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Abstract

Background: Endonuclease G (EndoG), a member of DNA/RNA nonspecific Bfa-Me-finger
nucleases, is involved in apoptosis and normal cellular proliferation. In this study, we analyzed the
critical amino acid residues of EndoG and proposed the catalytic mechanism of EndoG.

Methods: To identify the critical amino acid residues of human EndoG, we replaced the conserved
histidine, asparagine, and arginine residues with alanine. The catalytic efficacies of Escherichia coli-
expressed EndoG variants were further analyzed by kinetic studies.

Results: Diethyl pyrocarbonate modification assay revealed that histidine residues were involved
in EndoG activity. His-141, Asn-163, and Asn-172 in the H-N-H motif of EndoG were critical for
catalysis and substrate specificity. HI4|A mutant required a higher magnesium concentration to
achieve its activity, suggesting the unique role of His-14l in both catalysis and magnesium
coordination. Furthermore, an additional catalytic residue (Asn-251) and an additional metal ion
binding site (Glu-271) of human EndoG were identified.

Conclusion: Based on the mutational analysis and homology modeling, we proposed that human
EndoG shared a similar catalytic mechanism with nuclease A from Anabaena.

Background

Endonuclease G (EndoG) belongs to the large family of
DNA/RNA non-specific fpa-Me-finger nucleases [1]. In
vitro studies indicated that EndoG is involved in several
biological functions. For examples, EndoG is capable of
processing primers for mitochondrial DNA replication
[2]. EndoG is also an apoptotic protein that releases from

mitochondria during apoptotic process and serves as an
alternative pathway to cause genomic DNA fragmentation
[3-5]. Moreover, EndoG initiates herpes simplex virus
type 1 (HSV-1) recombination event by cleaving the HSV-
1 a sequence [6]. It is also required for normal cellular
proliferation [7].
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In mammals, EndoG is synthesized as a propeptide in the
cytoplasm and imported into mitochondria through a
process mediated by its amino-terminal mitochondrial-
targeting sequences [2,8]. EndoG preferentially cleaves
DNA at double-stranded (dG),-(dC), and at single-
stranded (dC), tracts, producing 5'-phosphomonoester
ends [9]. The addition of EndoG to isolated nucleus first
induces higher order chromatin cleavage into large DNA
fragments, followed by inter- and intranucleosomal DNA
cleavages [10]. Although the cleavage patterns of EndoG
on plasmid and chromatin have been identified, the criti-
cal amino acid residues of human EndoG remain to be
clarified.

A few nuclease structures have been solved so far. For
examples, nuclease A (NucA) from Anabaena, nuclease
from Serratia, E-group colicins from Escherichia coli (E.
coli), 1-Ppol from Physarum polycephalum, and Vvn from
Vibrio vulnificus are sugar-nonspecific nucleases involved
in host defense [11]. The active sites of these nucleases dis-
play a similar Bpa-Me-finger topology [12]. The critical
amino acid residues involved in nuclease activities have
also been well known. For examples, histidine residues
(His-124 in NucA, His-89 in Serratia nuclease, His-103 in
colicin E9, His-98 in I-Ppol, and His-80 in Vvn) act as gen-
eral bases to active water molecules for the nucleophilic
attacks on the phosphorus atoms [13-17]. Arginine resi-
dues (Arg-93 in NucA, Arg-57 in Serratia nuclease, Arg-5 in
colicin E9, Arg-61 in I-Ppol, and Arg-99 in Vvn) donate
hydrogen bonds to nonbridging oxygens of the scissile
phosphoryl groups and stabilize the product 5' phosphate
[15,16,18-20]. Asparagine residues (Asn-155 in NucA,
Asn-119 in Serratia nuclease, Asn-119 in I-Ppol, and Asn-
127 in Vvn) bind to the essential magnesium ions, which
interact with the 3'-oxygen leaving groups [14,16,21,22].
In this study, we analyzed the roles of conserved histidine,
asparagine, and arginine residues in the catalysis, magne-
sium coordination, and substrate specificity of human
EndoG. Previous study indicated that H-N-N motif of
bovine EndoG is essential for catalysis [1]. Herein we
demonstrated that the H-N-N motif (His-141, Asn-163,
Asn-172) of human EndoG was critical not only for catal-
ysis but also for substrate specificity. His-141 was
involved in magnesium coordination, suggesting the
unique role of His-141 in both the catalysis and the mag-
nesium coordination. In addition to H-N-N motif, the
asparagine and glutamic acid residues near the C terminus
of EndoG were identified to play a role in the catalysis and
magnesium binding, respectively.

Methods

Cloning of human EndoG cDNA

To isolate the human EndoG cDNA, total RNA was
extracted from Hela cells, reverse transcribed by Super-
Script™ III (Invitrogen, Carlsbad, CA, USA), and amplified
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for 35 cycles with P3 (5-CGGGATCCGCCGAGTT-
GCCCCCTGTGCC-3') and M1 (5-CGGAATTCTCACT-
TACTGCCCGCCGTGATGG-3') primers. The 755-bp
EndoG cDNA fragment (A1-48) was inserted into the
BamH I and EcoR I sites of histidine-tagged expression vec-
tor pET-28¢(+) (Novagen, Madison, WI, USA) to create
the pET-EndoG. The plasmid DNA created in this study
was confirmed as an in-frame construction by sequencing.

Expression and purification of recombinant human EndoG
Recombinant human EndoG was expressed in E. coli
BL21(DE3)pLysS strain by transforming the pET-EndoG
to produce an N-terminal fusion with six histidine resi-
dues. The protein was purified as described previously
with slight modification [23,24]. Briefly, cells were
induced by isopropyl-p-D-thiogalactopyranoside. EndoG
was then purified by nickel-affinity chromatography, with
8 M urea present through out the procedure. The protein
in the final column eluate was pooled, renatured by
sequential dialysis, and stored at -70° C until further anal-
ysis. Protein was analyzed by sodium dodecyl sulfate
(SDS)-polyacrylamide gel electrophoresis and quantified
with a Bradford assay (Bio-Rad, Hercules, CA, USA).

Nuclease activity assay

Plasmid pUC18 dsDNA, preparing with the Qiagen plas-
mid midi kit (Qiagen, Valencia, CA, USA), contained
mainly supercoiled and a small amount of open circular
DNA. For nuclease activity, 0.1 pg of pUC18 dsDNA or
EcoR I-linearized pUC18 dsDNA was mixed with 0.1 pmol
purified human EndoG in EndoG buffer (20 mM Tris-
HCl, 1 mM MgCl,, 0.5 mM dithiothreitol, pH 7.5) and
incubated at 37°C for 5 min. The reaction was then
stopped by the addition of stop solution (25% glycerol,
0.5% SDS, 0.05% bromophenol blue, 50 mM EDTA), and
the resulting products were analyzed by electrophoresis
on 1.2% agarose gels.

Chemical modification and hydroxylamine restoration
assay

The chemical modification was performed as described
previously [25]. Briefly, EndoG (0.2 pmol) was mixed
with various amounts of diethyl pyrocarbonate (DEPC)
(Sigma, St Louis, MO, USA) in 50 mM potassium phos-
phate buffer (pH 6.0) and incubated at 25°C for 30 min.
The reaction was then stopped by adding 100 mM imida-
zole (pH 6.0) to a final concentration of 1 mM. The resid-
ual activity was determined by nuclease activity assay. For
hydroxylamine restoration assay, DEPC-modified EndoG
was mixed with hydroxylamine to a final concentration of
20 mM and incubated at 4°C for 5 h. The residual nucle-
ase activity was determined under the standard assay con-
dition. DEPC used in this study was freshly diluted with
absolute ethanol, and the ethanol concentration in the
reaction mixture didn't exceed 2.5% (v/v).
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Site-directed mutagenesis

Site-directed mutagenesis was performed as described pre-
viously [25]. Uracil-containing ssDNA was prepared by
transforming pET-EndoG into E. coli CJ236 strain, which
lost its deoxyuridine triphosphate nucleotidohydrolase
and uracil glycosylase activities. Uracil-containing ssDNA
(0.3 pmol) was annealed with 6 pmol of 5'-kinase primer
in annealing buffer (20 mM Tris-HCl, 2 mM MgCl,, 50
mM NacCl, pH 8.0). The second-strand DNA was then syn-
thesized by the addition of 4 pl of 10x synthesis buffer (4
mM deoxyribonucleotides, 175 mM Tris-HCl, 37.5 mM
MgCl,, 5 mM dithiothreitol, 7.5 mM ATP, pH 8.0), 3 units
of T4 DNA ligase and 1 unit of T4 DNA polymerase, fol-
lowed by sequential incubations on ice for 5 min, at 25°C
for 5 min, and at 37°C for 90 min. The dsDNA was then
transformed into E. coli NM522 strain to destroy the
uracil-containing strand by uracil glycosylase activity and
to allow the mutated strand to be amplified. The primers
for the constructions of EndoG mutants are shown in
Table 1.

Kinetic analysis

Cleavage kinetics was carried out by using various concen-
trations of pUC18 dsDNA substrate and constant
amounts of EndoG [26]. Reactions were initiated by com-
bining reaction buffer, substrate, and enzyme in that
order. Samples were mixed and incubated at 37°C for 3
min. The products and substrates were then separated by
agarose gel electrophoresis, and the intensities of products
and substrates on the gel were measured by the Gel-Pro®
Analyzer (Media Cybernetics, Inc., Silver Spring, MD,
USA). The initial velocity was calculated by using the
equationv = {I1/(10+0.511)t} x [substrate]|, where t = time
in seconds, I1 = product intensity, and 10 = substrate con-
centration. Vmax and Km values were calculated by
directly fitting the data to the Michaelis-Menten equation,
and kcat and kcat/Km were then derived.
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Sequence-specific cleavage assay

Sequence-specific cleavage assay was performed as
described previously with modification [6]. The plasmid
DNA pKJH20, containing the HSV-1 a sequence, was
kindly provided by Ke-Jung Huang (Department of Bio-
chemistry, Beckman Center, Stanford University). The
pKJH20 DNA was cleaved by EcoR I and Xba I to generate
2.8-kb and 1.6-kb fragments. Recombinant human
EndoG was mixed with 0.2 pg of EcoR I/Xba I-treated
pKJH20 in EndoG buffer containing 15 mM spermidine
and incubated at 37°C for various periods. The reactions
were then stopped by the addition of stop solution, and
the resulting products were analyzed by electrophoresis
on 1.2% agarose gels.

Protein structure prediction

The structure of human EndoG was modeled using the
NucA from Anabaena (PDB code 1ZM8) as the reference
protein. Protein structure was generated via the GeneSil-
ico metaserver gateway http://genesilico.pl/meta/[27].
'FRankenstein's monster' approach was applied to refine-
ment of the EndoG structure [28].

Results

Chemical modification of human EndoG

Histidine residue has been implicated in the active site of
several nucleases, including colicin E9, Serratia nuclease,
I-Ppol, Vvn, and viral deoxyribonuclease (DNase)
[13,25,29,30]. In order to determine whether the histi-
dine residue was also responsible for the catalytic activity
of human EndoG, we treated EndoG with various
amounts of DEPC. The residual catalytic activities of
DEPC-modified EndoG were then determined under
standard assay conditions. DEPC can modify different
nucleophiles (such as amine, alcohol, thiols, imidazole,
and guanido group), producing the carbethoxyl deriva-
tives. At pH 6.0, DEPC is mostly specific for histidine;
however, it also reacts to a smaller extent with lysine. The

Table I: DNA oligonucleotides for the constructions of human EndoG mutants.

Primer name Primer sequence?

RI10A 5'-GCACTCTCGAGCGTCGCCGTCGCCGCGGAGACG-3'
RI139A 5'-CAGGTGGCCGGCGTCGAAGCCACTGCCGCGG-3'
HI41A 5-GGCCAGGGCCCCGCGGTCGAAGCCACTGCC-3'

HI141D 5'-GGCCAGATCTCCGCGGTCGAAGCCACTGCCGC-3'
NI163A 5'-GGGGCGCTACAGCGCTCAGGTAGAACGTGTCGTCC-3'
N163K 5'-CACCTGGGGCGCGACCTTGCTCAGGTAGAAC-3'
NI172A 5'-CATTCTGCGCAAGGTGGGGCACCTGGGGCGCG-3'
R184A 5'-TCAAGCTTGCGCTATATTTCTCCAGGTTGTTCC-3'
H228A 5-TTGAAGAATGCTGTGGGCACTGCCACGTGG-3'

H228D 5-GAAGAAGTCTGTAGGCACTGCCACGTGGTTCTTGCC-3'
N251A 5-AGGTGCTGCAGGCATCACGTAGGTGCGGAGC-3'

E271A 5'-CGAAGCCCGAGCAATGCTCTCGATGGGCACCAGG-3'
R272A 5'-CAGCCCTGAGGCCGCCTCAATGCTCTCGATGGGCACC-3'

2Bold sequences indicate codon changes
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modified residues could be further differentiated by
hydroxylamine restoration assay. Lysine-modified
enzymes cannot recover their activities in the presence of
hydroxylamine, whereas histidine-modified enzymes
retrieve their functions after the treatment of hydroxy-
lamine [31]. Carbethoxylation of EndoG by DEPC
resulted in a loss of enzyme activity, and the inactivation
was dose-dependent (Figure 1). However, treatment of
DEPC-modified EndoG by hydroxylamine restored the
lost catalytic activity. These findings suggested that histi-
dine residues were involved in the catalytic activity of
human EndoG.

Enzyme kinetics of human EndoG variants

In addition to histidine residues, we also analyzed the
roles of asparagine, arginine, and glutamic acid residues
in EndoG activity. Asparagine and arginine are essential
for catalysis in various nucleases [32-34]. Glutamic acid
has also been implicated in the magnesium binding of
nucleases [22,35]. By multiple alignment of EndoG
homologs from human, nematode, and yeast, we found
that histidine residues at positions 141 and 228, asparag-
ine residues at positions 163, 172 and 251, arginine resi-
dues at positions 110, 139, 184 and 272, and glutamic
acid at position 271 of human EndoG were highly con-
served (Figure 2). These conserved amino acid residues

EndoG + + + +
[DEPC], mM 0 0.1 02 04
Hydroxylamine

Figure |
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were then replaced with alanine, lysine, or aspartic acid
residue to generate 14 EndoG mutants. The mutants were
then expressed and purified to homogeneity, and the
enzyme kinetics of EndoG mutants was analyzed under
Michaelis-Menten conditions.

Figure 3 shows that the cleavage products (open circular
and linear forms) were generated by EndoG. To determine
the Michaelis constants (Km) and catalytic-centre activity
(kcat) values of EndoG, nuclease assays were carried out
using various concentrations of substrates, a constant
amount of enzyme and gel electrophoresis, and the initial
cleavage rates were measured by quantifying cleavage
products. The Km and kcat values of wild-type EndoG
derived from these experiments were 18.72 + 1.84 nM and
0.07 £ 0.01 S, respectively.

A comparison of kinetic parameters for EndoG wild type
and mutants is shown in Table 2. The activities of R110A
and E271A mutants could not be determined accurately,
as they aggregated with supercoiled pUC18 dsDNA.
Replacement of His-141 and Asn-163 with alanine and
lysine, respectively, resulted in a slight decrease in Km.
However, a dramatic reduction in Km was observed when
the conserved arginine residues at positions 139, 184, and
272 were substituted by alanine. Mutation at Asn-251 also

0.2

0.4

Chemical modification of human EndoG. EndoG (0.2 pmol) was mixed with various amounts of DPEC and incubated at
25°C for 30 min. The residual activity was analyzed by standard assay conditions (lanes | to 4). An assay for restoration with
hydroxylamine was performed by incubating 20 mM hydroxylamine and DEPC-treated EndoG together at 4°C for 5 h. The
residual activity was then analyzed (lanes 6 to 9). Lane 5 represents the reaction performed in the absence of EndoG. Arrow-
heads denote the different topological forms of pUC18 plasmids. OC: open circular; L: linear; SC: supercoiled.
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Human MRALRAGLTLALGAGLGAVVEGWR————-— RRREDARAAPGLLGRLPVLPVAAAAELPPVP 55
Nematoda MIGKVAGTAAIAGISFLAGKYSNDDLP IFRNVQSATNVPMNQIQVSEPMTVKPASLNADA 60
S. cerevisiae ————-— MCSRILLS—-GLVGLGAGTGLTYLLLN-——-—-KHSPTQIIETPYPPTQKPNSNIQSH 50
S. pombe ————- MSSNLIKSFGLIAIGAISGVTFTHFYYKGYQGSDVPDLTPRYTKFDSAGRALES— 54
NucaA e MGICGKLGVAALVALIVG—==—=——==————— CSPVQSQVPPLTELSPSISVH 39
Consensus =  ———- oo T oo oo oo
Human GGPRGPGELAKYGLPG-LAQLKSRESYVLCYDPRTRGALWVVEQLRPERLRGDG—-DRRE 112
Nematoda MGPSRSAEIMKHGYPG-FTINVRTYEDFVLSYDYKTRTAHWVCEHLTPERLKHAEGVDRKL 119
S. cerevisiae SFNVDPSGFFKYGFPGPIHDLQNREEFISCYNRQTONPYWVLEHITPESLAARNA-DRKN 109
S. pombe IYDFNATKFFQYGIPGPVADQRVNHGYMSVFDRRTRNPFYTAETITQESLNQRKG-NRRY 113
NucA LLLGNPSGATPTKLTP-DNYLMVKNQYALSYNNSKGTANWVAWQLNSSWLGNAE-—-R-Q 94
Consensus =  — - - T oo oo L R—-
Human CDFREDDSVHA-YHRATNADYRGSGFDRGHLAAAANHRWSQKAMDDTFYLSNVAPQVPH—- 170
Nematoda CEFKPDITFPQ-KFLSQNTDYKCSGFDRGHLAAAGNHRKSQLAVDQTFYLSNMSPQVGRG 178
S. cerevisiae SFFKEDEVIPE-KFRGKLRDYFRSGYDRGHQAPAADAKFSQQOAMDDTFYLSNMCPQVGEG 168
S. pombe SEFVPDDNIPE-MFQAKLGDYRGSGYDRGHQVPAADCKF SQEAMNETFYLSNMCPQVGDG 172
NucA DNFRPDKTLPAGWVRVTPSMYSGSGYDRGHIAPSADRTKTTEDNAATFLMTNMMPQTPD- 153
Consensus ——F-D-—————————— Y--SG-DRGH-—=====————————~ TF-——-N—PQ————
Human LNONAWNNLEKYSRSLTRSYQNVYVCTGPLFLPRTEADG-KSYVKYQVIGKN-HVAVPTH 228
Nematoda FNRDKWNDLEMHCRRVAKKMINSYIITGPLYLPKLEGDG-KKYIKYQVIGDN-NVAVPTH 236
S. cerevisiae FNRDYWAHLEYFCRGLTKKYKSVRIVTGPLYLPKKDPIDNKFRVNYEVIGNPPSIAVPTH 228
S. pombe FNRNYWAYFEDWCRRLTSKYGSVTIMTGPLYLPKKNERG-QWEVQYRVIGNPPNVAVPTH 231
NucA NNRNTWGNLEDYCRELVSQGKELYIVAGPNGSLGKPLKG-KVIVPKSTWKIVVVLDSPGS 212
Consensus “N-—--W-—--E---R--mmmmmmmm GP———mm e e e P-—-
Human FFKVLILEA-———— AGGQIELRTYVMPNAPVDEATPLERFLVPIESTIERASGLLFVPNIL 283
Nematoda FFKVALFEV—-———— TPGKFELESYILPNAVIEDTVEISKFHVPLDAVERSAGLEIFARLD 291
S. cerevisiae FFKLIVAEAPTANPAREDIAVAAFVLPNEPISNETKLTDFEVPIDALERSTGLELLQKVP 288
S. pombe FFKVIIAEK--SGEPTSSPSVAAFVLPNKP IADNFPLKNFAVPVEVVERASGLEILSNVP 289
NucA GLEGITANT-————————— RVIAVNIPNDPELNN-DWRAYKVSVDELESLTGYDFLSNVS 261
Consensus =  ——————————o oo oo — L Vom——— e
Human AR--AGSLKAITAGSK-———————————————————————— 297
Nematoda PKSIVKENGAKKGGLLW-——————————————————————— 308
S. cerevisiae PSKKKALCKEVNCQIVVRDFSNAATIKQSKDVKLLPPPKKRN 329
S. pombe KGNRKQLCSEVVCQLNVKEFVESVKQKQKNQGK———————— 322
NucA PNIQTSIESKVDN-——————————————————————————— 274
Consensus =  ————- oo oo oo oo

Figure 2

Multiple alignment of EndoG homologs with NucA. Amino acid sequences of EndoG homologs, including human, nem-
atode (Caenorhabditis elegans), budding yeast (Saccharomyces cerevisiae), and fission yeast (Schizosacharamyces pombe), were
compared with those of NucA by PileUp program. Residues that are identical in all nucleases are shown at bottom. The loca-
tion of signal peptide is underlined. The amino acid residues mutated in this study are shaded in grey.
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Figure 3
Kinetic analysis of human EndoG. (A) Electrophoresis analysis. EndoG (0.05 pmol) was mixed with various amounts of

supercoiled pUCI8 dsDNA and incubated at 37°C for 3 min. The resulting products were then analyzed by 1.2% agarose gels.
Arrowheads denote the different topological forms of pUCI8 plasmids. OC: open circular; L: linear; SC: supercoiled. (B) Initial
velocity of DNA cleavage as a function of substrate concentration. Steady-state kinetic parameters were determined by curve

fitting of these values to the Michaelis-Menten equation.
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Table 2: Steady-state kinetic data for human EndoG variants.

http://www.jbiomedsci.com/content/16/1/6

EndoG variants Km (nM)a kcat (S-')2 kcat/Km (S-nM-1)a
Wild type 18.72 + 1.84 0.07 £ 0.01 3.58 x [03+£3.11 x |04
RI10A n.d. n.d. n.d.
RI39A 1.01 £0.03 2.77 x 105+ 4.44 x |07 275 x 105+ 1.47 x 106
HI41A 1293 £ 2.17 248 x 10-6 + 4.34 x 107 1.96 x 107+ 4.78 x |08
HI4ID 1.94 £ 0.05 9.68 x [0-6+ 259 x |0-13 5.03 x 106+ 1.72 x 107
NI63A 851 £2.28 7.52 % 106+ |.4] x |06 9.05 x 107+ 7.67 x 108
N163K 12.10 £ 2.03 2.35% 106+ 1.85 % 107 1.99 x 107+ 1.6 x |08
NI172A 875+ 0.13 3.77 x 105+ 4.26 x |08 431 x 106+ 595 x |08
RI184A 1.53 £ 0.02 7.68 x 103+ 3.27 x |0-10 503 x 104+ 1.91 x 105
H228A 6.0l £ 1.88 534 % 103+271 x 103 8.6l x 104+ .81 x |04
H228D 5.70 £ 0.33 4,74 x 104+ 1.78 x 10-5 833 x 105+ .75 x 106
N251A 3.13+£037 3.15x |06+ 5.68 x 10-14 1.02 x 106+ 6.64 x 10-8
E271A n.d. n.d. n.d.
R272A 2.30 £ 0.20 3.67 x 103+£9.23 x |05 1.61 x 10-3+9.96 x |10-5
HI141A/H228A 8.06 £ 1.92 1.18 x 107+ 1.26 x 108 1.48 x 108+ 1.98 x |09

2 Data are presented as mean * standard error of triplicate assays.
n.d., not determined.

lead to a markedly decrease in Km. These findings indi-
cated that the dissociations of the Michaelis complex
between mutants (R139A, R184A, N251A, and R272A)
and DNA substrate were smaller than that of wild-type
EndoG.

Mutations at His-141, Asn-163, and Asn-251 showed
drastically reduced activities (< 0.01%), suggesting that
these amino acid residues were critical for catalysis. A large
decrease in activity (~0.1%) was also observed when the
asparagine at position 172 was substituted by alanine.
Less dramatic effects (> 10%) were observed when His-
228, Arg-184, and Arg-272 were replaced with alanine.
Most of the mutants were mainly affected in their kcat,
while H141D and N251A exhibited a decrease in both
kcat and Km. N172A was more affected in its kcat than
Km. These findings suggested that His-141, Asn-163, Asn-
172, and Asn-251 of human EndoG were involved in
catalysis.

Magnesium requirements of human EndoG variants

We investigated the magnesium requirements of EndoG
wild type and mutants as described previously [13]. The
maximal catalytic activity of wild-type EndoG would be
achieved at magnesium concentration of 1 mM (Figure 4).
Moreover, the enzyme activity of wild-type EndoG was
inhibited at a higher magnesium concentration. All the
EndoG mutants shared similar profiles with wild type
(data not shown). However, H141A and E271A achieved
the maximal activities at a 20-fold higher magnesium con-
centration (20 mM) than wild-type EndoG. The optimal
magnesium concentration of H141A/H228A double
mutant was almost the same as that of H141A. These
mutants had lower affinities for the magnesium ion cofac-
tor than the wild-type EndoG, suggesting that magnesium

ion might be coordinated directly by His-141 and Glu-
271 of human EndoG.

Cleavage specificities of human EndoG variants

EndoG is highly specific for (dG), - (dC), tracts in DNA,
generating single strand cleavages within the dG-dC
homopolymer pair [9]. We further analyzed the roles of
conserved amino acid residues in the cleavage specificity
of human EndoG. Sequence-specific cleavage assay was
carried out by using pKJH20 as the substrate. Plasmid
pKJH20 was derived from pBluescript II SK (+) by insert-
ing a 340-bp HSV-1 a sequence-containing fragment into
the BamH I site and a 1.24-kb kanamycin cassette into the
DPst 1 site. The a sequence is a GC-rich (85%) fragment,
containing many strings of dG, (n = 4-8) [6]. Plasmid
pKJH20 was cleaved by EcoR 1 and Xba 1 to generate the
2.8-kb and 1.6-kb substrates, where the GC-rich fragment
is located within the 1.6-kb fragment (Figure 5A). When
the enzyme cleaved DNA within the GC-rich fragment,
the 1.6-kb substrate fragment would be cleaved to gener-
ate the 1.3-kb product fragment. As shown in Figure 5B,
wild-type EndoG initially cleaved the 1.6-kb fragment to
generate the 1.3-kb fragment. With prolonging the diges-
tion time, EndoG cleaved both fragments (2.8 kb and 1.6
kb) to generate diffuse bands. Mutations at arginine resi-
dues displayed the similar cleavage patterns with wild
type. R110A, R139A, and R184A preferentially cleaved the
1.6-kb fragment. When the incubation period was
extended, the 1.6-kb fragment was totally digested to gen-
erate the 1.3-kb fragment, and both fragments (2.8 kb and
1.3 kb) were consequently degraded to generate diffuse
bands. In contrast to these mutants, H141A, N163A,
N172A, and N251A cleaved both fragments equally. With
extending the digestion time, both fragments were
degraded to low-molecular-weight-fragments. These find-
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(A)
Mg®¥,mM C 0 05 1 2 4 8 12 20 40 80

Wild type
(0.05 pmol, 10 min)

H141A
(15 pmol, 96 h)

E271A

(5 pmol, 20 min)

B)

12 r —=— wild type
———HI41A
—o0—HI141A/H228A
——E271A

Relative activity

30 . ) 50 50 70 \ﬁ)

Magnesium concetration (mM )

Figure 4

Magnesium requirements of human EndoG variants. (A) Electrophoresis analysis. EndoG variants were mixed with 0.1
g of linear pUCI18 dsDNA in EndoG buffer containing various amounts of magnesium. The reaction mixtures were incubated
at 37°C for indicated periods. The resulting products were analyzed by |.2% agarose gels. Lane C represents the reaction per-
formed in the absence of EndoG. (B) Densitometric analysis. Activities are given as relative values with respect to the maxi-
mum activity for each variant.

Page 8 of 14

(page number not for citation purposes)



Journal of Biomedical Science 2009, 16:6 http://www.jbiomedsci.com/content/16/1/6

(A)
EcoR 1 Xbal EcoR 1
I o |
44— 28kb > «¢ 1.6 kb — Substrates
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(B)
wt, Il pmol  R110A,4.5pmol RI139A, 10 pmol R184A, 2 pmol
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<4— 28kb
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Figure 5

Cleavage specificities of human EndoG variants. (A)Sequence-specific cleavage assay. The structure of EcoR I-linearized
pKJH20 DNA is shown at the top, with the open box designating the GC-rich sequence region (0.3 kb). Xba | site is located 1.6
kb from the EcoR | site at the 3' end of the linear pKJH20 DNA. In the cleavage assay, pKJH20 was cleaved by EcoR | and Xba |
to generate the 2.8-kb and 1.6-kb substrates. Enzymes cleaving within the GC-rich sequence are expected to generate both the
2.8-kb and the 1.3-kb product fragments. (B) Electrophoresis analysis. The reaction mixtures containing 0.2 pug EcoR 1/Xba I-
treated pKJH20 and EndoG variants were incubated at 37°C for various periods. The resulting products were analyzed by 1.2%
agarose gels. Arrowheads denote the substrate and product fragments.
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ings suggested that His-141, Asn-163, Asn-172, and Asn-
251 were critical for substrate specificity, while Arg-110,
Arg-139, and Arg-184 might not be involved in the cleav-
age specificity.

Discussion

In this study, we demonstrated the roles of conserved his-
tidine, arginine, and asparagine residues in catalysis, mag-
nesium coordination, and substrate specificity of human
EndoG. The primary sequence analysis revealed that
EndoG contained the DRGH prosite motif, which is a
characteristic of highly active, divalent metal ion-depend-
ent, non-specific nucleases (Figure 6A) [22]. The site-
directed mutagenesis analysis demonstrated that H-N-N
motif (His-141, Asn-163, and Asn-172) of human EndoG
were critical for catalysis and substrate specificity. The sec-
ondary structure analysis revealed that EndoG contained
an active site with the BBa-Me-finger fold, which is the
characteristic of many H-N-H superfamily endonucleases
(Figure 6A) [34]. Based on the results of our analysis, we
reported herein the biochemical evidence for human
EndoG that belongs to the H-N-H superfamily and exhib-
its a catalytic motif based on the Bpa-Me-finger fold.

The H-N-H nucleases include heterogeneous group of
enzymes with diverse functions but with similar active
sites. A few examples are: sugar nonspecific nucleases such
as NucA and Serratia nuclease, nonspecific DNases such as
E. coli colicin E9, and homing endonucleases such as I-
Ppol [17,21,22,36]. A similar Bpa-Me topology has been
revealed in the active site regions of these nucleases [12].
Moreover, the H-N-H motif, characterized by the presence
of a conserved Asn/His residue flanked by conserved His
and His/Asn residues at some distance, is presented in
these endonucleases [17,31,36]. The histidine residue in
the BBa-Me finger is ideally positioned to act as a general
base to activate a water molecule for the nucleophilic
attack on the phosphorous atom [22]. By results of muta-
tional analysis, we revealed that His-141 was responsible
for catalysis of human EndoG. His-141 was also highly
conserved among these nucleases (NucA, His-124; Serra-
tia nuclease, His-89; colicin E9, His-103; I-Ppol, His-98)
[13-15,17]. These findings indicated that His-141 of
human EndoG would act as a general base.

Magnesium, the most abundant divalent metal ion in
mammalian cells, plays structural and catalytic roles in
many cellular processes [37]. Magnesium ion functions as
a cofactor of proteins involved in DNA replication and
repair pathways. It is required for activity and fidelity of
DNA polymerase. It is also required for the activities of
nucleases, such as apurinic/apyrimidinic endonuclease,
MutH, RNase A, DNase I, and viral DNase [23,38-41].
Additionally, magnesium ions are not only required for
the phosphoryl-transfer reaction, they also play a role in

http://www.jbiomedsci.com/content/16/1/6

substrate binding [42]. The enzyme activities of EndoG
and Serratia nuclease were inhibited at a higher magne-
sium concentration [13], suggesting that excessive
amount of magnesium ion might interfere the nuclease-
DNA interaction and result in the inhibition of enzymatic
activities. The active site of the H-N-H endonucleases sup-
plies one or two magnesium ligands as identified by crys-
tal structure analysis: Asn-155 in NucA, Asn-119 in
Serratia nuclease, His-102 and His-127 in colicin E9, and
Asn-119 in I-Ppol [14,17,21,22]. Traditionally, enzymes
that utilize magnesium are known to contain metal-bind-
ing sites that are created by acidic residues [43-45]. How-
ever, there is precedent for the binding of magnesium by
histidine in several enzymes. For examples, His-607 and
His-643 of phosphodiesterase-5 act as direct participants
in coordinating the magnesium required for catalysis [33].
His-102 and His-127 of colicin E9 are included in the
coordination shell of a magnesium ion in the colicin E9
active site [17]. Previous study suggested that Asn-174 of
bovine EndoG, corresponding to Asn-172 of human
EndoG, is a putative magnesium ligand [1]. By results of
mutagenesis, we demonstrated that His-141 instead of
Asn-172 might be coordinated with magnesium because
H141A mutant required a higher magnesium concentra-
tion to achieve the maximal activity. These findings sug-
gested the unique role of His-141 in both catalysis and
magnesium binding of human EndoG. In addition to His-
141, an additional residue (Glu-271) located near the C
terminus of human EndoG was also coordinated with
magnesium ion. A second metal binding site (glutamic
acid) located near the C terminus of the protein was
present in human EndoG (Glu-271) and NucA (Glu-249)
but not in other H-N-H endonucleases [22]. These find-
ings suggested the closest similarity between EndoG and
NucA.

Human EndoG participates in the HSV-1 genomic inver-
sion by cleaving the a sequence [6]. The recombinant
human EndoG preferentially cleaved the GC-rich frag-
ment, also indicating that EndoG preferentially cleaved at
the GC-rich sequence. However, the sequence preferences
of EndoG mutants were disappeared; H141A, N163A,
N172A, and N251A cleaved both fragments to generate
low-molecular-weight fragments. These results suggested
that His-141, Asn-163, Asn-172, and Asn-251 were
required not only for catalysis but also for sequence spe-
cificity of human EndoG. Previous study proposed that
arginine residues are critical for DNA binding of bovine
EndoG [1]. However, the cleavage specificities of R110A,
R139A, and R184A were similar as that of wild type. These
results suggested that arginine residues at positions 110,
139, and 184 of human EndoG might be involved in the
DNA substrate interactions but not in the cleavage site
determination.
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(A)

= — -
EndoG 134 SGFDRGiL. .(20) ...NVAPQVPHLNQONAWNNLEKYSRSL 186
NuchA 117 PGYARGHI.. (20) ...NMMPQTPDNNRNTWGNLEDYCREL 169

Serratia nuclease 82 LKVDRGHQ.. (19).. .NITPQKSDLQGAWARLEDQERKL 133

> ) <

I-Ppol 91 KTCTASHL.. (10)...HLCWESLDDNKGRN. ......... 123

ColE9 96 KVYELHHD.. (13)...NIRVITPKRHIDIH.......... 131
> )

T4endoVII 34 QANHLDJHDH. . (8) . .KVRGLLCNLCNAAEGQMKHKENRS. 75

(B)

Human EndoG NucA

Figure 6

Sequence alignment and structure of H-N-H nucleases. (A) Multiple alignment of human EndoG H-N-N motif with H-
N-H nucleases. Amino acid sequences of human EndoG, NucA, Serratia nuclease, ColE9, I-Ppol, and T4 endoVIl were aligned.
The amino acid residues representing the H-N-H motif are highlighted in red. The two B-strands and the a-helix of H-N-H
motif are indicated by arrows and tube, respectively. The amino acid residues acting as general bases are highlighted in grey.
Boxed residues represent the amino acid residues involved in magnesium coordination. (B) Comparison of the modeled struc-
ture of human EndoG and the experimentally solved structure of NucA (PDB code 1ZM8). BBa-Me-finger motif is highlighted
in purple. Amino acid residues involved in catalysis, magnesium coordination, and substrate specificity are indicated and labeled.

Mutational analysis indicated that H-N-N motif (His-141, = His-141 and Glu-271 were critical for magnesium coordi-
Asn-163, Asn-172) of human EndoG was essential for = nation. EndoG and NucA share ~24.4% sequence identity
catalysis. N251A mutant lost its enzyme activity, indicat-  (~39.5% similarity), which is most pronounced in the
ing that Asn-251 was also involved in catalysis. Moreover,  active site region (Figure 2). Moreover, EndoG shares sim-
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ilar enzyme activities and biological functions with NucA.
For examples, both proteins are divalent metal ion-
dependent nonspecific nucleases, which are characterized
by the DRGH PROSITE motif [46]. They also participate
in host defense [22]. Therefore, we build a homology
model of the three-dimensional structure of human
EndoG based on the crystal structure of NucA (Figure 6B).
A good structural superposition for human EndoG and
NucA could be achieved. Three arginine residues, Arg-110,
Arg-139, and Arg-184, were distributed on a line. Muta-
tion on these arginine residues resulted in the decreased
Km, suggesting that arginine residues were involved in
DNA binding. A rigid V-shaped architecture of human
EndoG formed the catalytic site, where His-141, Asn-163,
and Asn-172 were located within the cleft. Based on the
mutational analysis and homology modeling, we pro-
posed that the V-shaped cleft of human EndoG might be
involved in DNA cleavage, DNA binding, and substrate
recognition. Additionally, it seems very likely that EndoG
follows a mechanism that is similar to that of NucA. In
this model, His-141 acts as the general base that generates
a hydroxyl ion for a nucleophilic attack on the scissile

His-141

Arg-110\

RO,PO

http://www.jbiomedsci.com/content/16/1/6

phosphodiester bond by activating a water molecule (Fig-
ure 7). The side-chain nitrogen of Arg-110 donates hydro-
gen bond to nonbridging oxygen of the scissile
phosphoryl group to stabilize the cleaved DNA product.
Magnesium ion, which was coordinated by His-141 and
Glu-271, also interacted with a nonbridging oxygen of the
scissile phosphoryl group and stabilize the oxyanion leav-
ing group. It is noticed that an additional catalytic residue,
Asn-251, and the additional magnesium coordinated site,
Glu-271, were potentially located far from the cleft. How
the Asn-251 and Glu-271 cooperated with H-N-N motif
and participated in the DNA catalysis remained to be fur-
ther clarified.

Conclusion

In conclusion, the roles of conserved histidine, arginine,
and asparagine residues in catalytic, magnesium coordi-
nation, and substrate specificity of human EndoG were
analyzed. The H-N-N motif (His-141, Asn-163, Asn-172)
of human EndoG was critical for catalysis and substrate
specificity. His-141 was also essential for magnesium
coordination. An additional catalytic residue (Asn-251)

Glu-271

OPO,R

Base

Figure 7

Proposed catalytic mechanism of EndoG. His-141 acts as a general base to activate a water molecule, generating a nucle-
ophile that attacks the phosphodiester bond. Arg-110 and magnesium ion stabilize the transition state.
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and an additional magnesium ligand (Glu-271) of
human EndoG were identified. Based on the mutational
analysis and homology modeling, we speculated that
human EndoG shared a similar catalytic mechanism with
NucA from Anabaena.
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