover, miR-200a-3p-
enriched EVs isolated from healthy astrocytes reduce the 
expression of mitogen-activated protein kinase kinase 4 
(MKK4), a key kinase in the c-Jun N-terminal kinase cell 
death pathway [172].

PD shares a similar pathogenesis with AD, charac-
terized by the propagation of toxic proteins leading to 
neuroinflammation. EV therapy can improve PD by pro-
moting neurogenesis. However, the effects of EVs on the 
primary toxic proteins in PD, such as α-synuclein and 
LRRK2, are still not fully explored. Blocking exosome 
release can reduce the propagation of α-synuclein and 
LRRK2, but the current techniques lack specificity, rais-
ing concerns about potential complications. Exosomes 
and MVs have different effects on PD, with only 
exosomes exhibiting therapeutic outcomes, emphasiz-
ing the importance of EV characterization and selection. 
Additionally, there is a limited variety of EV sources and 
modifications in PD therapy compared to other diseases, 
despite PD being a common cause of dementia. Further 
modifications of EV sources that cater to targeting the 
disease hallmark of dopaminergic depletion and degen-
erative processes (e.g., α-synuclein accumulation) may 
improve the efficacy of EV-based therapies for PD.

Amyotrophic lateral sclerosis (ALS)
ALS exhibits a rapid demise of motor neurons in the 
brain, spinal cord, and peripheral regions, leading to 
muscle weakness, atrophy, and cognitive impairment 
[275, 276]. The pathogenesis of ALS involves multi-
ple factors, including genetic mutations in genes like 
C9orf72, SOD1, TARDBP, and FUS, which result in toxic 
protein aggregation and impaired RNA processing. Neu-
roinflammation plays a crucial role, with initial protective 
responses becoming neurotoxic over time, exacerbated 
by dysfunctional regulatory T cells (Tregs). Additionally, 
oxidative stress and mitochondrial dysfunction contrib-
ute to cellular damage, while glutamate excitotoxicity fur-
ther accelerates neuronal death. Despite advancements 

in understanding these mechanisms, effective therapies 
remain elusive.

There are only a few studies on EV therapy for ALS 
[173, 277]. EVs isolated from ASCs can protect SOD1-
mutated neurons from oxidative stress and normalize 
mitochondrial function [175, 176, 278]. MSC-derived 
EVs were effectively taken up by mouse BECs and 
restored BBB integrity. MSC-exosomes also promoted 
neurite growth and upregulated antioxidant and anti-
inflammatory genes [173, 174]. In a pilot trial in humans 
using allogeneic stem cell-derived exosomes, the patient 
showed signs of stabilization in motor function and res-
piratory capacity during the infusion period, but deterio-
ration occurred after a pause in treatment [279]. Despite 
these transient benefits, the patient eventually experi-
enced acute respiratory failure and passed away. Con-
tinuous administration may be necessary to maintain 
benefits.

ALS is a neurodegenerative disorder with a complex 
pathogenesis. The effects of EV therapy in ALS are pri-
marily focused on reducing oxidative stress and inflam-
mation. However, the sources of EVs are currently 
limited to MSCs and ASCs. Existing studies are insuffi-
cient to fully elucidate the mechanisms of EV therapy in 
ALS. Pilot studies in humans suggest that intermittent 
administration of therapeutic EVs may be inadequate for 
the severe stage. Thus, finding the optimal EV regimen, 
including dosage and frequency, is needed to enhance 
therapeutic outcomes of EVs in ALS. Elucidating differ-
ent EV sources and investigating their specific mecha-
nisms of action may also enhance the efficacy and safety 
of EV therapy for ALS.

Multiple sclerosis (MS)
MS displays a chronic inflammation coincident with 
demyelination of the CNS as evidenced by multifocal 
zones of inflammatory response, leading to neuronal cell 
death and nerve demyelination [280, 281]. The pathogen-
esis of MS involves a complex interplay between genetic 
predisposition and environmental factors, such as expo-
sure to infectious agents, vitamin deficiencies, and smok-
ing. Inflammation leads to oligodendrocyte death and 
impaired myelin repair. Oxidative stress driven by micro-
glial activation and mitochondrial injury contributes to 
demyelination and neurodegeneration. Age-related iron 
accumulation and mitochondrial gene deletions further 
amplify these effects, particularly in progressive MS. 
Although current treatments focus on anti-inflammatory 
and immunomodulatory drugs, they are insufficient to 
halt neurodegeneration, necessitating the exploration of 
novel therapeutic strategies.

EVs play a critical role in the neuroinflammation 
underlying MS. MSCs are widely used as a source of EVs 
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[282]. EVs isolated from MSCs shift microglial polariza-
tion towards the M2 phenotype, increasing Tregs and 
IL-10 [178, 179]. EVs isolated from human periodontal 
ligament stem cells suppress inflammation and apoptosis 
via CD90-inducing IL-10 production [180]. EVs derived 
from microglia co-cultured with immunosuppressive 
MSCs promote oligodendrocyte progenitor cell recruit-
ment and differentiation with lipid cargo [181]. Inter-
estingly, EVs released from pro-inflammatory microglia 
interfere with remyelination only when co-cultured with 
astrocytes, implying that astrocytes may mediate oligo-
dendrocyte toxicity.

EVs are used as immunomodulation therapy in MS 
models, primarily sourced from MSCs and microglia. To 
implement EV therapy more effectively, the molecular 
mechanisms involved in autoimmune-induced inflam-
mation need further elucidation. EVs from immune cells, 
such as anti-inflammatory Tregs or M2 microglia/mac-
rophages, may more potently target the pathogenesis 
of MS. Additionally, EV therapy should focus on other 
aspects of pathogenesis, such as neuronal degeneration 
and demyelination. Since MS is a systemic disease, the 
effects of EVs on other organs should also be explored to 
ensure comprehensive treatment and safety. By under-
standing these mechanisms and tailoring the EVs to 
sequester the complex pathogenesis of MS may reveal the 
optimal treatment regimen of EVs for this autoimmune 
disease that compromises nerve cells in both brain and 
spinal cord.

Huntington’s disease (HD)
HD is marked by a progressive degeneration of basal gan-
glia neurons manifesting with behavioral and psychiat-
ric abnormalities [283]. HD is inherited in an autosomal 
dominant pattern, caused by a mutation in the hunting-
tin gene (HTT) [284]. An expanded CAG trinucleotide 
repeats in the HTT gene results in an abnormal hunting-
tin protein, known as mutant huntingtin (mHTT). The 
number of CAG repeats directly correlates with the dis-
ease’s severity [285]. Accumulation of mHTT in neurons 
leads to cellular dysfunction, mitochondrial dysfunction, 
apoptosis, excitotoxicity, and altered gene expression, 
especially in the striatum and cortex [286]. Similar to 
other toxic protein propagations, there is evidence that 
mHTT is transferred by EVs [84, 287–289].

EVs from ASCs and NPSCs effectively restore mito-
chondrial function, decrease N-terminal cleaved mHTT, 
and suppress apoptosis [182–184]. EVs isolated from 
human dermal fibroblasts also recover GABAergic syn-
apses and transmission [185, 186]. Moreover, hetero-
geneous parasymbiosis in a mouse model showed that 
blood serum containing therapeutic substances, possibly 
EVs, can decrease mHTT and neuron degeneration [188]. 

EVs isolated from human cord blood found that they 
reduced gliosis, increased antioxidant activity, partially 
prevented neuronal loss, and effectively improved neuro-
muscular function [290].

HD is a genetic disorder that currently lacks effec-
tive treatments. EV therapy has the potential to reduce 
mHTT, the main culprit behind neuroinflammation in 
HD. While there are multiple clinical trials involving cell 
transplantation for HD, no clinical trials for EV therapy 
in HD have been conducted yet. Given that mHTT con-
tributes to various aspects of HD pathogenesis, experi-
ments should address multiple domains, including 
mitochondrial dysfunction, RNA instability, excitotoxic-
ity, and proteolysis impairment. Similar to AD and PD, 
HD pathogenesis is driven by toxic protein accumula-
tion—in this case, mHTT. Therapeutic EVs have been 
shown to reduce N-terminal cleavage of mHTT, but 
whether they can act as scavengers for mHTT remains to 
be explored. Further research is needed to investigate the 
direct effects of EVs on HD pathogenesis specifically on 
reducing mHTT and alleviating its downstream degen-
erative symptoms.

Modification and engineering of EVs
Beyond conventional cell-derived EVs, advanced engi-
neering techniques are extensively explored across vari-
ous stem cell types. In the realm of EV content selection, 
the biological components of cell-derived EVs can be 
modulated through culture preconditioning—such as 
hypoxia or cytokine supplementation—to enhance their 
therapeutic efficacy, although the resulting outcomes 
often lack homogeneity [291]. To incorporate small mol-
ecules, RNA, and genetic editing tools into EVs, two 
primary methods of cargo loading are employed: endog-
enous and exogenous [292–295]. Endogenous load-
ing involves the genetic manipulation of parent cells to 
ensure that the secreted EVs inherently carry the desired 
molecules. Conversely, exogenous loading introduces 
cargo directly onto or into the EV membrane through 
techniques such as electroporation, ultrasound, extru-
sion, freeze–thaw cycles, chemical treatments, and 
mechanical stirring. This method, however, faces chal-
lenges related to content volume control, membrane 
disruption, altered surface electrical charge, and dys-
functional surface ligands, which impair uptake. Target-
ing EVs represents another critical area of investigation, 
typically achieved through membrane fusion, chemi-
cal modification, and the genetic engineering of mem-
brane peptides [294, 296]. Such modifications enhance 
fusion efficiency, colloidal stability, and the half-life of 
EVs in the bloodstream while reducing immunogenicity 
[297, 298]. Targeting strategies also improve the preci-
sion of EV delivery; for instance, Lamp2b-expressing EVs 



Page 16 of 24Putthanbut et al. Journal of Biomedical Science           (2024) 31:85 

significantly increase uptake in neurons, microglia, and 
oligodendrocytes within the brain [299]. The engineering 
of EVs thus emerges as a promising approach for large-
scale production and versatile drug delivery platforms. 
Nonetheless, challenges remain in ensuring reproduc-
ibility, safety, and regulatory protocols. With ongoing 
technological advancements, synthetic EVs hold the 
potential to become a pivotal component of personalized 
medicine.

Conclusion
EVs are crucial mediators of cell-to-cell communica-
tion, playing roles in nearly all physiological and patho-
logical processes. EV therapy addresses multiple aspects 
of neurological diseases, including neuroinflammation, 
mitochondrial dysfunction, apoptosis, and BBB leakage. 
Compared to stem cell therapy, EVs are safer and easier 
to handle, making them a promising alternative for thera-
peutic interventions.

Despite the rapid growth in the EV field, much remains 
to be studied. There are numerous EV classes and sub-
classes yet to be fully characterized. The heterogeneity 
within EV classes leads to variability in their effects. Stud-
ies isolating EVs from the same cell line report different 
cargo and mechanisms of action. The effects of EV sub-
populations are also not fully understood, with research 
predominantly focused on exosomes. The roles of MVs 
are still controversial, as they can be either therapeutic 
or pathogenic depending on their source. MVs and other 
large EVs may be worth exploring further since they can 
deliver more cargo. Characterization and purification 
of EVs are crucial for clinical application. To control the 
effects of EVs, production methods need to be strictly 
replicable to avoid heterogeneity, with specific culture 
and modulation techniques. EVs are involved in multi-
ple pathological processes, such as inflammation, tumo-
rigenesis, and toxic protein spreading. Blocking these 
pathological EVs is challenging due to a lack of specificity, 
necessitating more precise techniques for targeting them. 
Multiple sources of EVs have been studied, but not thor-
oughly across all domains of treatment. Some cell sources 
may be better suited for certain roles; for example, stem 
cells for neuroregeneration, glia for immunomodulation, 
and endothelial cells for angiogenesis. The targeting abil-
ity of EVs is another area that has not been extensively 
explored. Optimal EV preconditioning, administra-
tion regimens, and safety profiles also require further 
investigation.

A better understanding of EV subtypes and their spe-
cific roles will mark a significant milestone in medicine, 
leading to safer, more effective and disease-tailored EV 
therapy for a variety of neurological disorders.
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