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Abstract

in 320 HSR colon cancer cells.

Background: Histone deacetylases and histone acetyl transferases covalently modify histone proteins,
consequentially altering chromatin architecture and gene expression.

Methods: The effects of suberoylanilide hydroxamic acid, a HDAC inhibitor, on 320 HSR colon cells were assessed

Results: Concentration and time-dependent inhibition of 320 HSR cell proliferation was observed. Treatment of
320 HSR cells with 5 uM SAHA for 72 h significantly inhibited their growth by 50% as compared to that of the
control. Fluorescence-activated cell sorting analysis demonstrated significant inhibition of cell cycle progression
(sub-G1 arrest) and induction of apoptosis upon various SAHA concentrations after 48 h. In addition, the anti-
apoptosis proteins, survivin and Bcl-xL, were significantly inhibited by SAHA after 72 h of treatment.
Immunocytochemistry analysis revealed that SAHA-resistant cells were positive for cyclin A (85%), ki-67 (100%), p53
(100%), survivin (100%), and p21 (90%) expression. Furthermore, a significant increase cyclin A-, Ki-67-, p53-,
survivin-, and p21-positive cells were noted in SAHA-resistant tumor cells.

Conclusion: Our results demonstrated for the first time in 320 HSR colon adenocarcinoma cells that SAHA might
be considered as an adjuvant therapy for colon adenocarcinoma.

Background
Histone deacetylases (HDAC) and histone acetyltransfer-
ase have antagonistic actions on histones, depending on
the cell state [1,2]. Epigenetic regulation of gene expres-
sion has been the subject of growing interest, and
HDAC inhibitors (HDACI) represent a new target for
treatment of cancers [3,4]. One HDAC], suberoylanilide
hydroxamic acid (SAHA), has promising anticancer
activity through covalent modification of histone pro-
teins, specifically inhibiting HDACs. A recent study
reported that SAHA induced the accumulation of acety-
lated histones by direct interaction with HDAC [5].
Previous studies have shown that SAHA induces
apoptosis through activation of the apoptotic pathway
[6] and is associated with down-regulation of anti-
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apoptotic proteins and activation of pro-apoptotic
protein expression. In addition, SAHA induces
p21-mediated cell cycle arrest and cell death in cancer
cells [7].

For colon cancers, surgery to remove a segment of
colon tissue constitutes the principle therapy [8]. In
cases with metastatic lesions or high stage disease, sur-
gery is followed by chemotherapy to ablate any remain-
ing cancer cells [9]. Although the prognosis of patients
with colon cancer has recently improved with advanced
therapy, some cases remain refractory to advanced ther-
apy. Thus, development of new target therapies is neces-
sary for the successful treatment of those cases.

To our best knowledge, the effects of SAHA were not
studies in 320 HSR colon adenocarcinoma cells in pre-
vious publication. Here, we analyzed the effect of SAHA
on a colon cancer cell line, 320HSR cells. SAHA effi-
ciently inhibited cell growth and induced cell apoptosis,
indicating that SAHA might represent a promising adju-
vant therapeutic agent for the treatment of colon cancer.

© 2010 Sun et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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Methods

Cell line

The human colon adenocarcinoma cell line, 320 HSR
(BCRC) cells, were cultured in 90% RPMI 1640 medium
supplemented with 2 mM L-glutamine adjusted to con-
tain 1.5 g/L sodium bicarbonate, 4.5 g/L glucose, 10 mM
HEPES, 1.0 mM sodium pyruvate, and 10% heat-inacti-
vated fetal bovine serum. Cell monolayers were routinely
grown to confluence at 37°C in 5% CO, prior to analysis.
This study has been approved by the Internal Review
Board of Tri-Service General Hospital (No. 097-05-147).

Cell proliferation analysis

For MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenylte-
trazolium bromide) assays, 320 HSR cells were cultured
in 96-well culture plates at a density of 7000 cells/well
with 200 pL culture medium. Suberoylanilide hydroxa-
mic acid (SAHA) was purchased from Cayman Chemi-
cal Company, Ann Arbor, Michigan, USA. After
overnight plating, SAHA at concentrations of 0.5, 1, 2.5,
5, 10, 20, and 25 pM was added for 24 h, 48 h and 72
h. After culturing overnight, 20 pL MTT (5 mg/mL in
PBS) was added to each well. After additional 0.5 h at
37°C, the supernatant was added to 100 uL. DMSO to
dissolve the blue formazan crystals produced by the
mitochondrial succinate dehydrogenase of the living
cells. Cell viability proportionate to optical density was
measured using a colorimetric assay of mitochondria
activity. Drug resistance was represented as the percen-
tage of live cells surviving after drug treatment relative
to control cells. Absorbances were measured using a
spectrophotometer at a wavelength of 570 nm.

Western blot analysis

The following antibodies and dilutions were used: mouse
anti-p21 (1:1000, Oncogene Research Products, USA); rab-
bit anti-survivin (1:1000, R&D System, Germany); mouse
anti-cleavage of poly (ADP) ribose polymerase (C-PARP;
1: 1000, Santa Cruz, CA, USA); and mouse anti-Bcl-xL
(1:1000, Santa Cruz, CA, USA). Rabbit anti-mouse
(1:1000, Santa Cruz, CA, USA) and swine anti-rabbit
(1:1000, Santa Cruz, CA, USA) HRP-coupled secondary
antibodies at a final concentration of 1 pg/mL were also
used. Specific protein bands were visualized by enhanced
chemiluminescence assay (Millipore Corporation, Billerica,
U.S.A). All Western blots were also immunoblotted for
GAPDH to demonstrate equal loading of protein samples.

Analysis of VEGF secretion in conditioned media by
enzyme-linked immunosorbent assay (ELISA)

Vascular endothelial growth factor (VEGF) protein in the
conditioned media of untreated and treated cells was
determined using the R&D ELISA Kits (R&D) according
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to the manufacturer’s instructions. Optical density was
determined using a microtitre plate reader at 450 nm.
Results were normalized to cell number (1 x 10°), and a
standard curve was generated by correlating the original
concentration of targeted factor and the corresponding
optical densities. VEGF concentration in media samples
was then calculated according to the standard curve. All
experiments were carried out in triplicate.

Fluorescence-activated cell sorting analysis
After the cells were treated with different concentrations
of SAHA (1, 2.5, and 5 uM) for 48 h, the apoptotic frac-
tion was determined using the annexin V-FITC apoptosis
kit (BD Biosciences, San Diego, CA) in accordance with
the manufacturer’s instructions. The data were analyzed
with CellQuest software (Becton Dickinson). The cells
were treated with Annexin-V and propidium iodine (PI)
for 30 min at room temperature in dark. Annexin-V and
PI fluorescences were measured using a flow cytometer
(Becton Dickinson) and analyzed with CellQuest software.
Viable cells were negative for both dyes, late apoptotic
cells were positive for both fluorochomes, and early apop-
totic cells were positive for Annexin-V but negative for PL
For each sample, 10,000 events were acquired on a loga-
rithmic scale for both Annexin V and PI fluorescences.
For cell cycle analysis, cells were harvested 48 h after
stimulation in the absence or presence of SAHA (0.1
UM to 5 uM), washed, fixed in 95% ethanol overnight at
4°C, incubated with RNase A (50 pg/mL) for 30 min at
37°C, and incubated with PI (50 pg/mL) for 30 min at
37°C. The intracellular PI fluorescence intensities of
10,000 cells were measured in each sample using a flow
cytometer (Becton Dickinson, San Jose, CA).

Immunocytochemistry analysis

Colon cancer cell lines were cultured on cover-slides in
the presence or absence of SAHA (1 or 5 uM) for 48 h.
The slides were incubated with the primary antibody for
one h after which they were then rinsed. Staining was car-
ried out using the streptavidin-biotin kit (Dakocytoma-
tion); the primary antibodies used were as follows: mouse
monoclonal anti-p21 antibody (Oncogene Research Pro-
ducts, Cambridge MA; 1: 100), anti-cyclin A (Abcam; 1:
50), anti-Ki-67 (Dakocytomation; 1: 50), anti-p53 (Dakocy-
tomation; 1: 100), and anti-survivin (Dakocytomation; 1:
100). The positive-staining cells were counted in 3 to
4 random images of high power fields (400x).

Results

Effects of SAHA on cell morphology and growth

The morphology of 320 HSR cells after SAHA treatment
is shown in Figure 1. After 48 h, SAHA (5 uM) inhib-
ited the growth of 320 HSR cells.
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Figure 1 Morphology of 320 HSR colon cancer cells after 48 h treatment with 5 uM SAHA. Original magnification x400.
A

Using the MTT assay, 320 HSR cell growth was inhib-
ited by SAHA (Figure 2). Both dose- and time-depen-
dent inhibitions of colon cancer cell growth were
observed after 24, 48, and 72 h treatment with various
concentrations of SAHA (0-25 uM). After 72 h, SAHA
(5 uM) significantly inhibited 320 HSR cell growth by
50%. Concentrations of SAHA larger than 5 uM did not
further inhibit cell growth.

Fluorescence-activated cell sorting analysis

As shown in Figure 3, a concentration-dependent effect
of SAHA in inducing apoptosis in 320 HSR cells was
observed. Apoptosis of 320 HSR colon cancer cells was
assessed using FACS analysis after cells were cultured
with 1, 2.5, or 5 uM SAHA for 48 h. The percentage of
early apoptotic cells (Annexin V-positive/PI-negative)
was 2.93% for control, 5.49% for 1 pM SAHA, 12.1% for
2.5 uM SAHA, and 13.38% for 5 uM SAHA. In addition,
the percentage of late apoptotic cells (Annexin V-posi-
tive/PI-positive) was 2.92% for control, 3.54% for 1 uM

SAHA, 9.25% for 2.5 pM SAHA, and 16.59% for 5 uM
SAHA.

For cell cycle analysis, cells were harvested 24 and 48 h
after stimulation in the absence or presence of SAHA (0.1
UM to 5 uM; Figure 4). Intracellular PI fluorescence inten-
sities are presented in the upper panels. The percentage of
cells in the sub-G1 phase was significantly increased upon
SAHA treatment for 24 and 48 h. In addition, the percen-
tage of cells in the GO/G1 phase was significantly inhibited
by SAHA treatment. These data suggest that SAHA
induced sub-Gl1 arrest in 320 HSR cells.

Effect of SAHA on expression of proteins

The effect of SAHA on expression of proteins related to
apoptosis and cell cycle regulation is displayed in Figure
5 and 6. Treatment of 320 HSR cells with 3 pM SAHA
for 72 h significantly reduced the expression of the anti-
apoptotic proteins, survivin and Bcl-xL. In addition,
increased cleavage of PARP protein (c-PARP) was seen
after a 72 h exposure to 3 uM SAHA.
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Figure 2 Effects of SAHA on 320 HSR cell growth using the

MTT assay. 320 HSR cells were treated with various concentrations

of SAHA for 24, 48, and 72 h.
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Effects of SAHA on VEGF concentration

The effect of SAHA on VEGF secretion by 320 HSR
cells into the culture medium was analyzed (Figure 7).
Treatment of 320 HSR cells with various SAHA concen-
trations (0.5 to 10 pM) for 24 and 48 h did not signifi-
cantly alter the concentration of VEGF within the
culture medium. VEGF concentrations were normalized
to 1 x 10° viable cells.

Immunocytochemistry analysis

To characterize the effects of SAHA on cell cycle and pro-
liferation proteins, alcohol-fixed cells were immunostained
for cyclin A, Ki-67 (proliferation marker), p53, survivin
(anti-apoptosis marker), and p21 (cyclin-dependent kinase
inhibitor, Figure 8 and Figure 9). In untreated cells, the
proportion of cells positive for cyclin A was 35%, Ki-67
was 80%, p53 was 90%, survivin was 70%, and p21 was
30%. After treatment of 320 HSR cells with SAHA (5 uM)

control

Propidium lodide(PI)

"

A —
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N
r

(apoptotic).

Annexin V
Figure 3 SAHA induces apoptosis in colon cancer cell lines. 320 HSR cells were stained with Annexin V (FITC) and propidium iodide (Pl) after
treatment with SAHA. Fluorescence-activated cell sorting analysis of 320 HSR cancer cell line at 48 h following treatment with 0, 1, 2.5, and 5 pM
SAHA (A, B, C, D, respectively). Percentages represent Annexin V-positive/Pl-negative (early apoptotic) and Annexin V-positive/Pl-positive cells
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Figure 4 Fluorescence activated cell sorting (FACS) analysis revealed SAHA-induced sub-G1 arrest in 320HSR cells. Cells were harvested
48 h after stimulation in the absence or presence of SAHA (0.1 uM to 5 puM). Intracellular PI fluorescence intensities of cells are presented in the
upper panels. The percentage of cells in the GO/G1 phase was significantly inhibited by SAHA treatment after 24 or 48 h. The percentage of cells
in the sub-G1 phase was significantly increased in response to SAHA treatment.
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for 48 h, percentage of SAHA-resistant tumor cells that
were positive for cyclin A, Ki-67, p53, survivin, and p21
were 85, 100, 100, 100, and 90%, respectively. A significant
increase cyclin A-, Ki-67-, p53-, survivin-, and p21-positive
cells were noted in SAHA-resistant tumor cells.

Survivin expression was detected in both the nucleus
and cytoplasm of 320 HSR colon cancer cells (Figure 9).
Increased survivin expression was observed in SAHA-

24hr 48hr 72hr
0 1 3 0 1 3 0 1 3
L ——— survivin
L e o el C-PARP

Figure 5 SAHA alters survivin, C-PARP, and Bcl-xL protein
levels in 320 HSR cells. Western blot analysis of cells treated with

or without SAHA (1 or 3 uM) for 24, 48, and 72 h.

resistant cells, suggesting that survivin could counteract
the growth inhibitory effects of SAHA.

With respect to the cyclin-dependent kinase inhibitor,
p21, a direct target of SAHA, few positively-stained cells
were observed in untreated colon cancer cells (Figure 9).
After SAHA treatment, increased p21-positive cells were
observed in SAHA-resistant cells, displaying both
nuclear and cytoplasmic staining.

Taken together, these results indicate that SAHA inhi-
bit the proliferation of 320 HSR colon cancer cells
through induction of apoptosis and sub-G1 arrest in a
concentration- and time-dependent manners. SAHA-
resistant cancer cells express high levels of cyclin A,
Ki67, p53, survivin, and p21.

Discussion

HDAC:i inhibits acetylation of histones H3 and H4 and
induce tumor apoptosis in various types of cancers
[3,10,11]. The present study demonstrates for the first
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Figure 6 Histogram values are means and standard error of band densitometry data measured in figure 5. *P <0.05 vs. control.

time in 320 HSR colon adenocarcinoma cells that SAHA
has profound antigrowth activity at micro-molar con-
centrations. Specifically, SAHA induced apoptosis and
sub-G1 arrest in 320 HSR colon cancer cells by inhibit-
ing the protein expression of anti-apoptosis proteins,
survivin and Bcl-xL.

Multiple mechanisms have been proposed to describe
the effects of SAHA in different cancers [7]. Previous
studies indicate that SAHA down-regulates certain anti-
apoptosis proteins such as Bcl-2 and Bcl-xL [12] and
up-regulates pro-apoptotic protein expression [13]. In
addition, SAHA induced p21-mediated inhibition of cell

cycle progression and cell death in cancer cells [7].
Although studies have suggested that SAHA-mediated
apoptosis was dependent on upregulation of p21, other
studies have reported that p21 expression inhibited cell
death induced by HDACI [14-16]. In our study, immu-
nocytochemistry analysis revealed increased p21-positive
cells in SAHA-resistant cells, suggesting an anti-apopto-
tic function for p21 as well as protection from the cyto-
toxic effects of SAHA.

Fifty-percent inhibition of 320 HSR cell growth was
observed upon 5 uM SAHA treatment. Previous clinical
studies have shown that these levels can be achieved in



Sun et al. Journal of Biomedical Science 2010, 17:76
http://www.jbiomedsci.com/content/17/1/76

p
320HSR
160
—@— treat SAHA for 24 hrs

140 A —O— treat SAHA for 48 hrs

120 A
£ 1004
zg 100
g 80 -
3
s 3
2 60 -
>

40 4

20 4

0 T T T T T
0 05 1 5 10
SAHA concentration (uM)

Figure 7 Effects of SAHA on VEGF secretion by 320 HSR cells.
Cells were treated with different SAHA concentrations for 24 h and
48 h. VEGF concentrations in the conditioned medium were
determined by ELISA and normalized to 1 x 10° viable cells.

individuals receiving the drug [17]. Studies in humans
have found that SAHA induced minor side effects [17],
suggesting that SAHA use as an adjuvant target therapy
may be beneficial.
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The antiproliferative effects of SAHA have been stu-
died in a thyroid cancer cell line [6], human lymphoma
cells [18], breast cancer [19] and non-small cell lung
carcinoma [20], as well as endometrial and ovarian can-
cer cells [21,22]. These studies highlight that the inhibi-
tory activity of SAHA on cancer cell growth spans many
tissue types, suggesting it can be a useful agent for the
treatment of a wide variety of malignancies.

Our studies using colon cancer cell lines revealed that
SAHA induced apoptosis, and inhibited tumor cell
growth in vitro. These changes were associated with
down-regulation of survivin, and Bcl-xL. Each of these
actions is consistent with induction of apoptosis by
SAHA. Our results are consistent with a previous study
using thyroid cancer cell lines; SAHA down-regulated
expression of anti-apoptotic genes, including Bcl-2 and
survivin, and cleavage of PARP [6,7].

Previous studies have demonstrated that survivin is a
bifunctional protein that regulates cell cycle progression
in mitosis as a passenger protein and blocks apoptotic
pathways [5]. SAHA-induced mitotic defects can be
mediated by modulation of survivin [7,23,24]. In the
present study, down-regulation of survivin protein
expression by SAHA contributes to the pro-apoptotic
effects of SAHA.

320HSR
SAHA control 1uM 5uM
Cyclin A
Ki 67
Figure 8 Immunocytochemical analysis of cyclm A and Ki-67 expression in 320 HSR cells. Cells were treated with or without SAHA (1 or 5
pM) for 48 h. Original magnification x400.
A
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Using immunocytochemistry analysis, SAHA-resistant
tumor cells displayed a significant increase cyclin A, Ki-67,
p53, survivin, and p21 expression after 48 h. Escape from
SAHA-mediated apoptosis by tumor cells is through upre-
gulation of cyclin A, Ki-67, p53, survivin, and p21 expres-
sion; therefore, combination therapies of SAHA with other
pharmacological agents that target different pathways may
be effective for SAHA-resistant cells.

Conclusions

We demonstrated first time in 320 HSR colon adenocar-
cinoma cells that SAHA inhibited the proliferation of
colon cancer cells through inducing apoptosis and sub-
G1 arrest. Thus, SAHA might be considered as a poten-
tial adjuvant target therapy for colon adenocarcinoma.
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SAHA: suberoylanilide hydroxamic acid; HDAC: Histone deacetylases; MTT
assay: (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay;
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of poly (ADP) ribose polymerase; GAPDH: Glyceraldehyde 3-phosphate
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